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Abstract

Air pollution corresponds to one of the considerable challenges and disastrous

sides of the environment that causes severe damage to all its biodiversity, includ-

ing humans. As a result, establishing efficient, reliable, and interpretable meth-

ods and techniques to predict and control air quality is a must to preserve the

environment and consider the necessary precautions. Most traditional machine

learning models often lack transparency, making it challenging to interpret their

decisions, especially in vital domains like air pollution. This paper proposes a

novel approach that leverages granular computing to extract interpretable rules

for air quality classification. We demonstrate the effectiveness of our approach

through experiments on a real-world air quality dataset, showcasing the inter-

pretability of the extracted rules and their accuracy in classifying air quality

levels. The output of the proposed GrC model is a tree-like structure minimiz-

ing the entropy, allowing an easier interpretation of the classification results. A

comparison is conducted with some widely used machine learning algorithms,

including decision tree classifier, random forest, and CatBoost. The results in-
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dicate that the proposed granular computing rule extraction approach shows a

competitive performance according to traditional black-box models in terms of

accuracy (79%), transparency and reliability. The developed GrC model and

the findings of this study not only contribute to advancing the field of air quality

classification but also bear broader implications for environmental research and

management for relevant and informed decision-making.

Keywords: Air quality classification, Granular computing, Rule extraction,

Environmental monitoring, Machine learning

1. Introduction

Air pollution is one of the challenging issues and one of the major problems

facing the environment and thus public health. It is due to the chemicals and

particles that are suspended in the air from different sources, which pose serious

threats to human health, ecosystems, and the overall quality of life. Some air

pollution comes from natural such as wildfires, volcanic eruptions, or allergens.

However, most air pollution results from human activities, including industrial-

ization and the rapid development of urbanization. There are different types of

air pollutants, including particulate matter (PM2.5 and PM10), sulfur dioxide

(SO2), nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxide (CO2),

and ozone (O3), and the concentrations of these air pollutants are usually mea-

sured using ambient air quality monitoring stations.

The impacts and consequences of air pollution are far-reaching. Exposure to

polluted air (including different air pollutants) can lead to respiratory problems,

cardiovascular diseases, lung diseases, cancer, and other diseases and illnesses

(Kampa & Castanas, 2008). In addition, children, older people, and individuals

with pre-existing health conditions are sensitive and particularly susceptible to

the adverse effects of air pollution on their health. According to the WHO, am-

bient (outdoor) air pollution is estimated to have caused 4.2 million premature

deaths worldwide in 2019 (WHO, 2022).

Realizing the severity of air pollution and its impact on human health and
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environmental health in general, initiatives and efforts have been implemented

to monitor, control, and reduce air pollution. Tackling the air pollution issue

requires efforts from different sectors and approaches involving collective action,

policy interventions, and technological advancements.

On the technological advancements side, and due to the increased volumes

of collected data from the air quality monitoring stations, the more and more

advanced algorithms, and the increase in computational power and storage, ar-

tificial intelligence (AI) and especially machine learning (ML) techniques, have

become the tool of choice to monitor, forecast, and classify air quality for effec-

tive, relevant decision support (Noori et al., 2010; Moazami et al., 2016).

In this paper, we focus on the data-intensive machine learning technique:

supervised learning. We distinguish two types of supervised learning applied

for air quality; regression/forecasting and classification.

For forecasting (or regression), there are various machine learning algorithms

and techniques that have been used to forecast either the air quality index (AQI)

or the concentration of one of the air pollutants. Some of the widely employed

techniques include autoregressive integrated moving average (ARIMA) (Kumar

& Jain, 2010), recurrent neural network (RNN), LSTM (Tsai et al., 2018), and

XGBoost (eXtreme Gradient Boosting) (Ma et al., 2020) (Section 2. Related

works)

On the other hand, classifying the air quality, and especially extracting clas-

sification rules that explain the change in the levels of the air quality, have not

been much explored. Classifying air quality and extracting classification rules to

explain its changes are pivotal for multiple reasons. Primarily, they directly im-

pact public health and environmental well-being. Extracting classification rules

contributes to scientific knowledge by identifying complex relationships between

meteorological variables, pollutants, and air quality levels and enhances our un-

derstanding of environmental processes.

In this paper, a granular computing (GrC) based method is proposed to

extract air quality classification rules. The goal is to get intuitions about the

factors that affect the changes in air quality. Similar studies conducted in the
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other fields of science and engineering based on the GrC approach, such as

estimation of the dispersion coefficient in natural rivers (Noori et al., 2017a),

prediction of scour below spillways (Noori et al., 2017b), and prediction of pollu-

tant longitudinal dispersion coefficient in aquatic streams (Ghiasi et al., 2022).

Granular computing (GrC) is a problem-solving and information paradigm

that mimics human thinking and reasoning by dealing with information and

knowledge in the form of aggregates called information granules. In general,

granular computing refers to a comprehensive concept that covers theories,

methodologies, techniques, and tools that make use of granules and perform

computation on granules in complex problem-solving. In the context of gran-

ular computing, two key concepts are granules and granularity, the first one,

granules, refers to a coherent and meaningful unit that encapsulates informa-

tion, whereas, granularity denotes the level or scale at which information is

organized, represented, or processed.

Granular computing is employed in our study due to its inherent capacity

to handle complex and imprecise information through the formation of granules

or clusters, which aids in capturing patterns and relationships within the data.

Granules serve as a mechanism to simplify the representation of information,

making it more manageable and interpretable. In the context of air quality

classification, where datasets often exhibit intricate and complex patterns and

dependencies, the granular approach allows us to represent data at different

levels of abstraction. This hierarchical representation enables a more nuanced

understanding of the relationships between meteorological features and air qual-

ity levels. Furthermore, the flexibility of granular computing aligns well with

the nature of air quality data, which may involve uncertainties and variations.

By leveraging granular computing, we aim to enhance the adaptability of our

model to diverse and dynamic environmental conditions.

One of the applications of granular computing is classification rule extrac-

tion. The classification rule induction method focuses on selecting a single

granule, instead of concentrating on selecting the suitable partition, which leads

to finding a covering solution of the universe (Yao & Yao, 2002).
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In this study, a heuristic algorithm is proposed to extract useful and mean-

ingful classification rules that affect air quality levels using the granular com-

puting approach. The proposed method aims to reduce the complexity of the

data, making it easier to understand and work with. Moreover, this approach

can provide a transparent and interpretable method for rule extraction, where

the algorithm shows the reasoning behind the given model’s decision-making.

For example, high wind speed will reduce the concentration of PM2.5, high hu-

midity usually aggravates air pollution, and high atmospheric pressure usually

results in good air quality.

The primary contribution of this study lies in the deployment of the granular

computing (GrC) rule extraction approach as a novel methodology for air qual-

ity classification. The originality of the proposed approach is twofold. Firstly,

the adoption of granular computing in the field of air quality classification intro-

duces a promising paradigm shift from conventional machine learning models.

In fact, Granular computing enables the extraction of rules in the form of gran-

ules, offering a more human-understandable representation of decision-making

processes. This interpretability is crucial in environmental science. Secondly,

the adaptability of the granular computing rule extraction algorithm, by propos-

ing a new approach for rules extraction through minimizing the entropy of the

granules.

The paper is structured as follows. A detailed literature review of the em-

ployed techniques in air quality forecasting and classification is illustrated and

discussed in Section 2. This state-of-the-art allows the positioning of our work

in relation to the existing literature and supports the choice of granular comput-

ing technique based on its demonstrated effectiveness in similar studies solving

similar problems in various contexts and its alignment with the research objec-

tives. Section 3 provides a definition and basic concepts of granular computing.

Section 4 presents the proposed methodology and the steps involved in building

the granular computing rule extraction classifier. The experimental results and

comparisons to other machine learning models are detailed in Section 5. Section

6 presents a discussion of the findings, results interpretation, and limitations and
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potential challenges of the proposed method. Finally, the last section (Section

7) summarizes the findings, results, improvements of the method, and future

prospects.

2. Related works

There are several models and methods used to forecast and monitor the

air quality. The deterministic models including Gaussian dispersion models are

among the widely employed models to estimate the dispersion and transport of

pollutants in the atmosphere (Abdel-Rahman, 2008). These models are based

on the assumption that the dispersion of pollutants follows a Gaussian distri-

bution, which means that the pollutant concentration decreases with distance

from the source in a bell-shaped curve. Atmospheric Dispersion Modeling Sys-

tem (ADMS) (McHugh et al., 1997) is a widely-used air quality modeling system

in Europe that is based on the Gaussian dispersion model.

3D Eulerian chemistry-transport models are another well-known type of de-

terministic model, that combines Eulerian (The Eulerian method treats the

particle phase as a continuum and develops its conservation equations on a con-

trol volume basis and in a similar form as that for the fluid phase. (Zhang

& Chen, 2007)) methods with detailed representations of atmospheric chem-

istry and transport processes. These models simulate the three-dimensional

distribution of pollutants in the air and their interactions with meteorologi-

cal conditions, emissions, and chemical reactions. For example, we can men-

tion: CHIMERE (CHIMie-transport model for Emission and REgional scales)

(Bessagnet et al., 2004; Menut et al., 2013) and CMAQ (Community Multiscale

Air Quality) (Binkowski & Roselle, 2003). However, air quality is influenced by

various factors and uncertainties, and the above-mentioned deterministic models

have limitations and drawbacks in capturing all the complexities of atmospheric

processes.

On the other hand, statistical, machine learning, and deep learning tech-

niques are increasingly being used for air quality forecasting and monitoring due
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to their ability to handle complex relationships and capture non-linear patterns

in the data. Statistical regression models, such as linear regression, multiple lin-

ear regression, and generalized linear models, are used to establish relationships

between air quality pollutant concentrations and relevant predictors, such as

meteorological parameters, emission data, and historical pollutant levels (Slini

et al., 2002; Kumar & Goyal, 2011). Time series analysis techniques, includ-

ing autoregressive integrated moving average (ARIMA) models (Kumar & Jain,

2010; Abhilash et al., 2018) and seasonal decomposition of time series (STL),

are used to capture temporal patterns and seasonality in air quality data. These

models can identify trends, periodic fluctuations, and other time-dependent pat-

terns in pollutant concentrations, aiding in short-term and long-term air quality

forecasting. Other machine learning algorithms were used in air quality forecast-

ing, such as Support Vector Machines (SVM), (Moazami et al., 2016) developed

a support vector regression (SVR) model for predicting carbon monoxide con-

centration levels. Decision trees, random forests, and eXtreme Gradient Boost-

ing (XGBoost) are among the widely used machine learning algorithms for air

quality forecasting (Osowski & Garanty, 2007; Bozdağ et al., 2020; Castelli et al.,

2020; Ma et al., 2020; Lei et al., 2023). Recently, researchers have started explor-

ing deep-learning models including Artificial Neural Networks (ANNs) (Chelani

et al., 2002; Niska et al., 2004; Kumar & Goyal, 2013), for example, (Noori et al.,

2010) proposed a deep learning model to predict daily carbon monoxide(CO)

concentration in the atmosphere of Tehran using artificial neural network (ANN)

and adaptive neuro-fuzzy inference system(ANFIS).

Recurrent Neural Networks (RNNs) (Biancofiore et al., 2017; Zaini et al.,

2022; Eren et al., 2023), and other sophisticated deep learning models; (Wang &

Song, 2018) proposed a deep spatial-temporal ensemble(STE) model and LSTM,

(Liu et al., 2019) forecasted four pollutants concentrations (PM2.5, SO2, NO2,

and CO) in Beijing, China, based on an intelligent hybrid model, and finally,

(Du et al., 2019) proposed a deep learning model based on 1D-CNN and Bi-

directional LSTM for PM2.5 forecasting.

We focus in this paper on the development of a classifier model for classi-
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fying air quality levels. Some classification models in the literature have been

developed. Examples of the developed classifiers for air quality include (Zhao

et al., 2013; Gore & Deshpande, 2017; Aggarwal et al., 2017; Teologo et al.,

2018; Mangayarkarasi et al., 2021; Haq, 2022; Saminathan & Malathy, 2023).

Table 1 is a literature summary table that provides a synopsis of the different

reviewed articles for classifying levels of air quality.
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Paper’s reference Method Goal Dataset Shortcomings

(Kujaroentavon et al., 2014) Decision tree This research aims to establish

rules of separated air quality

classification (Classifying AQI)

The data were collected from the

air quality pollution control de-

partment in Thailand in 2012-

2013

Not considering meteorological

data + The contribution was not

stated + The results were not

clearly explained

(Sugiarto & Sustika, 2016) Decision Tree (C4.5 algorithm) A classification algorithm is pro-

posed for classifying air quality

using the C4.5 algorithm. The

entropy and information gain

values are computed in order to

construct the decision tree struc-

ture and build the rule sets

Experimental datasets were col-

lected from sensor nodes

Very little training data was used

+ Considering few inputs

(Corani & Scanagatta, 2016) A multi-label classifier, which si-

multaneously predicts multiple

air pollution variables

A multi-label classifier based on

Bayesian networks to predict

PM2.5 and Ozone

Shanghai data set which cov-

ers the period between Febru-

ary 2013 to February 2014 of 10

stations + The ozone data of

Berlin, of one station in 1997-

1999 + Burgas dataset for ozone

the dataset eventually contains

208 daily recordings

None

(Gore & Deshpande, 2017) Naive Bayes and Decision tree

J48 Algorithms

The objective is to classify AQI

categories based on the AQI of

four pollutants

U.S. Pollution Data Not considering meteorological

data + The contribution was not

stated + The quality of the pa-

per and the developed models is

below standards

(Aggarwal et al., 2017) Fuzzy logic and fuzzy interface

system

A fuzzy interface system for the

calculation of AQI using two pol-

lutants (PM2.5 and PM10) with

each having six linguistic vari-

ables

Data for 5 days was collected

from an open source

Considering only two pollutants

(PM2.5 and PM10)

(Teologo et al., 2018) Fuzzy logic and Mamdani fuzzy

inference system

A classification algorithm for the

air quality index (AQI) using

fuzzy logic (FL) system consid-

ering two pollutants (CO and

NO2)

Data were collected from an

air quality monitoring portal

(Philippines)

Considering only two pollutants

(CO and NO2)

(Zhao et al., 2018) SVM, Random forest, and RNN Predicting Daily Air Quality

Classification in three cities in

the US based on RNN model

Data is collected based on U.S.

EPA for the period from January

1, 2010, to December 31, 2015,

including a total of 2,191 obser-

vations

Not considering meteorological

data + The results are not inter-

pretable

(Hamami & Fithriyah, 2020) Artificial neural network This research proposes neural

network methods to classify data

into three air pollution levels

The IoT dataset is obtained from

Open Data Jakarta, it contains

10 attributes with 1827 rows

Not considering meteorological

data + The contribution was not

stated + The results were not

clearly explained

(Mangayarkarasi et al., 2021) Logistic Regression and Random

Forest

Classifying AQI Categories World Air Quality Index histori-

cal data

Not considering meteorological

data + The contribution is not

clearly states + The results were

not clearly explained

(Haq, 2022) SMOTEDNN, XGBoost, Ran-

dom Forest, SVM, and k-NN

A novel model SMOTEDNN to

classify air pollution was devel-

oped and compared to four ML

models, XGBoost, Random For-

est, SVM, and k-NN.

The dataset was released under

the NAMP program from Jan 01,

2015, to July 07, 2020.

Not considering meteorological

data + The contribution was not

clearly stated + the results seem

to be too perfect

(Hamami & Dahlan, 2022) Logistic Regression, KNN, Deci-

sion Tree, and Random Forest

Classifying air quality levels into

three categories

The dataset was taken from

Jakarta’s open data for 12

months with several attributes

Not considering meteorological

data + The contribution was not

stated + The results were not

clearly explained

(Saminathan & Malathy, 2023) Logistic Regression, SVM, Ran-

dom Forest, XGBoost, and

Multi-layer perceptron

Classifying PM2.5 values to dif-

ferent categories/groups

UCI Machine Learning Reposi-

tory 2017

Application of existing ap-

proaches + The methodology is

not clearly presented + The re-

sults are not clearly interpreted

Table 1: Air quality classification : literature overview

This review serves as a foundation for understanding the current state of
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knowledge in the field of air quality classification and classification rules ex-

traction and highlights the need for innovative and interpretable methodologies

in both machine learning and environmental sciences fields. As mentioned in

Table 1, there are not enough studies about classifying air quality and extract-

ing interpretable rules that affect the levels of air pollutants and thus the air

quality. Most of the studies have not included the meteorological features in

the developed models, knowing that meteorological condition plays an impor-

tant part in the levels of air quality (Jhun et al., 2015). Moreover, most of the

studies have employed complex models that are not easy to understand and

seem to be black boxes lacking interpretability and transparency. In contrast,

granular computing focuses on generating coherent and understandable units of

information, making it well-suited for the intricacies of air quality assessment.

The adoption of Granular Computing (GrC) has been applied by some re-

search studies in different disciplines. (Ghiasi et al., 2022) developed an artifi-

cial intelligence-based predictive model, coupling granular computing and neural

network models (GrC-ANN) and its uncertainty to provide robust estimation

of pollutant longitudinal dispersion coefficient in aquatic streams. (Noori et al.,

2017b) presented a new method for the prediction of the depth, length, and

width of the scour hole downstream ski-jump buckets based on the granular

computing (GrC) technique. (Noori et al., 2017a) explored a granular com-

puting (GC) model for the first time to overcome problems of accurately es-

timating the dispersion coefficient in natural rivers. The innovative aspect of

this approach lies in its ability to propose a new and effective algorithm that

encapsulates domain-specific knowledge about meteorological features, and air

pollutants, and extracts rules that are both accurate and comprehensible. Other

conducted research works regarding the GrC deployment for rule extraction are

presented in next section.
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3. Granular computing

Granular computing (GrC) is a paradigm in information processing that aims

to break down a complex problem into a bunch of sub-problems based on the

similarity between granules or clusters (Bargiela & Pedrycz, 2006; Pedrycz, 2018;

Bargiela & Pedrycz, 2022). The concept of granular computing was first called

information granularity/granulation (Zadeh, 1979), while the term ”Granular

Computing” appeared for the first time in (Zadeh, 1997).

In granular computing, a system is decomposed into smaller entities or com-

ponents called granules. These granules can be physical entities, conceptual

objects, data points, or any other meaningful units that capture the essen-

tial features of the system. The granularity of a system refers to the size or

scale of the granules used to represent it. The key idea behind granular com-

puting is that different levels of granularity provide different perspectives and

insights/knowledge into the system under study. By examining a system at

multiple levels, researchers can capture both the macroscopic behavior and the

microscopic details of the system, leading to a more comprehensive understand-

ing.

Definition 1: Granular computing can be defined as an umbrella term

to cover all theories, methodologies, techniques, and tools that make use of

granules in complex problem-solving. The process of performing computation

and operations on granules.

Definition 2: GrC is a general computation theory that imitates human

thinking and reasoning by dealing with information as a form of aggregates

called information granules.

Figure 1 illustrates the different levels of granularity/details in a scientific

research paper. One can easily observe the different and multiple levels of

processing information (granularity) in any scientific/technical writing.
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High level of
information/details

Title/Abstract

Middle-level of
information/details

Section titles

High level/Low
granularity

Low level/High
granularity

Low-level of
information/details

Text/Content

Figure 1: A simple illustration of different levels of granularity in a scientific paper

In GrC, two important notions are distinguished: granule and granularity.

The term granule refers to a coherent and meaningful unit that encapsulates

information. It represents a cluster of data that exhibits internal homogeneity

and external heterogeneity. Granules can be thought of as building blocks that

help organize and structure complex information. (The need for information

abstraction). The term granularity refers to the level or scale at which informa-

tion is organized, represented, or processed. It pertains to the degree of detail

or coarseness in the division of data into granules. Granularity determines the

size or extent of the individual granules and how they relate to each other in

terms of their hierarchical or overlapping nature. (Knowledge of abstraction

level).

Fuzzy sets (Zadeh, 1965) and rough sets (Pawlak, 1982) form the sound basis

and the main driving forces of granular computing.

Granular computing can be applied in various domains including data min-

ing, machine learning, pattern recognition, decision-making, and knowledge dis-
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covery by dividing large datasets into meaningful granules, it becomes easier to

identify relevant patterns, extract main features, and discover hidden knowledge.

The GrC can be used in decision support systems by processing data/granules

at different levels of granularity, in order to handle uncertainty, ambiguity, and

incomplete information.

One of its key applications is in the extraction of classification rules. This

involves deriving rules that can be used to classify or categorize data into dif-

ferent classes or categories based on specific attributes or features. This process

is widely used in fields such as machine learning, data mining, and pattern

recognition to make predictions or decisions based on available data.

The next subsections illustrate the foundation of constructing a granular

computing model for classification rules extraction.

3.1. Information table

An information table is a fundamental concept used for representing and

organizing data. It is a tabular structure that contains information about ob-

jects or entities, their attributes, and their corresponding attribute values. The

information table can be represented as follows:

S = (U,At, L, {Va|a ∈ At} , {fa|a ∈ At}) (1)

where U is a non-empty set of objects, At is a non-empty set of attributes,

Va is a set of values for the attribute a, where a ∈ At, and fa is an information

function that maps each element from the universe U to a value Va, fa: U →

Va. L is the defined language for the attributes At, where an atomic formula is

given by a = v, a ∈ At, and v ∈ Va.

Granulation of the universe U is the process of dividing the objects of U into

clusters, groups, or subsets based on the similarity between these objects, where

each of these subsets or groups is called a granule. A granule may be viewed as a

subset of the universe, which maybe either fuzzy or crisp (Yao, 2004). Granules

can be created and constructed from the language L. For an atomic formula a

= v, we obtain the basic granule m(a = v) (Yao & Yao, 2002).
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3.2. Granules measures and evaluation metrics

To extract classification rules, several evaluation metrics are used to evaluate

and measure the granule as well as the relationship between a pair of granules.

The first measure is Generality (Equation 2), which measures a single granule

of formula (ϕ) by dividing the total number of elements/objects of the granule

m(ϕ), by the total number of elements in the universe U .

Generality(ϕ) =
|m(ϕ)|
|U |

(2)

The second measure is called Absolute Support or Confidence (Equation 3),

which measures and quantifies the strength of two formulas ϕ and ψ (ϕ =⇒

ψ)

Confidence(ϕ→ ψ) =
|m(ϕ ∧ ψ)|
|m(ϕ)|

=
|m(ϕ ∩ ψ)|
|m(ϕ)|

(3)

Another measure to quantify the strength of the two formulas ϕ and ψ is

called Coverage (Equation 4).

Coverage(ϕ→ ψ) =
|m(ϕ ∧ ψ)|
|m(ψ)|

(4)

The last measure and the most important one, Conditional Entropy (Equa-

tion 5), which measures the homogeneity of the objects in the granule, is defined

as follows:

ConditionalEntropy(ψ|ϕ) = −
n∑

i=1

P (ψi|ϕ) log(P (ψi|ϕ)) (5)

Considering the family of formulas ψ ={ψ1,...,ψn} and let ϕ =⇒ ψ rep-

resent the inference relation between the formulas ϕ and ψ. The probability

distribution P of ϕ =⇒ ψ is computed using the Equation 5.

3.3. Induction of classification rules and granule tree construction

The first step includes creating a family of basic concepts based on the atomic

formulas (a = v). Secondly, the basic granules are measured and evaluated
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using the metrics mentioned in the Subsection 3.2. Based on these metrics

and by minimizing the conditional entropy and maximizing the other metrics

(generality, confidence, and coverage) the rules can be extracted. The Algorithm

1 below illustrates the basic steps to construct the granule network (Yao & Yao,

2002).

Algorithm 1 Granule Network Construction

Construct the family of basic concepts with respect to atomic formulas:

BC(U) = (a = v,m(a = v))|a ∈ At, v ∈ Va.

Set the unused basic concepts to the set of basic concepts: UBC(U) =

BC(U).

Set the granule network to GN = (U, ∅), which is a graph consisting of only

one node and no arcs.

while the set of smallest granules in GN is not a covering solution of the

classification problem do

Compute the fitness of each unused basic concept.

Select the basic concept C = (a = v,m(a = v)) with maximum value

of fitness (minimum entropy and maximum generality, confidence, and cover-

age).

Set UBC(U) = UBC(U)− C.

Modify the granule network GN by adding new nodes which are the

intersection of m(a = v) and the original nodes of GN ; connect the new

nodes by arcs labelled by a = v.

The induction of classification rules using granular computing (GrC) has

been applied by a few researchers and research studies in various disciplines.

(Rozehkhani & Mohammadzad, 2022) used granular computing to classify pa-

tients and diagnosing COVID-19 disease by symptoms. (Samadi Alinia &

Delavar, 2011; Khamespanah et al., 2013; Sheikhian et al., 2017) employed

the granular computing approach to classify and assess seismic vulnerability.

(Rozehkhani & Mahan, 2022) applied GrC for rules extraction to compute the
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number of virtual machines based on some related features.

In general, there has not been much work to develop and apply GrC for rule

extraction. This study developed the GrC algorithm to extract meteorological

rules affecting PM2.5 levels from scratch. To the best of our knowledge, the

developed algorithms in the literature are not well constructed and explained,

and they do not work for all cases, moreover, the algorithms have been tested

on small datasets.

4. Methodology

In this section, we present the proposed approach to derive and extract clas-

sification rules for air quality levels (PM2.5 levels: Good, Poor, and Extremely

Poor). Figure 2 presents the adopted methodology process.

Original Dataset

Data Pre-processing

Feature Engineering

Feature
Binning/Discretization

Preparing data for
GrC model

Preparing data in the form
of an Information Table

Defining basic granules
using atomic formulas

(a = v, m(a = v))

Evaluating the fitness of
each basic granule/concept

Extracting classification
rules

GrC rule extraction
model

Figure 2: Overview of the proposed GrC model flowchart

As it is shown in Figure 2, the proposed model consists of two important
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parts. The first involves preparing the data in a suitable format for the GrC

model. The second part includes three significant steps, first, defining the basic

granules in the form of ’attribute = value’, second, evaluating and measuring

the fitness of the specified basic granules/concept, and third, extracting classi-

fication rules, which is the most complex part, in which a heuristic algorithm

is proposed in this study to extract rules with minimum entropy and maximum

coverage values.

4.1. Data preparation and Information table production

The employed dataset is the Beijing PM2.5 Data (Chen, 2017). It includes

the hourly data of PM2.5 concentrations and seven meteorological variables:

temperature, pressure, dew point temperature, combined wind direction, cumu-

lated wind speed, cumulated hours of snow, and cumulated hours of rain. It

concerns the time period from January 1st, 2010 to December 31st, 2014, with

a total of 43824 instances and 13 attributes/features. Table 2 summarizes the

details of the attributes included in the dataset.
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Column Description Non-Null Count Dtype

No row number 43824 non-null int64

Year year of data in this row 43824 non-null int64

Month month of data in this row 43824 non-null int64

Day day of data in this row 43824 non-null int64

Hour hour of data in this row 43824 non-null int64

PM2.5 PM2.5 concentration (ug/m3) 41757 non-null float64

DEWP Dew Point (°C) 43824 non-null int64

TEMP Temperature (°C) 43824 non-null float64

PRES Pressure (hPa) 43824 non-null float64

CBWD Combined wind direction 43824 non-null str

Iws Cumulated wind speed (m/s) 43824 non-null float64

Is Cumulated hours of snow 43824 non-null int64

Ir Cumulated hours of rain 43824 non-null int64

Table 2: A summary of the Beijing PM2.5 Data attributes

The first step includes pre-processing the data. Data pre-processing involves

a series of crucial steps aimed at enhancing the quality and suitability of raw

data for subsequent analysis. This typically includes data cleaning to identify

and rectify errors, missing values, and outliers. In the Beijing PM2.5 data, the

PM2.5 column is the only column that contains null values (NaN) in almost

2067 instances (4.71% of the data), which were subsequently dropped.

Feature selection or extraction is performed to identify relevant attributes

and reduce dimensionality. The objective of this study is to determine how the

levels of meteorological features affect the PM2.5 levels. To achieve this, five

meteorological features were chosen, namely, DEWP, TEMP, PRES, CBWD,

and Iws as the main features/attributes to use for building the main GrC model

and therefore extract the meteorological rules that affect the levels of PM2.5.

The reason behind dropping the two features Is and Ir is that most of the values
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are set to 0 (99% for Is and 95% for Ir).

Figure 3 represents the bivariate analysis between the meteorological fea-

tures and the levels of PM2.5. Figures 3a, 3b, 3c, 3d, 3e, and 3f, examine the

trend and association between the numerical meteorological variables (DEWP,

TEMP, PRES, Iws, Ir, and Is) and the output column (PM2.5) through a joint

plot featuring a regression line. On the other hand, the two remaining plots (Fig-

ures 3g and 3h) represent the strip and box plots, illustrating the distribution

and variation of PM2.5 across different categories of combined wind directions

(CBWD).
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(a) Relationship between

DEWP and PM2.5

(b) Relationship between

TEMP and PM2.5

(c) Relationship between

PRES and PM2.5

(d) Relationship between Iws

and PM2.5

(e) Relationship between Ir

and PM2.5

(f) Relationship between Is

and PM2.5

(g) Relationship between

CBWD and PM2.5 (Strip

plot)

(h) Relationship between

CBWD and PM2.5 (Box

plot)

Figure 3: Bivariate analysis of the meteorological features and the output (PM2.5)

As illustrated in Table 2, there are seven meteorological features versus the

PM2.5 concentration. The objective is to extract the rules that affect the differ-

ent levels of PM2.5. Figure 4 represents the correlation matrix of the columns in
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the dataset, including the correlation between the meteorological features and

the target (PM2.5). It corresponds to the Pearson’s correlation between two

variables X and Y, Equation 6, where X̄ and Ȳ represent the mean values of X

and Y respectively.

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
∑n

i=1(Yi − Ȳ )2
(6)

As illustrated in the figure, there is a strong correlation between some meteoro-

logical features (e.g. DEWP and PRES, TEMP and PRES), which is normal.

On the other hand, there are no strong correlations (linear correlations) be-

tween the output (PM2.5) and meteorological features (DEWP, TEMP, PRES,

Iws, Is, and Ir). However, the absence of a strong linear correlation does not

imply that there is no relationship between the levels of PM2.5 and the mete-

orological features. Therefore, these meteorological features are considered to

extract meaningful rules about the meteorological variables that affect the levels

of PM2.5.

One crucial aspect to consider is the concentration level of PM2.5 at time

t is surely affected by the concentration level at t-n. For this, ACF (Auto-

Correlation Function) and PACF (Partial AutoCorrelation Function) are two

important notions for measuring how each data point in a series relates to its

past data points. ACF measures how each data point in a series relates to its

past data points including the indirect correlations in the calculation. It helps

us understand if there’s a pattern or trend that repeats at certain intervals.

PACF, on the other hand, focuses on the direct relationship between two data

points, while ignoring the influence of the other data points in between. It helps

us to find out how one data point is directly connected to another, without the

”influence” of the data points in the middle. Figure 5 shows the ACF and PACF

plots of PM2.5 for 40 lags/hours.
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pm2.5 DEWP TEMP PRES Iws Is Ir
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Iw

s
Is

Ir

1.00 0.17 0.09 0.05 0.25 0.02 0.05

0.17 1.00 0.82 0.78 0.29 0.03 0.13

0.09 0.82 1.00 0.83 0.15 0.09 0.05

0.05 0.78 0.83 1.00 0.18 0.07 0.08

0.25 0.29 0.15 0.18 1.00 0.02 0.01

0.02 0.03 0.09 0.07 0.02 1.00 0.01

0.05 0.13 0.05 0.08 0.01 0.01 1.00

Pairwise pearson's correlation of the columns

0.2

0.4

0.6

0.8

1.0

Figure 4: Pairwise Pearson’s correlation of the columns
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Figure 5: PM2.5 ACF and PACF plots

Considering the PACF plot, there is a strong correlation between t and t-

1, therefore, for this study, the one lag value for PM2.5 is considered as an

additional feature/attribute.

In this paper, our proposed GrC algorithm is based on feature binning (cate-

gorical columns), also known as feature discretization, which is a technique used

in data preprocessing to transform continuous numerical features into discrete

bins or intervals. This process simplifies the data and can make it easier to

analyze and use with the GrC model. Discretization can simplify the model by

converting continuous features into categorical ones, with less impact of out-

liers, and the possibility to capture non-linear relationships between features

and target variables. Binning can be beneficial in different cases and situations

where discretizing a feature for interpretability is desired, and that’s the goal of

this study, extracting and understanding the conditions that heavily affect the

PM2.5 level.

Table 3 shows the attributes (features and target) of the information table

and the corresponding values/categories for each point.
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Temperature Pressure Dew-point Wind Speed Wind Direction One Lag PM2.5 PM2.5

Very cold = ]−∞, 0] Very low = ]−∞, 980] Very dry = ]−∞, 0] Calm = [0, 0.5] NE Good = [0, 50] Good = [0, 50]

Cold = ]0, 10] Low = ]980, 1000] Dry = ]0,9] Light air = ]0.5, 1.5] SE Poor = ]50, 300] Poor = ]50, 300]

Cool = ]10, 20] Normal = ]1000, 1020] Comfortable = ]9, 15] Gentle breeze = ]1.5, 5] NW Extremely poor = ]300, +∞[ Extremely poor = ]300, +∞[

Warm = ]20, 30] High = ]1020, 1030] Slightly uncomfortable = ]15, 20] Fresh breeze = ]5, 10.5] CV

Hot = ]30, +∞[ Very high = ]1030, +∞[ Moderately uncomfortable = ]20, 23] Strong breeze = ]10.5, 13.5]

Extremely uncomfortable = ]23, +∞[ Moderate gale = ]13.5, 20]

Strong gale = ]20, 27]

Violent storm = ]27, +∞[

Table 3: Attributes and corresponding values

A sample of the final dataset (Information table, Section 3) is illustrated in

Table 4, including six features (One lag PM2.5, TEMP, PRES, DEWP, Iws, and

CBWD) and one output PM2.5 level.

Row ID One lag PM2.5 TEMP PRES DEWP Iws CBWD PM2.5 Level

821 Good Cool Low Slightly Uncomfortable Gentle Breeze CV Good

1123 Good Cool Normal Slightly Uncomfortable Moderate Gale NW Good

213 Poor Warm Normal Moderately Uncomfortable Gentle Breeze CV Poor

1182 Poor Hot Normal Comfortable Light Air CV Poor

136 Poor Very cold High Very Dry Gentle Breeze CV Poor

773 Poor Cold Normal Very Dry Strong Breeze CV Poor

1071 Good Cool Normal Very Dry Light Air NE Good

755 Poor Hot Low Very Dry Violent Storm NW Good

477 Good Warm Low Slightly Uncomfortable Light Air CV Poor

387 Poor Cool High Very Dry Strong Breeze NE Good

Table 4: A sample from the final Beijing PM2.5 dataset (Information table)

In conclusion, the data preprocessing phase forms a critical foundation for

our analysis. Through rigorous data cleaning and preparation, we have ensured

the accuracy and integrity of our dataset. Thoughtful feature selection has en-

abled us to focus on relevant attributes, enhancing the efficiency of subsequent

analyses. The determination of an optimal lag length has been instrumental in

capturing meaningful temporal patterns within the data. Additionally, the im-

plementation of feature binning has facilitated the transformation of continuous

variables into discrete categories, simplifying their interpretation and potential

impact on the GrC model. By executing these preprocessing steps carefully, we

have established a solid basis for extracting insightful patterns and building a

robust GrC model.
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4.2. The proposed AirQ-RuleGrCEx algorithm: Air Quality Rule Extraction

through Granular Computing

Once the initial critical task of data preparation has been accomplished,

the subsequent stage involves constructing a heuristic algorithm that extracts

classification rules from the prepared data.

4.2.1. Basic granules table and atomic formulas

The first step is to build the basic granules table using the information table

and atomic formulas under the form (attribute = value, m(attribute = value)),

where m(attribute = value) represents the objects (granule) that satisfy the

(attribute = value) rule. It is noteworthy that in this study the granulation

process is done by using crisp sets as illustrated in Table 3, fuzzy sets can

also be used as another alternative. The second step includes measuring these

basic granules by computing the generality, confidence, coverage, and entropy

(Equations 2, 3, 4, and 5). Table 5 shows the basic granules for the sample

of data mentioned in Table 4, and Table 6 presents the measurements of each

formula/granule.
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Formula Granule

One lag PM2.5 = Good [821, 1123, 1071, 477]

One lag PM2.5 = Poor [213, 1182, 136, 773, 755, 387]

TEMP = Cool [821, 1123, 1071, 387]

TEMP = Warm [213, 477]

TEMP = HOT [1182, 755]

TEMP = Very cold [136]

TEMP = Cold [773]

PRES = Low [821, 755, 477]

PRES = Normal [1123, 213, 1182, 773, 1071]

PRES = High [136, 387]

DEWP = Slightly uncomfortable [821, 1123, 477]

DEWP = Moderately uncomfortable [213]

DEWP = Comfortable [1182]

DEWP = Very dry [136, 773, 1071, 755, 387]

Iws = Gentle breeze [821, 213, 136]

Iws = Moderate gale [1123]

Iws = Light air [1182, 1071, 477]

Iws = Strong breeze [773, 387]

Iws = Violent storm [755]

CBWD = CV [821, 213, 1182, 136, 773, 477]

CBWD = NW [1123, 755]

CBWD = NE [1071, 387]

Table 5: Basic granules of data in Table 4
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Formula Granule Generality Confidence Coverage Entropy

Class 0 Class 1 Class 2 Class 0 Class 1 Class 2

One lag PM2.5 = Good [821, 1123, 1071, 477] 0.4 0.75 0.25 0.0 0.6 0.2 0.0 0.244

One lag PM2.5 = Poor [213, 1182, 136, 773, 755, 387] 0.6 0.333 0.666 0.0 0.4 0.8 0.0 0.27

TEMP = Cool [821, 1123, 1071, 387] 0.4 1.0 0.0 0.0 0.8 0.0 0.0 0.0

TEMP = Warm [213, 477] 0.2 0.0 1.0 0.0 0.0 0.4 0.0 0.0

TEMP = HOT [1182, 755] 0.2 0.5 0.5 0.0 0.2 0.2 0.0 0.30

TEMP = Very cold [136] 0.1 0.0 1.0 0.0 0.0 0.2 0.0 0.0

TEMP = Cold [773] 0.1 0.0 1.0 0.0 0.0 0.2 0.0 0.0

PRES = Low [821, 755, 477] 0.3 0.66 0.33 0.0 0.4 0.2 0.0 0.27

PRES = Normal [1123, 213, 1182, 773, 1071] 0.5 0.4 0.60 0.0 0.4 0.6 0.0 0.29

PRES = High [136, 387] 0.2 0.50 0.5 0.0 0.2 0.2 0.0 0.30

DEWP = Slightly uncomfortable [821, 1123, 477] 0.3 0.66 0.33 0.0 0.4 0.2 0.0 0.27

DEWP = Moderately uncomfortable [213] 0.1 0.00 1.00 0.0 0.0 0.2 0.0 0.0

DEWP = Comfortable [1182] 0.1 0.0 1.0 0.0 0.0 0.2 0.0 0.00

DEWP = Very dry [136, 773, 1071, 755, 387] 0.4 0.50 0.50 0.0 0.4 0.4 0.0 0.30

Iws = Gentle breeze [821, 213, 136] 0.3 0.33 0.66 0.0 0.2 0.4 0.0 0.27

Iws = Moderate gale [1123] 0.1 1.0 0.0 0.0 0.2 0.0 0.0 0.0

Iws = Light air [1182, 1071, 477] 0.3 0.33 0.66 0.0 0.2 0.4 0.0 0.27

Iws = Strong breeze [773, 387] 0.2 0.50 0.50 0.0 0.2 0.2 0.0 0.30

Iws = Violent storm [755] 0.1 1.0 0.0 0.0 0.2 0.0 0.0 0.00

CBWD = CV [821, 213, 1182, 136, 773, 477] 0.6 0.166 0.833 0.0 0.2 1.0 0.0 0.19

CBWD = NW [1123, 755] 0.2 1.0 0.00 0.0 0.4 0.0 0.0 0.0

CBWD = NE [1071, 387] 0.2 1.00 0.00 0.0 0.4 0.0 0.0 0.0

Table 6: Basic granules and their measures

The second part concerns developing a heuristic algorithm to extract classi-

fication rules. Two main sets are defined. The first one is the covering solution

set (Equation 7) which is set to be empty in the beginning since there are no

classified objects yet, and the second one in the remaining objects set (Equation

8), which contains the remaining objects that are not classified yet, initially, this

set will contain all the objects in the data frame/information table.

covering solution = {∅} (7)

remaining objects = set(information table)− set(covering solution) (8)

The conditional entropy (Equation 5) and generality (Equation 2) form the

sound basis to select the optimal rules through minimizing entropy and max-

imizing generality. Entropy measures the impurity of a granule, which means

that, the smaller the entropy, the lower the randomness/impurity. An entropy

value of zero means that the objects of the granule belong to the same class,

whereas, generality measures the ratio of the objects in the granule.
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4.2.2. The proposed algorithm

The first step of the proposed algorithm includes setting a min-entropy

threshold value. The threshold in this paper is set to zero, in order to ex-

tract all the rules that have the min-entropy value. Once the formulas/rules

are extracted for the min-entropy threshold, we update the covering solution in

Equation 7, by adding the extracted objects with the min-entropy threshold.

The remaining objects set (Equation 8) is also updated. Once the min-entropy

threshold formulas are extracted, there might be some remaining objects that

are not classified during the first step which is extracting only the formulas

(therefore objects) that satisfy the min-entropy threshold, and the question is:

out of all the remaining basic formulas/granules how to choose the best for-

mula taking into consideration two criteria. The first criterion aims to prevent

duplicating the classification of objects already processed and classified. The

second criterion focuses on finding the rule that contains the maximum number

of objects in the remaining objects list. To solve this, we propose using the

Jaccard Index (Equation: 9) which measures the similarity for the two sets of

data A and B, with a range from 0% to 100%. The higher the percentage, the

more similar the two sets are. In our case, ’A’ represents the set of granules of

the remaining formulas, and ’B’ represents the set of the remaining objects.

J(A,B) =
|A ∩B|
|A ∪B|

(9)

This recursive algorithm/process stops once all the remaining objects are

processed and classified. The overall process of the proposed method for con-

structing a granular decision tree is illustrated in Algorithm 2. Moreover, for

better explanation of the proposed algorithm, Figure 6 represents a step-by-step

flowchart of the proposed GrC rule extraction algorithm.
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Algorithm 2 The AirQ-RuleGrCEx algorithm

procedure GranuleNetBuilding(inf table)

Get the information table inf table

Construct the family of basic concept with respect to atomic formulas

(a = v, m(a = v))

Compute fitness (generality, confidence, coverage, and entropy) for the

basic granules/formulas

Get the granules/formulas with min-entropy value (granules min entropy)

for granule in granules min entropy do

if granule[’entropy val’] ̸= 0 then

infTable ← information table[granule]

GranuleNetBuilding(infTable)

else

Update the covering solution by adding the objects in the granule

Update the remaining objs

remaining objs ← inf table - covering solution

while remaining objs ̸= {∅} do

Get the granule that has the highest Jaccard Index value with the

remaining objects ’remaining objs’ as granule

Update covering solution by adding the objects in the granule that

has the highest Jaccard index with the remaining objects ’remaining objs’

Update the reaming objects ’remaining objs’

infTable ← information table[granule]

GranuleNetBuilding(infTable)

Applying the algorithm 2 to the demo data presented in the previous sections

(Tables: 4, 5, 6), a granular tree is built as illustrated in Figure 7. As illustrated

in Figure 7 the output model is a tree-like structure (interpretable flowchart)

with a minimum entropy value.
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Feature and target
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Preparing data in form of

information table
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atomic formulas and
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Evaluating the fitness of the basic granules
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Defining a minimum
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zero)

Extracting rules with
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minimum entropy threshold)

Updating covering solution
by adding the objects from

the extracted rules
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covering solution
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that has the highest Jaccard

Index
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solution and updating remaining

objects list

Defining new information
table with the new
extracted granules
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END

Figure 6: The proposed GrC rule extraction algorithm flowchart

Universe
{821, 1123, 213, 1182, 136, 773, 1071, 755,

477, 387}

Formula: TEMP = Cool
Granule: [821, 1123, 1071, 387]

Class = Good

Formula: TEMP = Warm
Granule: [213, 477]

Class = Poor

Formula: CBWD = NW
Granule: [1123, 755]

Class = Good

Formula: TEMP = Very cold
Granules: [136]

Class = Poor

Formula: DEWP = Comfortable
Granules: [1182]

Class = Poor

Formula: TEMP = Cold
Granules: [773]

Class = Poor

Figure 7: Granular tree demo

The methodology presented here offers a comprehensive approach for the

preparation of data to facilitate its effective utilization within the Granular

Computing (GrC) model and the steps involved in developing the GrC-base

heuristic algorithm for air quality rules extraction. The initial phase involves

the careful selection of pertinent features and their subsequent preprocessing,
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including handling missing values and feature discretization. Subsequently, the

GrC model starts the complex task of creating rules, systematically by creating

basic granules under the form (attribute = value), evaluating the fitness of basic

granules (generality, confidence, coverage, and entropy), and finally proposing

and developing a sophisticated algorithm for air quality rule generation. This

methodology offers a comprehensive solution for deriving valuable insights from

complex datasets which can be improved in future studies.

5. Experiments and results

5.1. Practical applications

The practical applications of the proposed granular computing (GrC) method-

ology in air quality classification can be considered as an emerging machine

learning model (tree-based model), that can be used besides the existing tree-

based machine learning models (e.g. decision tree, random forest). By employ-

ing GrC for rule extraction, our method offers a robust framework for enhancing

air quality management systems. The extracted rules provide a clear and inter-

pretable foundation for understanding the relationships between meteorological

conditions and air quality levels. This, in turn, empowers environmental mon-

itoring initiatives with more accurate insights. Furthermore, the adaptability

of the GrC algorithm allows it to be integrated seamlessly into existing air

quality monitoring frameworks. This not only improves the accuracy of real-

time air quality assessments but also provides a valuable tool for policymakers

and public health officials in implementing targeted interventions. Overall, the

proposed method stands as a promising advancement with direct implications

for the efficacy of air quality management and, consequently, the well-being of

communities.

5.2. Evaluation of the proposed model

In this section, we present a comprehensive set of experiments conducted to

evaluate the effectiveness of the proposed granular computing approach for air
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quality classification. The experiments are carried out on the Beijing PM2.5

Data (Chen, 2017) dataset to validate the developed model and to extract the

air quality classification rules that affect the levels of PM2.5. The final dataset

comprises 1801 rows representing PM2.5 level categories (Good, Poor, and Ex-

tremely poor). The dataset is partitioned into training and testing sets using an

80-20 split. Out of 1441 training rows, a total of 588 rules have been extracted.

Table 7 represents a sample of the extracted rules with the outcome for each

rule.

Rule ID Conditions Outcome

264 PRES = Normal & PM2.5 lagged 1 = Extremely poor & CBWD

= NE & Iws = Gentle breeze & TEMP = Very cold

Poor

300 PRES = Low & PM2.5 lagged 1 = Good & TEMP level = Warm

& CBWD = NW & DEWP = Dry & Iws = Moderate gale

Good

519 PRES = High & DEWP = Comfortable & TEMP = Warm &

PM2.5 lagged 1 = Good & CBWD = CV

Poor

212 PRES = Normal & PM2.5 lagged 1 = Good & CBWD = CV &

Iws = Gentle breeze & TEMP = Cold

Good

67 PRES level = Normal & PM2.5 lagged 1 = Poor & TEMP level

= Hot & CBWD = NW & DEWP = Comfortable & Iws =

Moderate gale

Good

339 PRES = Low & PM2.5 lagged 1 = Poor & TEMP = Warm &

CBWD = SE & Iws = Moderate gale & Poor

468 PRES = High & DEWP = Dry & PM2.5 lagged 1 = Good &

CBWD = NE & TEMP = Warm

Good

343 PRES = Low & PM2.5 lagged 1 = Poor & TEMP = Warm &

CBWD = SE & Iws = Violent storm

Poor

20 PRES = Normal & PM2.5 lagged 1 = Poor & TEMP = Cool &

DEWP =Dry & Iws = Fresh breeze

Poor

269 PRES level=Normal & PM2.5 lagged 1 = Extremely poor &

CBWD = CV & TEMP = Warm & DEWP = Comfortable

Extremely poor

Table 7: Some extracted rules from the training set

Table 8 provides a comprehensive overview of the GrC classification model’s

performance on both the training and test sets. The metrics evaluated in-
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clude accuracy, precision, recall, and f1-score which collectively offer insights

into the model’s ability to accurately classify air quality levels. Evidently, the

outcomes for the training set exhibit 100% accuracy, which can be attributed

to the model’s successful extraction of all rules within this subset. Conversely,

the test set demonstrates good performance, showcasing the model’s ability to

generalize its learned rules effectively.

Model Accuracy Class
Metrics

Precision Recall F1-score

Training set (80%) 1.00 Good (Class 0) 1.00 1.00 1.00

Poor (Class 1) 1.00 1.00 1.00

Extremely poor (Class 2) 1.00 1.00 1.00

Test set (20%) 0.79 Good (Class 0) 0.82 0.81 0.81

Poor (Class 1) 0.76 0.80 0.78

Extremely poor (Class 2) 0.85 0.71 0.77

Table 8: Results of the GrC model on training and test sets

To assess the robustness and the performance of the developed model on

unseen data, the k-fold cross-validation technique (Stone, 1974) is applied to

address the challenges of accurately estimating a model’s performance on un-

seen data and to mitigate issues like overfitting. The dataset is partitioned

into five subsets (folds), and the model is repeatedly trained and evaluated K

times (K = 5). During each iteration, one fold is used as the validation set,

while the remaining (K-1) folds are used for training. This process provides a

more comprehensive understanding of the model’s generalization capability and

stability across different data partitions. Table 9 presents the results of 5-fold

cross-validation.
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Folds Accuracy Class
Metrics

Precision Recall F1-score

1st fold 0.75 Good (Class 0) 0.82 0.77 0.79

Poor (Class 1) 0.66 0.72 0.69

Extremely poor (Class 2) 0.78 0.75 0.76

2nd fold 0.74 Good (Class 0) 0.78 0.79 0.79

Poor (Class 1) 0.68 0.73 0.70

Extremely poor (Class 2) 0.83 0.57 0.68

3rd fold 0.74 Good (Class 0) 0.74 0.81 0.77

Poor (Class 1) 0.73 0.76 0.75

Extremely poor (Class 2) 0.80 0.59 0.68

4th fold 0.79 Good (Class 0) 0.73 0.82 0.77

Poor (Class 1) 0.85 0.77 0.81

Extremely poor (Class 2) 0.00 0.00 0.00

5th fold 0.66 Good (Class 0) 0.69 0.57 0.63

Poor (Class 1) 0.73 0.71 0.72

Extremely poor (Class 2) 0.30 0.67 0.41

Table 9: Results of the 5-fold cross-validation

As illustrated in Table 9, the application of 5-fold cross-validation yielded

valuable insights into the performance of our model. Upon conducting a 5-fold

cross-validation on our dataset, we observed consistent and promising outcomes

even without handling the imbalanced classification issue. The model demon-

strated a high level of stability and generalization, indicating that it is well-

suited for making accurate predictions on unseen data. The low variance in

performance across the folds suggests that the model is not overfitting to the

training data. This is a crucial characteristic, as it implies that the model is

effectively learning underlying patterns rather than memorizing the training set.

In conclusion, this section highlights the successful application of the pro-

posed granular computing rule extraction approach to the task of air quality

classification. Our comprehensive experimental evaluation showcases the ap-
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proach’s capability to effectively classify air quality levels based on meteorolog-

ical variables. The achieved accuracy, precision, and recall on both the training

and test datasets affirm the robustness and generalizability of the approach.

5.3. Comparison of the proposed model with machine learning models

In this section, we conduct a comprehensive comparison between the per-

formance of the proposed Granular Computing (GrC) model for rule extraction

and that of machine learning (ML) models commonly employed in air quality

classification tasks. The purpose is to evaluate the efficacy of the GrC algo-

rithm in extracting meaningful classification rules compared to established ML

approaches. We consider benchmark models such as decision tree classifier, ran-

dom forest classifier, and CatBoost which are known for their competence in

classification tasks.

The comparison encompasses various performance metrics, including accu-

racy, precision, recall, and F1-score, providing a holistic view of the models’

effectiveness in distinguishing between different air quality levels. Additionally,

we assess the interpretability of the rules generated by each model, a crucial

aspect in the context of air quality analysis.

Decision tree classifier is a widely used machine learning algorithm that

operates by recursively partitioning the dataset based on features, creating a

tree-like structure where each leaf node represents a class. It is known for its

simplicity, interpretability, and ability to handle both numerical and categorical

data. Decision trees are prone to overfitting, which can be mitigated by ensemble

methods like Random Forest.

Random forest is an ensemble learning algorithm that constructs a multitude

of decision trees during training and outputs the mode of the classes for clas-

sification problems. It excels in reducing overfitting and increasing predictive

accuracy by aggregating the results of multiple decision trees. The randomness

introduced during the tree-building process enhances robustness and generaliz-

ability.

CatBoost, short for Categorical Boosting, is a gradient boosting algorithm
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specifically designed to handle categorical features efficiently. It automates the

process of encoding categorical variables and incorporates a robust optimization

scheme. CatBoost is known for its high performance with minimal hyperparam-

eter tuning, making it suitable for various classification tasks.

Table 10 summarizes the performance metrics of the decision tree classi-

fier, random forest, CatBoost, and our proposed Granular Computing (GrC)

algorithm on the air quality classification task. The metrics include accuracy,

precision, recall, F1-score, and interpretability. The results aim to provide a

comprehensive understanding of each algorithm’s strengths and weaknesses in

the context of air quality analysis.

Algorithm Accuracy Class
Metrics

Interpretability
Precision Recall F1-score

AirQ-RuleGrCEx 0.79 Good (Class 0) 0.82 0.81 0.81 Yes

Poor (Class 1) 0.76 0.80 0.78

Extremely poor (Class 2) 0.85 0.71 0.77

Decision Tree 0.79 Good (Class 0) 0.82 0.78 0.80 Yes

Poor (Class 1) 0.75 0.80 0.78

Extremely poor (Class 2) 0.87 0.80 0.84

Random Forest 0.84 Good (Class 0) 0.87 0.87 0.87 No

Poor (Class 1) 0.82 0.84 0.83

Extremely poor (Class 2) 0.86 0.76 0.81

CatBoost 0.86 Good (Class 0) 0.86 0.89 0.87 No

Poor (Class 1) 0.88 0.80 0.84

Extremely poor (Class 2) 0.82 0.98 0.89

Table 10: Comparison of classification algorithms for air quality

As illustrated in Table 10, the proposed model showed competitive perfor-

mance with other widely used tree-based models. The interpretability aspect

is an advantage for the proposed GrC model and decision trees, but random

forest and CatBoost are considered to be somewhat interpretable models, but

they may be less interpretable compared to individual decision trees and GrC,

since random forest is based on ensemble learning method that builds multiple

decision trees and combines their predictions, and on the other hand, CatBoost

is based on the gradient boosting framework, which builds an ensemble of de-

36



cision trees sequentially, where each tree corrects the errors of the previous

ones, leading to a strong predictive model. That is what makes random forest

and CatBoost models less interpretable compared to decision tree and granular

computing models.

6. Discussions

In the investigation of air quality classification models, a comprehensive dis-

cussion of the outcomes is presented, emphasizing the implications of the pro-

posed granular computing (GrC) approach compared to some other widely used

machine learning algorithms. Our comparison with established algorithms such

as the decision tree classifier, random forest, and CatBoost reveals that the GrC

algorithm delivers competitive performance. This finding underscores the po-

tential of granular computing as a promising methodology in machine learning,

particularly for air quality classification tasks. A notable advantage of the GrC

algorithm lies in its prioritization of interpretability. The rules extracted by the

GrC model offer a clear and human-understandable representation of decision-

making processes. This interpretability is invaluable in systems/methods where

understanding the rationale behind decisions is as crucial as predictive accu-

racy. The complexity inherent in air quality dynamics, influenced by various

meteorological variables, is effectively addressed by the GrC algorithm. Its ca-

pability to create granules and hierarchies allows for the modeling of intricate

relationships, contributing to the robustness of our model. A noteworthy as-

pect is the potential for rule generalization exhibited by the GrC algorithm. By

focusing on granular patterns, it may identify common rules applicable across

different geographical locations and time periods, enhancing its applicability.

While our results are promising, challenges, such as the scalability of the GrC

algorithm to larger datasets, need consideration, the ability to take into con-

sideration categorical and numerical variables, and investigating approaches to

overcome the overfitting problem. Future work could involve optimizations to

improve efficiency and scalability, along with exploration into the adaptation
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of GrC for real-time air quality monitoring systems. In conclusion, our study

demonstrates the effectiveness of granular computing in air quality classifica-

tion. The GrC algorithm, with its interpretability and adaptability to complex

structures, makes a valuable contribution to the field. As air quality remains a

critical environmental concern, our work opens avenues for the development of

explainable and effective models for pollution level prediction.

7. Conclusion and prospects

This study presents and proposes a novel method for classifying air quality

levels using the granular computing rule extraction method. Our analysis re-

vealed significant insights into the relationship between meteorological variables

and PM2.5 concentrations, contributing to the fields of machine learning, envi-

ronmental science, and air quality management. We successfully constructed a

decision granular tree using our proposed algorithm, which systematically par-

titions the dataset into coherent granules. The algorithm effectively extracted

classification rules that accurately predict air quality levels based on meteoro-

logical attributes. The granular tree model demonstrated high accuracy on both

the training and test sets. Moreover, these extracted rules can be employed to

classify the level of PM2.5 for other datasets in different locations.

The proposed approach in this paper offers several strengths and contribu-

tions to the field of air quality classification:

1. Granular computing: The use of granular computing in air quality clas-

sification is a unique and promising aspect of this work. By representing

data as coherent granules, the model can handle complex and uncertain

environmental data more effectively.

2. Rule extraction: The study focuses on extracting rules from granules with

zero-entropy value, providing interpretability to the classification model.

This is crucial in environmental studies, where transparent and under-

standable decisions are highly desirable.
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3. Efficiency and scalability: The step-by-step approach and granule network

construction contribute to an efficient and scalable classification process.

The algorithm reduces the computational complexity while still achieving

a high classification accuracy.

4. Flexibility: The proposed method is adaptable and can accommodate

different types of air quality data, making it applicable to various envi-

ronmental monitoring scenarios.

In conclusion, this paper presents an innovative method for air quality clas-

sification based on granular computing. The proposed approach offers unique

advantages in terms of interpretability, efficiency, and adaptability. However,

further experimentation, comparison with existing methods, and investigation

into robustness and generalization are essential for establishing the approach’s

practical utility and potential impact on environmental monitoring and public

health. In future work, we plan to enhance our method for a better deployment

with various types of data (numerical and categorical). We are also looking

into creating hybrid techniques that merge the advantages of neural networks

and granular computing (GrC-ANN) as introduced in these two studies (Ghiasi

et al., 2019, 2022) to take advantage of the potential strength resulting from the

interaction, as well as the complementary nature of these techniques for solving

classification problems. Additionally, we aim to investigate how a sequential

three-way decision approach (a granular computing approach) could be applied

to improve air quality forecasting.
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