
HAL Id: hal-04469651
https://hal.science/hal-04469651

Submitted on 8 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gigue: A JIT Code Binary Generator for Hardware
Testing

Quentin Ducasse, Pascal Cotret, Loïc Lagadec

To cite this version:
Quentin Ducasse, Pascal Cotret, Loïc Lagadec. Gigue: A JIT Code Binary Generator for Hardware
Testing. VMIL, Oct 2023, Cascais, Portugal. �10.1145/3623507.3623553�. �hal-04469651�

https://hal.science/hal-04469651
https://hal.archives-ouvertes.fr


Gigue: A JIT Code Binary Generator for Hardware
Testing

Quentin Ducasse
quentin.ducasse@ensta-

bretagne.org
ENSTA Bretagne, Lab-STICC

Brest, France

Pascal Cotret
pascal.cotret@ensta-bretagne.fr
ENSTA Bretagne, Lab-STICC

Brest, France

Loïc Lagadec
loic.lagadec@ensta-bretagne.fr
ENSTA Bretagne, Lab-STICC

Brest, France

Abstract
Just-in-time compilers are the main virtual machine com-
ponents responsible for performance. They recompile fre-
quently used source code to machine code directly, avoiding
the slower interpretation path. Hardware acceleration and
performant security primitives would benefit the generated
JIT code directly and increase the adoption of hardware-
enforced primitives in a high-level execution component.

The RISC-V instruction set architecture presents extension
capabilities to design and integrate custom instructions. It
is available as open-source and several capable open-source
cores coexist, usable for prototyping. Testing JIT-compiler-
specific instruction extensions would require extending the
JIT compiler itself, other VM components, the underlying
operating system, and the hardware implementation. As the
cost of hardware prototyping is already high, a lightweight
representation of the JIT compiler code region in memory
would ease prototyping and implementation of new solu-
tions.
In this work, we present Gigue, a binary generator that

outputs bare-metal executable code, representing a JIT code
region snapshot composed of randomly filled methods. Its
main goal is to speed up hardware extension prototyping
by defining JIT-centered workloads over the newly defined
instructions. It is modular and heavily configurable to qual-
ify different JIT code regions’ implementations from VMs
and different running applications. We show how the gener-
ated binaries can be extended with three custom extensions,
whose execution is guaranteed by Gigue’s testing framework.
We also present different application case generation and
execution on top of a fully-featured RISC-V core.

Keywords: JIT, RISC-V, Hardware Development

1 Introduction
Efficient execution of high-level languages, whether stati-
cally or dynamically typed involves a set of complex com-
ponents embedded in a Virtual Machine (VM), the execu-
tion engine of the source language. Among them are Java,
Ruby, Python, JavaScript, or Pharo. Their VMs often involve
a parser, an intermediate representation compiler, an inter-
preter, and a set of just-in-time (JIT) compilers. VMs provide
portability for the developer as the distribution of the VM

binary is enough to support any application, regardless of
the underlying operating system (OS) and architecture. The
VM profiles the executing source code, feeds frequently used
parts to the JIT compilers that recompile it to machine code,
and redirects control flow to the machine code representa-
tion when encountered again. JIT compilers output machine
code at run time for the current architecture, and they need
to be extended to support new architectures. At the same
time, they are responsible for the gain in performance over
sole interpretation. We believe they are particularly suited
for hardware acceleration, either through dedicated hard-
ware units implementing JIT-specific helpers (arithmetic,
object offset access, etc.) or security mechanisms (e.g. trusted
execution environments [17]).
RISC-V is an open-source Instruction Set Architecture

(ISA) that leads to open-source implementations and allows
developers to propose new instruction subsets in a reserved
space [19]. This provides instruments to define and prototype
application-specific custom instructions.

However, when designing custom instructions for the JIT
compiler to emit, a huge technology stack bridges the VM
JIT compiler to the actual custom instruction support in
hardware. Figure 1 presents the main elements involved.

Figure 1. JIT-oriented hardware development.

On top of the hardware lives the operating system, pro-
viding base capabilities to the VM, itself distributed for the

https://orcid.org/0000-0001-9927-675X
https://orcid.org/0000-0001-6325-0777
https://orcid.org/0000-0003-3778-3144


Conference’17, July 2017, Washington, DC, USA Quentin Ducasse, Pascal Cotret, and Loïc Lagadec

OS/architecture combination. Adding custom instructions
would require the extension of the VM and OS along with
the hardware itself (dotted circles on the figure).
To speed up hardware prototyping in the context of JIT

compilation, we present Gigue 1 (French for jitter), an open-
source binary generator that outputs executable snapshots
of the JIT code memory region. The region is split at the
granularity of methods, whose content is randomized. It im-
plements JIT custom instructions without the need to extend
the whole technology stack to operate. We believe, as the
JIT compiler is the sole runtime machine code generator,
that a focus on its output and how it can be instrumented
provides good insight into the interest of one solution over
another. Gigue is heavily parametrized to represent different
JIT code regions (and therefore different VMs) as well as
different application types running on top. Gigue usage is
three-fold: (1) generate bare-metal randomized snapshots
of the JIT code region that qualify different VMs or applica-
tions; (2) verify the execution of generated binaries using a
CPU emulator (Unicorn [15]) extended on the software side
to support the new instructions; and (3) generate a set of
instrumented binaries in ELF format, ready to be executed
on a core.

In this paper, we propose the following contributions:

• Gigue, an open-source parametrizable and modular
binary generator that outputs a JIT code region exe-
cutable, filled with randomized methods, for various
layouts and application classes,
• An extensible test framework to define the behavior
of added instructions and ensure the soundness of
their implementation on the software side, here as an
extension of the Unicorn CPU emulator,
• An example use case on top of the Rocket open-source
processor [2] with the baseline execution of different
application classes.

This article is organized as follows. Section 2 presents the
basis of the Pharo VM, the initial inspiration for Gigue. It
also presents the RISC-V ISA and related works to narrow
the range of the technology stack involved between hard-
ware and VM development. Section 3 presents Gigue design
principles both in terms of its binary and execution structure
as well as the main generation algorithm. Section 4 high-
lights the important characteristics of Gigue: modularity to
better represent VMs, parametrization to better represent
applications, and a test framework to guarantee the correct
execution of generated binaries. Section 5 shows a use-case
to generate binaries for different application classes on top
of the Rocket CPU. Finally, Section 6 and 7 a utility in the
context of hardware development and lay down the future
works.

1https://github.com/QDucasse/gigue

2 Background
2.1 Pharo VM
The Pharo language inherits from Smalltalk-80 and is a pure
object-oriented language revolving around message sends
as its main control-flow construct. Pharo, in the same vein
as Python or JavaScript is dynamically-typed and supported
by a language Virtual Machine (VM). The VM serves as the
execution environment the language needs to be executed,
it provides portability, memory management of the live pro-
gram through snapshots, and IOs handling through foreign
function interfaces.

To grant and retrieve memory, Pharo and other managed
languages use a garbage collector that traces and records
the usage of live objects and constructs. Once an object is
not referenced anymore, it is collected and its memory is
released. To compile and execute source code, the VM also
contains a parser, a bytecode compiler, an interpreter, and a
JIT compiler. When the source code is first met, the parser
of the VM constructs the corresponding AST, which is com-
piled to bytecode by the bytecode compiler. This bytecode is
then consumed by an interpreter, dispatching each bytecode
element to its corresponding effect. The Pharo VM uses a
baseline non-optimizing JIT compiler and defines polymor-
phic inline caches (PICs) [8] in its JIT code region. PICs are
machine code stubs setting up a combination of type guards
and jump tables to cache polymorphic JIT method addresses.
Several other VMs hold various JIT compilers with increas-
ing optimization complexity, triggered when the profiling
ensures time spent compiling and optimizing is worth it.

Figure 2. Pharo VM compilation process.

As shown in Figure 2, the Pharo VM is written in Slang
[9], a restricted Smalltalk sublanguage that supports a re-
duced number of Smalltalk features. It is then transpiled
to C and compiled for the target architecture along with
architecture and OS-specific helpers. This way, the main
components responsible for the execution of the program
are easily portable as long as the C compiler supports the
target architecture. This portability still comes at the cost

https://github.com/QDucasse/gigue


Gigue: A JIT Code Binary Generator for Hardware Testing Conference’17, July 2017, Washington, DC, USA

of performance since the JIT compiler has to be manually
ported to new architectures [6, 13].

2.2 RISC-V
The RISC-V ISA is emerging as a serious competitor for adop-
tion in wide areas from limited resources embedded devices
to hyper-computing clusters. Its main benefits are its mod-
ularity and the simplicity inherited from RISC ISAs; the
open-source characteristics of the specifications and sev-
eral fully-featured cores; and its extensibility with custom
instructions.
RISC-V defines a set of drafted and ratified extensions

starting from the 32-bit integer (RV32I) and increasingly
adding 64-bit support, multiplications and divisions, atomic
operations, floating-point operations, and compressed in-
structions to define RV64IMAFDC (or RV64GC) [19], a set of
instructions capable of supporting a fully-featured OS. In ad-
dition to instructions themselves, a privileged specification
defines three privilege modes: machine, supervisor, and user
mode [20]. The system can only be configured in machine
mode, the OS runs on the supervisor mode and provides
an interface through which user programs are executed in
user mode. This combination of extensions allows a core
to support a fully-featured operating system such as Linux.
Additional extensions dedicated to specific use cases are
ratified or still in development, waiting to be frozen in the
specifications.
Now, in the context of VMs, the technology stack goes

from high-level managed and dynamically-typed source code
down to generated machine code. Since the JIT compiler
generates machine code at run time, we believe it could use
JIT-specific dedicated instructions either for common secu-
rity measures (stack isolation [4], pointer integrity [11], or
domain-based isolation [10]), acceleration measures (vector
operations as defined in the V extension [19], neural-network
operations [7]), or VM-specific measures (type checking, ob-
ject offset verification). However, adding a new instruction
to the JIT compiler requires support from both the OS and
the underlying processor. This technology stack covering all
levels of execution makes it complex to prototype, and test
new instructions and their impact at the different levels of
the stack. Alongside software complexity, the multiplicity
of core implementations, either through their design or the
extensions they support makes it very complex to maintain
or test ideas.

2.3 Custom Instruction Examples
To provide a better understanding of what Gigue aims to
support, we present examples of custom instructions of in-
creasing complexity that could be added to a processor. The
first one consists of a hardware-accelerated primitive while
the two others define hardware security primitives:

• E1: Dedicated instructions to handle bits rotation (in-
cluded in the RISC-V B extension not ratified yet).
• E2: A shadow-stack implementation with two instruc-
tions to push and pop a return address to a dedicated
call stack, taken from the FIXER co-processor imple-
mentation [4].
• E3: An instruction-level domain isolation mechanism
derived from RIMI [10]. It duplicates all memory access
instructions, assigns them to separate memory regions,
and guarantees only intra-domain instructions access
to their corresponding data.

Implementation of (E1) adds four instructions, two rota-
tions between registers (R-type ror and rol) and the corre-
sponding rotation using an immediate value (I-type rori).
Implementation of (E2) adds two new instructions dedi-

cated to the handling of return addresses during calls and
returns that either push or pop it to the duplicated stack,
using spush and spop. Calls should use the dedicated in-
structions for return address push, and returns should use
the dedicated return address pop. The return is either located
in the methods’ epilogue or the dedicated trampoline, if in
use.
Implementation of (E3) duplicates all loads and stores

(lb1, lh1, lw1, . . . , sb1, sh1, sw1, sd1), and adds two domain-
changing instructions for calls and returns changing domains
(chdom and retdom). To separate the interpretation loop in
one domain and the JIT code in another, all generated loads
and stores should be the ones duplicated, and the routine to
change domains if needed should be added to the trampolines
responsible for the control-flow transfer.

2.4 Existing Development Tools
On the software side, the Pharo VM relies on an in-depth
simulation framework [12] to keep most of its development
high-level and in its feature-rich environment. The JIT com-
piler is tested in addition to this framework by feeding re-
compiled machine code into the Unicorn CPU emulator [15].
This technique helped add robust unit tests working in a
black-box fashion to ensure the soundness of the JIT com-
pilation. Unicorn is a lightweight wrapper on top of QEMU
[3] that provides numerous hooks to catch and handle CPU
exceptions. This framework helped port Cogit, the Pharo
JIT compiler to ARMv8 and RISC-V [6, 13]. It also helped
prototype the use of custom instructions in the JIT compi-
lation flow by: generating them, launching the execution
on Unicorn, catching an “unknown instruction” exception,
running its desired behavior on the software side andmodify-
ing the CPU state in Unicorn directly, then finally resuming
execution.

On the hardware side, testing the correct implementation
of the ISA in a CPU is two-fold: (1) ensuring the correct be-
havior of the ISA as defined in the standards, an assembly test
suite (riscv-tests [16]) is defined to ensure the soundness



Conference’17, July 2017, Washington, DC, USA Quentin Ducasse, Pascal Cotret, and Loïc Lagadec

of implementation; (2) ensuring the correct implementation
of the components of the CPU, the different stages of the
pipeline, memory hierarchy and peripherals. Softcore imple-
mentations are written in Hardware Description Languages
(HDL) that can be generated into bitstreams to be deployed
on a reconfigurable architecture for prototyping. Tools help
simulate the design through waveform generation, among
them closed-source commercial simulators such as Synopsys,
and open-source alternatives such as Verilator [18].

3 Gigue: JIT Code Benchmark Generator
To prototype new instruction ideas for the JIT compiler, we
have to bridge the gap in the testing framework between the
correct implementation in the JIT compilation pipeline, and
guarantees enforced by the hardware itself. As stated in the
introduction, the technology stack is complex, and portabil-
ity is mostly guaranteed for all VM components (through
major compilers) apart from the JIT compiler. Prototyping
extensions on the hardware side could use a simplified ver-
sion of the JIT code region and assess the impact on the core
through two main metrics: (1) the performance overhead
through the measured number of cycles, and (2) the area
overhead of the CPU the solution adds. We believe having
an insight into the performance overhead of a solution will
guide our choice for implementation in the real JIT com-
piler. To ease prototyping, we designed Gigue, a tool that
generates executable binaries similar to the JIT code region,
filling its methods with random instructions to generate a
parametrizable workload.
With Gigue, our objective is to ease the complexity of

the technology stack involved in the support for custom
instructions in the JIT compiler. It was designed with three
main objectives in mind:
• Parametrization: Gigue is parametrizable to accurately
qualify application classes. The parameters are covered
in Section 3.2 and qualify both the size of JIT elements,
the type of instructions they contain, interactions be-
tween elements and generated data.
• Modularity: Gigue is designed to be modular and out-
put a binary that resembles the JIT code region of the
target engine. It provides facilities to add user-defined
structures that are found in the JIT code region (meth-
ods, PICs, hidden classes, etc.) and is presented in more
detail in Section 4.1.
• Testing: Gigue defines a test framework to guarantee
the correct setup of JIT elements and the interpretation
loop. It also checks the correct decoding and execution
of the generated binary as presented in Section 4.2.

It provides a parametrizable JIT code region executable in-
spired by the Pharo VM JIT code region layout but adaptable
to other JIT code memory layouts. It generates an executable
ELF file that defines both an interpretation loop and a JIT
code region that represents a static version of the JIT code

region. The JIT code elements (methods and optimization
structures) are filled with random (and sanitized) instructions
based on input parameters.

3.1 Binary Structure and Execution
The JIT code region contains different elements and machine
code constructs:

Methods: A method is characterized by its size, call number,
call depth, number of local variables, and number of used
callee-saved registers. It is composed of a prologue, adding
space on the stack and saving callee-saved registers; a body,
filled with random instructions and calls to other methods
or PICs; and an epilogue, restoring register values saved on
the stack and destroying the call frame.

PICs: A polymorphic inline cache (PIC) is characterized by a
case number and composed of a machine code switch case
checking a corresponding class register for a value and jump-
ing to the corresponding method offset. We use simplified
class values (simple integers) and add the corresponding
methods right after the “switch” statement. Calling a method
in a PIC requires loading a corresponding value into the fic-
tive class register before issuing a jump to the switch state-
ment.

Trampolines: A trampoline is a helper added to the JIT
code region used to control the interoperability between
the interpreter and the JIT code region. Trampoline usage
covers a wide variety of utilities, from accessing particular
object field offsets to type-checking JIT methods and PICs,
and switching execution stacks. The base generation Gigue
provides simply defines control-flow trampolines to correctly
transfer control flow back and forth between the two parts
of the binary: callJITelt and returnToInterpreter.

Execution: Gigue generates an ELF binary that follows the
execution design presented in Figure 3. The JIT code region
contains methods and PICs filled with random instructions.
The interpretation loop calls every one of the JIT elements
in random order and each element can call other JIT ele-
ments. Starred arrows represent a call and return through
the trampolines but were shortened for readability. An as-
sembly template incorporates the interpretation loop, the JIT
code region (at a fixed offset), and generated data whose base
address is stored in a dedicated register (ensuring correct
data accesses from stores and loads). The template is then
linked according to the test framework of the riscv-tests
official repository, defining the correct behavior of a core
when confronted with different instructions and scenarios as
defined in the standards. The binary is ready to be executed
bare-metal on any RISC-V core that supports the test suite
(and implements the custom instructions if included).



Gigue: A JIT Code Binary Generator for Hardware Testing Conference’17, July 2017, Washington, DC, USA

Figure 3. Binary structure and execution.

3.2 Parametrization
Gigue parameters are shown in Table 1 and split into two
categories: VM Characterization tuning the JIT code region
and Application Characterization tuning the contents of JIT
elements. Their internal usage is described in more detail in
Appendix A.

Table 1. List of Gigue input characterization parameters.

Type Description Name
VM JIT code region size 𝑠𝑖𝑧𝑒 𝐽 𝐼𝑇
VM Frequency of JIT elements 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑒𝑙𝑡𝑠
VM Usable registers 𝑟𝑒𝑔𝑠

App Total number of methods 𝑛𝑏𝑚𝑒𝑡ℎ𝑜𝑑𝑠

App Method size variation `𝑠𝑖𝑧𝑒 , 𝜎𝑠𝑖𝑧𝑒
App Call occupation in methods `𝑐𝑎𝑙𝑙𝑠 , 𝜎𝑐𝑎𝑙𝑙𝑠
App Call intricacy and depth _𝑑𝑒𝑝𝑡ℎ
App PIC case number _𝑃𝐼𝐶
App Frequency of instructions 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖𝑛𝑠𝑡𝑟𝑠
App Data characterization 𝑠𝑖𝑧𝑒𝑑𝑎𝑡𝑎, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟

VM Characterization: Parameters describe the JIT code
region for a specific VM by specifying a fixed JIT code region
size. It also specifies the types and associated weights of the
different JIT elements (methods and optimized structures)
along with available registers, i.e. registers used by the VM
itself that will not be used by the application. We believe
that these values help distinguish VM JIT code regions from
one another.

Application Characterization: Parameters characterize
an application through the contents of the JIT elements. The

methods are characterized by a mean method size, derived
from the method number. Method bodies are incrementally
sized by applying the method size variation parameters (vari-
ance and standard deviation, more in the next sections). The
methods are also characterized by a call number derived from
call occupation parameters (variance and standard deviation,
more in the next sections) and a call depth derived from a
mean input value. PICs are given a case number derived from
a mean input value. The application is also characterized by
the weights of the different instruction types to represent
more arithmetic operations, branches and jumps frequency,
or memory access intensity. Finally, the associated JIT data is
sized and generated along with the code to better represent
types of applications. We show in Section 5 how different
types of application classes can be defined using those pa-
rameters.

Algorithm 1 Binary generation.
procedure AddMethod

𝑠𝑖𝑧𝑒𝑚𝑒𝑡ℎ𝑜𝑑 ← 𝑅𝑎𝑛𝑑𝑜𝑚(`𝑠𝑖𝑧𝑒 , 𝜎𝑠𝑖𝑧𝑒 ) ⊲ see next section
𝑛𝑏𝑐𝑎𝑙𝑙𝑠 ← 𝑅𝑎𝑛𝑑𝑜𝑚(`𝑐𝑎𝑙𝑙𝑠 , 𝜎𝑐𝑎𝑙𝑙𝑠 ) ⊲ -
𝑐𝑎𝑙𝑙𝑑𝑒𝑝𝑡ℎ ← 𝑅𝑎𝑛𝑑𝑜𝑚(_𝑑𝑒𝑝𝑡ℎ) ⊲ -
Fill(𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖𝑛𝑠𝑡𝑟𝑠 ) ⊲ -
returnMethod

procedure AddPIC
𝑛𝑏𝑐𝑎𝑠𝑒𝑠 ← 𝑅𝑎𝑛𝑑𝑜𝑚(_𝑐𝑎𝑠𝑒𝑠 ) ⊲ -
𝑖 ← 0
while 𝑖 < 𝑛𝑏𝑐𝑎𝑠𝑒𝑠 do

AddMethod
𝑖 ← 𝑖 + 1

Add switch stub
return PIC

procedure GenerateBinary
Add trampolines ⊲ Phase 1
Add leaf method
𝑚𝑒𝑡ℎ𝑜𝑑𝑐𝑜𝑢𝑛𝑡 ← 1
while𝑚𝑒𝑡ℎ𝑜𝑑𝑐𝑜𝑢𝑛𝑡 < 𝑛𝑏𝑚𝑒𝑡ℎ𝑜𝑑𝑠 do

element← 𝑅𝑎𝑛𝑑𝑜𝑚(𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑒𝑙𝑡𝑠 ) ⊲ see next section
if element = method then

AddMethod
𝑚𝑒𝑡ℎ𝑜𝑑𝑐𝑜𝑢𝑛𝑡 ←𝑚𝑒𝑡ℎ𝑜𝑑𝑐𝑜𝑢𝑛𝑡 + 1

else if element = pic then
AddPIC
𝑚𝑒𝑡ℎ𝑜𝑑𝑐𝑜𝑢𝑛𝑡 ←𝑚𝑒𝑡ℎ𝑜𝑑𝑐𝑜𝑢𝑛𝑡 + 𝑛𝑏𝑐𝑎𝑠𝑒𝑠

for each method do ⊲ Phase 2
Determine possible callees
Patch calls

Generate interpretation loop ⊲ Phase 3
Generate data ⊲ Phase 4
Write binary



Conference’17, July 2017, Washington, DC, USA Quentin Ducasse, Pascal Cotret, and Loïc Lagadec

3.3 Instruction and Constructs Generation
Gigue is designed around a Generator object, responsible
for the construction of the target binary following input
parameters. It manages the JIT code region by filling it with
the different constructs, startingwith the chosen trampolines,
then with methods and PICs characterizing them with input
parameters and probability distributions.

The main generation routine operates in four main phases,
as presented in Algorithm 1 and the GenerateBinary pro-
cedure. (1) JIT elements are added to the JIT binary through
their weights (calling the corresponding helper defined in
procedures AddPIC and AddMethod). The helpers to add the
different elements to the JIT code region are given param-
eters derived from the input configuration and using ran-
dom distributions and weights as defined in the following
sections. (2) Calls between JIT elements are added after gen-
eration, and a method can only call another element with a
lower call depth to ensure no infinite loops are generated.
We also restrain methods from calling themselves due to
the lack of termination conditions. These two rules define
a low-cost guarantee of complete execution for calls. In ad-
dition, branches and jumps are sanitized to always target
the content of the current method and avoid eventual calls
within the body. (3) Calls from the interpretation loop to
the JIT elements are generated. Finally, (4) corresponding
data is generated according to the chosen strategy (examples
are random or incremental). Data accesses are performed
using a base register set in the linker script and an offset ran-
domized within the maximum data size. Additional details
on the different randomization techniques used in Gigue
generations are provided in Appendix A.

4 Modularity and Guarantees
As presented at the beginning of the previous section, Gigue
was designed to generate low-level hardware-testable bina-
ries to test new instructions or hardware-enforced concepts
in the application context of JIT compilation and the JIT
code region. In addition to parametrization as presented ear-
lier, we wanted to provide modularity, and a strong testing
framework.

4.1 Modularity and Extensions
For VM characterization, each JIT element (trampolines,
methods, and optimizations) answers a simple API to be
added to the binary through the Generator. New constructs
are added through a subclass of a JIT element along with its
helper and probability weight. The only element that handles
machine code instructions is the Builder, responsible for
both outputting lone instructions and constructs such as calls
or prologues/epilogues. It also enforces correct alignment for
data access and sanitizes the landing of branch/jump instruc-
tions. Mechanisms using new instructions are integrated
through a new subclass of the main builder, redefining the

API of the main instructions and constructs it wishes to add
or overload.

The three extension examples presented in Section 2.3, E1
(rotations), E2 (shadow stack), and E3 (instruction-level do-
main isolation) were implemented in Gigue. Overall, the com-
plete handling of the three different extensions requires the
addition of the instructions and the corresponding builder for
changed constructs. The Builder element is subclassed to:
add the new instructions to their corresponding types for E1,
define different prologues/epilogues for E2/E3, and extend
control-flow trampolines for E3. Gigue is composed of 3193
lines of object-oriented Python code, the addition of E1 took
161 lines, E2 154 lines, and E3 502 lines of code (counted us-
ing cloc, code formatted using black) respectively. These ad-
ditions cover the instruction details and Builder/Generator
extension. In addition to the code portion of the generator,
and as presented in the next section, the test framework is
also extended with a total of: E1 33, E2 31, and E3 236 to
support the software execution of custom instructions.

4.2 Test Framework
Gigue uses a test suite of around 2500 parametrized unit
tests to assert guarantees on the generated binaries. Part of
those tests directly executes the generated machine code. To
support the decoding and execution of the machine code, we
use the Capstone disassembler [14], an in-house disassem-
bler, and the Unicorn CPU emulator [15]. It is a lightweight
wrapper on top of QEMU that allows for simple binary in-
strumentation and tracing.

Using Unicorn, we guarantee the correct execution of the
binary before porting on core implementations. It allows
for quick tracing and verification of the executed instruc-
tions and defuses early any issues that might be encountered
when dealing with the real hardware. In addition to sim-
ple baseline testing of unmodified binaries, we also adapted
the Unicorn hooks to catch any unknown instruction. This
way, even binaries implementing custom instructions and
extensions can be executed completely, with the custom in-
structions emulated in software directly before redirecting
control flow to the binary. It defines the additional structures
and execution model that should be followed by the actual
core implementing the extension and guarantees the correct
usage of new instructions.

5 Example Application Case and Setup
As an example, we chose the Rocket chip [2] to execute
Gigue-generated binaries. It is written in Chisel [1], a Hard-
ware Description Language at Register Transfer Level (RTL)
that extends Scala. The Chisel code is then translated to
Verilog which can be run through a synthesis tool to de-
ploy on hardware. Rocket also provides a cycle-accurate C++
simulator generated through Verilator [18]. The execution
framework is presented in Figure 4: the input parameters



Gigue: A JIT Code Binary Generator for Hardware Testing Conference’17, July 2017, Washington, DC, USA

are fed to Gigue, and binaries are generated according to
them and then executed on top of the Rocket emulator. As
presented here, even when reducing the technology stack
involved in JIT-dedicated hardware instructions, it still is
complex to manage.

Figure 4. Execution setup and test framework.

To demonstrate the Gigue generation capabilities, we
chose to change two parameters independently to define
several application classes: call occupation and memory ac-
cess intensity. We fix the binary size as the maximum size
of the JIT code region is fixed and allocated at startup. We
vary the number of methods and then independently change
call occupation parameters (variance and standard deviation,
along with the call depth variance) andmemory access param-
eters (weights on stores and loads). Binaries are generated
from the base RISC-V ISA and run on an unmodified version
of the core

Figure 5. Different application classes generated with vary-
ing call occupations/memory access intensities to methods
number.

Binaries are generated using a fixed size of 7000 instruc-
tions (or 28kB). The choice of a fixed value for the binary size
is motivated by the fact that this value is sized and fixed on a

Figure 6. Mean number of cycles for each application class.
Each group of three bars uses 50, 100, and 200 methods
respectively.

per-VM basis. We run each of the 18 application classes (9 for
call occupation, 9 for memory access intensity) 10 times. To
generate them, we used a varying method number common
to both calls and memory accesses: 50, 100, and 200 methods.
This number of methods is inversely proportional to the
mean method size as the total binary size is fixed.

Call occupations using the call parameters Gigue provides,
(`𝑐𝑎𝑙𝑙𝑠 , 𝜎𝑐𝑎𝑙𝑙𝑠 , _𝑑𝑒𝑝𝑡ℎ): low using (0.1, 0.1, 1), medium using
(0.3, 0.1, 2), and high using (0.5, 0.2, 3) (other parameters are
shown in Appendix B). They all use fixed instruction weights
corresponding to the medium version of memory accesses.
On the left side of Figure 5 are displayed the 9 corresponding
application classes, each containing 10 samples. Figure 6
presents the corresponding mean number of cycles for each
application class.
Memory access intensities vary using weights of stores

and loads: low using 2% for each, medium using 10%, and
high using 20%. They all use fixed call parameters correspond-
ing to the medium version of call occupation. On the right
side of Figure 5 are displayed the 9 corresponding application
classes, each containing 10 samples. Figure 6 presents the
corresponding mean number of cycles for each application
class.

Note that while those are the input Gigue parameters, the
displayed values are the effective ones measured by parsing
the Rocket execution logs. The amount of memory accesses
is higher due to prologues/epilogues accessing the stack.
Using Gigue, we managed to generate different classes of
binaries and directly execute them bare-metal on top of the
Rocket CPU.

6 Discussion
Gigue allows for quick prototyping of custom instructions
in the context of JIT compilation. It generates a set of ap-
plication classes through random binaries. Those binaries
qualify both a JIT code region and an application, and act as
a snapshot of the JIT code region at a given moment.



Conference’17, July 2017, Washington, DC, USA Quentin Ducasse, Pascal Cotret, and Loïc Lagadec

The existence of Gigue is motivated by the need for a
hardware testing utility that does not imply handling the
complete technology stack. Hardware development and ex-
tension involve a time-consuming process and framework.
We believe that while major OS and compiler support will
provide soundness guarantees over the other VM compo-
nents, the JIT compiler and its corresponding memory region
benefit from being tested separately. Our objective is to de-
sign JIT-specific instructions to accelerate and secure the
generated machine code.

Giguewas designed to assess the impact on execution over-
head when introducing new JIT-specific mechanisms. We
believe it provides important insight and first-hand impact
qualification of new constructs and instructions. However,
it cannot serve as a complete evaluation of new instructions
as it proposes a simplified version of the JIT code region and
does take into account the runtime reconfiguration of this re-
gion. Additionally, while the generated binaries correspond
to input parameters, they cannot describe a fully-featured,
high-level application. Further testing and benchmarking
should be performed through the extended JIT compiler to
assess the impact of such features.

7 Conclusion
In this paper, we presented the process of JIT compilation
and how it could benefit from custom instructions. As the
RISC-V ISA is gaining traction, several fully-featured pro-
cessors are available open-source and enable application-
specific prototyping and benchmarking. However, as the
testing framework is already consequent for hardware de-
velopment, adding the complete VM through the OS would
slow down an already tedious process.

We presented Gigue, an open-source binary generator that
is modular, parametrizable, and provides a test framework
to model and guarantee the correct execution of binaries
implementing custom instructions. Gigue defines the binary
structure and execution to better represent different VMs
and their associated JIT code region. It also provides param-
eters to qualify applications running on top of the VM with,
for example, varying call occupations or memory access
intensities. We presented how Gigue generates such appli-
cations and how the generated binaries can be integrated
into a larger tooling suite designed around a fully-featured
RISC-V core, Rocket. Gigue helps design the implementation
of new instructions, testing them in software before gen-
erating the corresponding binaries to execute on top of a
custom core. We believe it speeds up the hardware testing by
providing meaningful insight into the new instructions and
implementation guidelines through its testing framework.

However, Gigue is by no means a drop-in replacement for
an impact assessment on the full technology stack from the
core itself to fully-featured applications on top of the OS run-
ning through the VM. Future works involve testing security

and acceleration solutions on the Rocket processor before
implementing the solutions in the Pharo VM. We also plan
on extending Gigue with default parameters extracted from
the Pharo VM itself and new elements to better represent
other VMs.

A Randomness Characterization
The Gigue-generated binary is heavily randomized. It uses
sample weighting to select random instructions, JIT elements,
and register arguments as presented in this subsection. It
characterizes JIT element attributes using distribution laws
presented in the next subsection.

Weighted sampling.

JIT element type: Each JIT element type is given a corre-
sponding weight that the generator uses to choose the next
element to add to the JIT code.
Instruction type:Available instructions are split by type (R-
egister, I-mmediate, U-pper immediate, J-umps, B-ranches,
S-tores, and L-oads) with their corresponding weight that is
selected by the builder when filling the body of a method.
Note that while load instructions officially are I-type instruc-
tions, they were isolated to have a better separation between
arithmetic instructions (R and I instructions) and memory
access instructions (L and S instructions). The builder returns
an instruction from a group of instructions at random using
equal weights for all of them.
Register pressure:All registers are definedwith their corre-
sponding weights, translating into their pressure. Temporary
registers (t0-t6) or the hardwired zero (x0) are expected to
be more frequently used than others.

Distribution laws.

Method body size:Mean method size is extracted from the
input fixed total binary size and the input number of JIT
methods. To determine the body size of a method, the mean
size is mitigated by a size variation as follows:

𝑠𝑖𝑧𝑒𝑚𝑒𝑡ℎ𝑜𝑑 = ⌈ 𝑠𝑖𝑧𝑒𝑏𝑖𝑛

𝑛𝑏𝑚𝑒𝑡ℎ𝑜𝑑𝑠

∗ (1 + 𝑠 ∗ 𝑣)⌉ (1)

where:

• 𝑠 = 2𝑋 − 1 with 𝑋 ∼ Bernoulli(0.5)
• 𝑣 ∼ TruncNorm(`𝑠𝑖𝑧𝑒 , 𝜎𝑠𝑖𝑧𝑒 , 0, 1)

The method body size is derived from a mean method size
and then either shrunk or amplified (𝑠 is 1 or −1 with equal
probabilities) based on the size variation parameters. The
variation is expressed as a percentage of the overall method
size. The truncated normal distribution is used to guarantee
a result between 0 and 1.
Call number: Input variance and standard deviation for
call occupation (percentage of instructions responsible for



Gigue: A JIT Code Binary Generator for Hardware Testing Conference’17, July 2017, Washington, DC, USA

calls in a method body) help determine the call number each
method will employ as follows:

𝑛𝑏𝑐𝑎𝑙𝑙𝑠 = ⌊
𝑠𝑖𝑧𝑒𝑏𝑜𝑑𝑦

𝑠𝑖𝑧𝑒𝑐𝑎𝑙𝑙
∗ 𝑣⌋ (2)

where:
• 𝑣 ∼ TruncNorm(`𝑐𝑎𝑙𝑙𝑠 , 𝜎𝑐𝑎𝑙𝑙𝑠 , 0, 1)

The number of calls is extracted from the maximum number
of calls a method can hold and uses call occupation parame-
ters to add variation. The truncated normal distribution is
used to guarantee a result between 0 and 1.
Call depth: Binary execution is determined to complete by
fixing the call depth (or amount of nested calls leading to
calling this method) of each method and forcing, in turn, this
method to only call other elements with call depth inferior
by one level. It is determined as follows:

𝑑𝑒𝑝𝑡ℎ ∼ Poisson(_𝑑𝑒𝑝𝑡ℎ) (3)
The Poisson distribution with _𝑑𝑒𝑝𝑡ℎ ≤ 4 provides a good
amount of leaf methods in the JIT code region and guarantees
method interactions. The call depth parameters are used
when patching calls to force methods of call depth level 𝑖 to
only call methods of call depth level 𝑖 − 1. This simplifies the
call graph generation and restrains recursive functions and
infinite loops from appearing.
PIC case number: Inline caches start with only one entry
(monomorphic), growing up to multiple (polymorphic), and
eventually ending with many (megamorphic) if needed. It is
determined as follows:

𝑛𝑏𝑐𝑎𝑠𝑒𝑠 ∼ ZeroTruncPoisson(_𝑐𝑎𝑠𝑒𝑠 ) (4)
The zero-truncated Poisson distribution guarantees that no
empty PIC is generated and ensures the mean number of
cases is respected.

B Gigue Input Parameters
The following parameters are the default ones used by Gigue.
The elts_weights parameter defines the representation of
methods (80%) against PICs (20%). The isolation_solution
parameter is used to request a binary implementing a shadow
stack according to the FIXER paper [4], a shadow stack ac-
cording to the RIMI paper [10], or a complete domain iso-
lation with RIMI. Three additional registers can be defined:
PIC-related registers corresponding to a class register and
a current class comparison register (to ease the writing of
PIC switches), as well as a data register pointing to the data
section to ease memory access. The interpreter and JIT start
addresses are defined according to the riscv_tests frame-
work linker script whose execution model is supported by
major open-source cores.

"nb_runs": 10,
"run_seeds": [],

"input_data": {
"isolation_solution": "none",
"registers": [

5, 6, 7, 10, 11, 12, 13, 14,
15, 16, 17, 28, 29, 30, 31

],
"elts_weights": [80, 20],
"instr_weights": [25, 30, 10, 5, 10, 10, 10],
"interpreter_start_address": 0,
"jit_start_address": 12288,
"jit_size": 10000,
"jit_nb_methods": 100,
"method_variation_mean": 0.2,
"method_variation_stdev": 0.1,
"call_depth_mean": 2,
"call_occupation_mean": 0.2,
"call_occupation_stdev": 0.1,
"pics_mean_case_nb": 2,
"data_size": 1600,
"data_generation_strategy": "random",

}

References
[1] CHIPS Alliance. 2023. Chisel/FIRRTL Hardware Compiler Framework.

https://www.chisel-lang.org/
[2] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer,

David Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John
Hauser, Adam Izraelevitz, et al. 2016. The Rocket chip generator. Tech-
nical Report.

[3] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator.
In Proceedings of the USENIX Annual Conference (ATEC’05). USENIX,
41–46. https://www.usenix.org/legacy/events/usenix05/tech/freenix/
bellard.html

[4] Asmit De, Aditya Basu, Swaroop Ghosh, and Trent Jaeger. 2019. FIXER:
Flow integrity extensions for embedded RISC-V. In Proceedings of the
26th Design, Automation & Test in Europe Conference & Exhibition
(DATE’19). IEEE, 348–353. https://doi.org/10.23919/date.2019.8714980

[5] Quentin Ducasse. 2023. Gigue: Benchmark Setup and Code Generator
for JIT code on RISC-V. https://github.com/qducasse/gigue

[6] Quentin Ducasse, Guillermo Polito, Pablo Tesone, Pascal Cotret, and
Loïc Lagadec. 2022. Porting a JIT Compiler to RISC-V: Challenges
and Opportunities. In Proceedings of the 19th International Conference
on Managed Programming Languages and Runtimes (MPLR’22). ACM,
112–118. https://doi.org/10.1145/3546918.3546924

[7] Angelo Garofalo, Manuele Rusci, Francesco Conti, Davide Rossi, and
Luca Benini. 2020. PULP-NN: accelerating quantized neural net-
works on parallel ultra-low-power RISC-V processors. Philosoph-
ical Transactions of the Royal Society A (RSTA) 378 (2020). https:
//doi.org/10.1098/rsta.2019.0155

[8] Urs Hölzle, Craig Chambers, and David Ungar. 1991. Optimizing
dynamically-typed object-oriented languages with polymorphic in-
line caches. In Proceedings of the 6th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(ECOOP’91). Springer, 21–38. https://doi.org/10.1007/bfb0057013

[9] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
1997. Back to the Future: The Story of Squeak, a Practical Smalltalk
Written in Itself. In Proceedings of the 12th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’97). ACM, 318–326. https://doi.org/10.1145/263698.263754

[10] Haeyoung Kim, Jinjae Lee, Derry Pratama, Asep Muhamad Awaludin,
Howon Kim, and Donghyun Kwon. 2020. RIMI: instruction-level

https://www.chisel-lang.org/
https://www.usenix.org/legacy/events/usenix05/tech/freenix/bellard.html
https://www.usenix.org/legacy/events/usenix05/tech/freenix/bellard.html
https://doi.org/10.23919/date.2019.8714980
https://github.com/qducasse/gigue
https://doi.org/10.1145/3546918.3546924
https://doi.org/10.1098/rsta.2019.0155
https://doi.org/10.1098/rsta.2019.0155
https://doi.org/10.1007/bfb0057013
https://doi.org/10.1145/263698.263754


Conference’17, July 2017, Washington, DC, USA Quentin Ducasse, Pascal Cotret, and Loïc Lagadec

memory isolation for embedded systems on RISC-V. In Proceedings of
the 39th International Conference on Computer-Aided Design (ICCAD’20).
ACM, 1–9. https://doi.org/10.1145/3400302.3415727

[11] Arjun Menon, Subadra Murugan, Chester Rebeiro, Neel Gala, and
Kamakoti Veezhinathan. 2017. Shakti-T: a RISC-V processor with
light weight security extensions. In Proceedings of the 6th Interna-
tional Workshop on Hardware and Architectural Support for Security
and Privacy (HASP’17). 1–8. https://doi.org/10.1145/3092627.3092629

[12] Eliot Miranda. 2011. The Cog Smalltalk virtual machine. In Proceedings
of the 5th ACM SIGPLAN International Workshop on Virtual Machines
and Intermediate Languages (VMIL’11). ACM.

[13] Guillermo Polito, Pablo Tesone, Stéphane Ducasse, Luc Fabresse, Théo
Rogliano, Pierre Misse-Chanabier, and Carolina Hernandez Phillips.
2021. Cross-ISA testing of the Pharo VM: lessons learned while porting
to ARMv8. In Proceedings of the 18th ACM SIGPLAN International Con-
ference on Managed Programming Languages and Runtimes (MPLR’21).
ACM, 16–25. https://doi.org/10.1145/3475738.3480715

[14] Nguyen Anh Quynh. 2014. Capstone: Next-gen disassembly
framework. (2014). https://www.capstone-engine.org/BHUSA2014-
capstone.pdf Black Hat USA.

[15] Nguyen Anh Quynh and Dang Hoang Vu. 2015. Unicorn: Next gen-
eration CPU emulator framework. (2015). https://www.unicorn-
engine.org/BHUSA2015-unicorn.pdf Black Hat USA.

[16] riscv-software src. 2023. riscv-tests. https://github.com/riscv-software-
src/riscv-tests

[17] Moritz Schneider, Ramya Jayaram Masti, Shweta Shinde, Srdjan Cap-
kun, and Ronald Perez. 2022. SoK: hardware-supported trusted exe-
cution environments. Computing Research Repository (CoRR) (2022).
https://doi.org/10.48550/arXiv.2205.12742

[18] Veripool. 2023. Verilator. https://www.veripool.org/verilator/
[19] Andrew Waterman, Krste Asanovic, and SiFive Inc. 2019. The RISC-V

instruction set manual, Volume I: unprivileged ISA. https://github.com/
riscv/riscv-isa-manual/releases/tag/Ratified-IMAFDQC

[20] Andrew Waterman, Krste Asanovic, and SiFive Inc. 2021. The RISC-
V Instruction Set Manual, Volume II: Privileged Architecture. https:
//github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12

https://doi.org/10.1145/3400302.3415727
https://doi.org/10.1145/3092627.3092629
https://doi.org/10.1145/3475738.3480715
https://www.capstone-engine.org/BHUSA2014-capstone.pdf
https://www.capstone-engine.org/BHUSA2014-capstone.pdf
https://www.unicorn-engine.org/BHUSA2015-unicorn.pdf
https://www.unicorn-engine.org/BHUSA2015-unicorn.pdf
https://github.com/riscv-software-src/riscv-tests
https://github.com/riscv-software-src/riscv-tests
https://doi.org/10.48550/arXiv.2205.12742
https://www.veripool.org/verilator/
https://github.com/riscv/riscv-isa-manual/releases/tag/Ratified-IMAFDQC
https://github.com/riscv/riscv-isa-manual/releases/tag/Ratified-IMAFDQC
https://github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12
https://github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12

	Abstract
	1 Introduction
	2 Background
	2.1 Pharo VM
	2.2 RISC-V
	2.3 Custom Instruction Examples
	2.4 Existing Development Tools

	3 Gigue: JIT Code Benchmark Generator
	3.1 Binary Structure and Execution
	3.2 Parametrization
	3.3 Instruction and Constructs Generation

	4 Modularity and Guarantees
	4.1 Modularity and Extensions
	4.2 Test Framework

	5 Example Application Case and Setup
	6 Discussion
	7 Conclusion
	A Randomness Characterization
	B Gigue Input Parameters
	References

