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ON UNIVERSALITY OF GENERAL DIRICHLET SERIES

FRÉDÉRIC BAYART AND ATHANASIOS KOUROUPIS

Abstract. In the present work we establish sufficient conditions for a Dirichlet series induced

by general frequencies to be universal with respect to vertical translations. Applying our
methodology we give examples of universal Dirichlet series such as the alternating prime zeta

function
∑

n≥1(−1)np−s
n .

1. Introduction

The study of the universal properties of Dirichet series goes back to 1975 with the seminal
work of Voronin on the Riemann zeta function [19]. Voronin’s theorem says:

Let K be a compact subset of {1/2 < <e(s) < 1} with connected complement,
let f be a nonvanishing function continuous onK and holomorphic in the interior
of K. Then

dens

{
τ ≥ 0 : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε

}
> 0

where dens(A) denotes the lower density of A ⊂ R+, that is

dens(A) = lim inf
T→∞

T̂

0

1A(t) dt.

Let us introduce the following definitions: let Ω1 ⊂ Ω ⊂ C be two domains such that
Ω1 +iτ ⊂ Ω1 for all τ > 0, and, for all compact sets K ⊂ Ω, there exists τ > 0 with K+iτ ⊂ Ω1.
Let D : Ω1 → C be holomorphic. We say that D is universal in Ω if, for all compact subsets K
of Ω with connected complement, for all nonvanishing functions f : K → Ω, continuous on K
and holomorphic in the interior of K,

dens

{
τ ≥ 0 : sup

s∈K
|D(s+ iτ)− f(s)| < ε

}
> 0.

We say that f is strongly universal if the restriction that it is non-vanishing can be eased.
Since Voronin’s work, the area of universality gained popularity. Many authors studied as-

pects of (strong) universality for various classes of Dirichlet series
∑
n ane

−λns, where (an) ⊂ CN

and (λn) is an increasing sequence of nonnegative real numbers tending to +∞. The case
(λn) = (log n) corresponds to ordinary Dirichlet series. The survey paper [12] provides a thor-
ough examination of the subject up to 2015.

The first author in [4] improving the work of [11] on strong universality of general Dirichel
series obtained the following result:

Let P ∈ Rd[X] with d ≥ 1 and lim+∞ P = +∞, let Q ∈ Rd−1[X], let ω ∈ R\2πZ
and let κ ∈ R. Assume moreover that the sequence (log(P (n))n≥1 is Q-linearly
independent. Then the Dirichlet series D(s) =

∑
n≥1Q(n)(log n)κeiωn(P (n))−s

is strongly universal in {(2d− 1)/2d < <e(s) < 1}.
1
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This generalizes the case of the Lerch zeta function (see [10]) when Q(n) = 1, κ = 0 and
P (n) = n+ α with α transcendental.

One of the objectives of this article is to study potential cases of universal Dirichlet series
for which the methods of [4] are not applicable, see for example [4, Question 6.8]. The first one
concerns the frequencies (λn). The simplest example of a frequency (λn) such that (log(λn)) is
Q-linearly independent is probably the sequence (pn) of prime numbers. However, this sequence
is not regular enough to be handled by the methods of [4]. The main barrier for this problem
is that the sequence of primes is not regular enough to estimate its partial sums using the
classical techniques from harmonic analysis like the method of non-stationary phase/ Van der
Corput type lemmas 2.5 or decoupling [6]. We are able to prove strong universality for Dirichlet
series with type of frequencies and with similar (and even slightly relaxed) conditions on the
coefficients. However, the universal property is only shown on a smaller strip.

Theorem 1.1. Let D(s) =
∑
n≥1 ane

−λns be a Dirichlet series and let d ∈ N. Assume that

• λn = log
(
P (pn)

)
where P ∈ Rd[X] and lim+∞ P = +∞.

• there exist C, κ > 0 such that for n ≥ 2,

nd−1

C(log n)κ
≤ |an| ≤ Cnd−1(log(n))κ.

• σc(D) = 0.
• The sequence (λn) is Q-linearly independent.

Then D is strongly universal in {(3d− 1)/d < <e(s) < 1}.

Corollary 1.2. The Dirichlet series
∑
n(−1)np−sn is strongly universal in the strip { 2

3 <
<e(s) < 1}.

Observe that for the examples coming from [4] or from Theorem 1.1, the Dirichlet series itself
converges in its strip of universality. This does not cover the case of the Riemann zeta function
or that of the Hurwitz zeta functions

∑
n(n + α)−s, α transcendental, which have a pole at 1

and are known to be universal in { 1
2 < <e(s) < 1}. We extend those results to a large class of

general Dirichlet series, even in the case 1 is a branching point and not a pole. In what follows
we denote by Cσ the half-plane {<e(s) > σ} and by C+

σ its restriction to the complex numbers
of positive imaginary part, {s ∈ C : <e(s) > σ, =m(s) > 0}.

Theorem 1.3. Let P ∈ Rd[X] with lim+∞ P = +∞, let Q ∈ Rd−1[X] and let κ ∈ R. Assume
moreover that the sequence (log(P (n))) is Q-linearly independent. Then the Dirichlet series
D(s) =

∑
nQ(n)(log(n))κ[P (n)]−s admits a holomorphic continuation to C+

1− 1
d

∪ C1 and even

to C1− 1
d
\{1} if κ ∈ N0. Moreover, it is strongly universal in the strip {(2d− 1)/d < <e(s) < 1} .

Notation. Throughout the paper, if f, g : E → R are two functions defined on the same set E,
the notation f . g will mean that there exists some constant C > 0 such that f ≤ Cg on E.

Funding. A. Kouroupis is partially supported by the Onassis Foundation - Scholarship ID: F
ZT 037-1/2023-2024.

2. Preliminaries

2.1. Abscissas of convergence. To a Dirichlet series D =
∑+∞
n=1 ane

−λns we will associate
three abscissas, its abscissa of convergence,

σc(D) := inf

{
<e(s) :

∑
n

ane
−λns converges

}
,
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its abscissa of absolute convergence

σa(D) := inf

{
σ ∈ R :

∑
n

|an|e−λnσ converges

}
,

and also

σ2(D) := inf

{
σ ∈ R :

∑
n

|an|2e−2λnσ converges

}
.

It is well-known that D =
∑
n ane

−λns converges in the half-plane Cσc(D) and that it defines a
holomorphic function there.

2.2. How to prove universality. Let us introduce two definitions from [4].

Definition 2.1. Let σ0 ∈ R. We say that a Dirichlet series D(s) =
∑
n ane

−λns with finite
abscissa of convergence belongs to Dw.a.(σ0) provided

(1) it extends holomorphically to C+
σ0
∪ Cσc(D);

(2) σ2(D) ≤ σ0;
(3) for all σ1 > σ0, there exist t0, B > 0 such that, for all s = σ + it with σ ≥ σ1 and

t ≥ t0, |D(σ + it)| ≤ tB;
(4) for all σ2 > σ1 > σ0,

sup
σ∈[σ1,σ2]

sup
T>0

1

T

ˆ T

1

|D(σ + it)|2dt < +∞;

(5) the sequence (λn) is Q-linearly independent.

Definition 2.2. We say that a Dirichlet series D =
∑
n ane

−λns belongs to Ddens provided for
all α, β > 0, there exist C > 0 and x0 ≥ 1 such that, for all x ≥ x0,∑

λn∈[x,x+ α
x2

]

|an| ≥ Ce(σa(D)−β)x.

The main interest of introducing these definitions is the following theorem (see [4]).

Theorem 2.3. Let D be a Dirichlet series and let σ0 > σ2(D). Assume that D ∈ Dw.a.(σ0) ∩
Ddens. Then D is strongly universal in the strip {σ0 < <e(s) < σa(D)}

It should be pointed out that Definition 2.1 in [4] mentions the whole half-plane Cσ0
and not

the quarter half-plane as here. However, this does not change anything for the proofs. The key
points are that the half vertical lines σ + it, t > 0, σ > σ0, are contained in C+

σ0
and that for

any compact set K included in the strip {σ0 < <e(s) < σa(D)}, there exists τ > 0 such that
K + iτ ⊂ C+

σ0
.

2.3. Two lemmas to estimate exponential sums. We shall need two inequalities which
have been widely used in this context. The first one deals with exponential sums and is due to
Montgomery and Vaughan (see [13]).

Lemma 2.4. Let (an) be a sequence of complex numbers such that
∑
n |an|2 < +∞. Let (λn)

be a sequence of real numbers and set θn := infm 6=n |λn − λm| > 0 for every n. Then

ˆ T

0

∣∣∣∣∣∑
n

ane
iλnt

∣∣∣∣∣
2

dt = T
∑
n

|an|2 +O

(∑
n

|an|2

θn

)
where the O-constant is absolute.



4 FRÉDÉRIC BAYART AND ATHANASIOS KOUROUPIS

We also need the following classical inequality for exponential sums, which goes back to J.
G. van der Corput (see [5, Lemma 11.5]).

Lemma 2.5. Let a < b and let f, g : [a, b]→ R be two functions of class C2. Assume that

• f ′ is monotonic with |f ′| < 1/2;
• g is positive, non-increasing and convex.

Then
b∑

n=a

g(n)e2πif(n) =

ˆ b

a

g(u)e2πif(u)du+O(g(a) + |g′(a)|).

2.4. The incomplete Gamma function/ Prym’s function. We will make a short presen-
tation and we refer the interested reader to [1, 16, 17]. For <e(a) > 0 and <e(z) > 0, we define
the incomplete Gamma function Γ(a, z) by

Γ(a, z) =

ˆ +∞

z

ta−1e−t dt.

For fixed z, as in the classical case it has a meromorphic extension in C with simple poles at
the nonpositive integers. This can be easily obtained from the recurrence relation:

Γ(a+ 1, z) = aΓ(a, z) + zae−z.

For a fixed value of a, Γ admits a holomorphic extension (its principal branch) to C\R− and
even to C when a is a positive integer. When a is not a nonpositive integer, this follows for
instance from the relation

Γ(a, z) = Γ(a)(1− za−1γ∗(a, z)),

where the function γ∗ is entire in both a and z. When a is a nonpositive integer, this follows
from the corresponding statement for a = 0 (in that case, the incomplete Gamma function is
also called the exponential integral).

For this principal branch (and for a fixed a), we have the estimation

(1) Γ(a, z) = e−z
ˆ +∞

0

e−u (z + u)
a−1

du = O(za−1e−z),

as |z| → +∞.

2.5. A remark on [4]. In [4, Theorem 1.6], the theorem on rearrangement universality of
Dirichlet series states that a Dirichlet series

∑
n ane

−λns is rearrangement universal if for any
f ∈ H(Ω), where Ω is the strip σc(D) < <e(s) < σa(D), there exists a permutation σ of N
such that

∑
n aσ(n)e

−λσ(n)s converges to f in H(Ω)). This theorem is false. Indeed it would

imply that
∑
n(−1)nn−s is rearrangement universal. This cannot hold: any rearrangement of∑

n(−1)nn−s will take values in R for real values of the parameter s. The mistake which is
made in [4] lies on the fact that a lemma due to Banaszczyk is only true for some real Fréchet
spaces and was applied to the complex Fréchet space H(Ω).

3. Proof of Theorem 1.1

The main difficulty in order to apply Theorem 2.3 is to estimate the square moments of D
on vertical lines. We follow a method introduced in [2] where the authors estimate the square
moments of the logarithm of the zeta function.

Lemma 3.1. Let D =
∑
n≥1 ane

−λns be a Dirichlet series with σa(D) ≤ 1. Assume that D

extends continuously to Cα, 0 ≤ α < 1, analytically in Cα, and that D has order B in Cα.
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Let σ0 ∈ (α, 1) with σ0 > σ2(D) and let us set A = B/(σ0 − α). Then for all T ≥ 1, for all
σ > σ1 > σ0,

ˆ T

0

|D(σ + it)|2dt . T +
∑
n

|an|2 exp(−2λnσ) exp
(
−2 e

λn

TA

)
min(λn − λn−1, λn+1 − λn)

.

Proof. The inverse Mellin transform (see [14, Appendix 3]) applied to the Γ function says that,
for all x > 0,

(2) e−x =
1

2πi

ˆ 2−σ0+i∞

2−σ0−i∞
x−wΓ(w)dw.

Let T ≥ 2 and set X = TA. We apply (2) for x = eλn

X , yielding to

exp

(
−e

λn

X

)
=

1

2πi

ˆ 2−σ0+i∞

2−σ0−i∞
exp(−λnw)XwΓ(w)dw.

Therefore, for any σ > σ0 and any t ∈ [0, T ], setting s = σ + it, for any n ≥ 1,

an exp (−λns) exp

(
−e

λn

X

)
=

1

2πi

ˆ 2−σ0+i∞

2−σ0−i∞
an exp (−λn(s+ w))XwΓ(w)dw.

Since <e(s + w) > 1 provided <e(w) = 2 − σ0, we can sum these equalities and interchange
summation and integral to get

(3)
∑
n≥1

an exp (−λns) exp

(
e−λn

X

)
=

1

2πi

ˆ 2−σ0+i∞

2−σ0−i∞
D(s+ w)XwΓ(w) dw.

We set τ = σ0 − α and we introduce the following contour C, defined as the union of five
segments or half-lines.
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x

y

log2(T )

−τ

C1

C5

C2

C3

C4

2− σ0

On C1 ∪ C5, |D(s+w)| . 1. Moreover, writing w = u+ iv with u = 2− σ0, Stirling’s formula
for the Γ-function (see again [14, Appendix 3]) says that

|Γ(u+ iv)| . e−C|v|

for some C > 0 (independent of w ∈ C1 ∪ C5). Hence,

ˆ
C1∪C5

|D(s+ w)XwΓ(w)|dw . X2−σ0

ˆ +∞

log2(T )

e−Cvdv

. 1.

Pick now w = u+ iv ∈ C2 ∪ C3 ∪ C4. Then{
|=m(s+ w)| ≤ log2(T ) + T . T
<e(s+ w) ≥ σ0 − τ = α.

Therefore, |D(s+ w)| . TB . This impliesˆ
C2∪C4

|D(s+ w)XwΓ(w)|dw . TBTA(2−σ0)e−C log2(T )

. 1.

Finally, ˆ
C3
|D(s+ w)XwΓ(w)|dw . T−AτTB

ˆ
R
|Γ(−τ + it)|dt

. 1
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by our choice of A and τ . Summing the estimates we obtain

(4)

ˆ
C
|D(s+ w)XwΓ(w)|dw . 1.

Let now R be the rectangle C2 ∪ C3 ∪ C4 ∪ C6 with C6 = [2 − σ0 − i log2 T, 2 − σ0 + i log2 T ] so
that

(5)

ˆ
C

=

ˆ 2−σ0+i∞

2−σ0−i∞
+

ˆ
R
.

The function w 7→ D(s+w)XwΓ(w) has a single pole 0 inside R, with residue D(s). Hence, by
(3), (4) and (5),

|D(s)| . 1 +

∣∣∣∣∣∣
∑
n≥1

an exp(−λns) exp

(
−eλn
X

)∣∣∣∣∣∣ .
We set bn = an exp(−λnσ) exp

(
− e

λn

X

)
. Taking the square and integrating over [0, T ], we find

ˆ T

0

|D(σ + it)|2dt . T +

ˆ T

0

∣∣∣∣∣∣
∑
n≥1

bn exp(−iλnt)

∣∣∣∣∣∣
2

dt.

We apply the Montgomery-Vaughan inequality, yielding to the following estimate:ˆ T

0

|D(σ + it)|2dt . T + T
∑
n≥1

|an|2 exp(−2λnσ) +
∑
n≥1

|bn|2

min(λn − λn−1, λn+1 − λn)
.

Since σ0 > σ2(D), we have proven Lemma 3.1. �

To estimate the sum appearing in the last lemma, we shall use the following result.

Lemma 3.2. Let (λn) be a sequence of frequencies, let (an) be a sequence of complex numbers.
Assume that there exist a ∈ R, b, c, β > 0 such that

|an| . na, λn ≥ b log n, min(λn − λn−1, λn+1 − λn) ≥ c exp(−βλn).

Then for all X > 0 and all σ > β/2,

∑
n≥1

|an|2 exp(−2λnσ) exp
(
−2 e

λn

X

)
min(λn − λn−1, λn+1 − λn)

. max
(

1, X
2a+(β−2σ)b+1

b

)
.

In particular, if eλn+1 − eλn ≥ 1 for all n, we may choose β = 1 in the previous lemma.
Indeed, the inequality λn+1 − λn ≥ exp(−λn) is clear if λn+1 − λn ≥ 1. Otherwise,

λn+1 − λn & eλn+1−λn − 1 = (eλn+1 − eλn)e−λn .

Proof. Denote by S the sum. Then

S .
∑
n

n2a exp ((β − 2σ)λn) exp

(
−2

eλn

X

)
.
∑
n

n2a+(β−2σ)b exp

(
−2

nb

X

)
.

We split the sum into two parts. We first sum up to X1/b and we denote by S1 this sum. Then

S1 .
∑

n≤X1/b

n2a+(β−2σ)b . max
(

1, X
2a+(β−2σ)b+1

b

)
.
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Regarding the second sum, say S2, we write

S2 =
∑

n≥X1/b

n2a+(β−2σ)b exp

(
−2nb

X

)

.
ˆ +∞

X1/b

t2a+(β−2σ)b exp

(
−2tb

X

)
dt

We do the change of variables u = tb/X which yields

S2 . X
2a+(β−2σ)b+1

b

ˆ +∞

1

u
2a+(β−2σ)b+1−b

b exp(−2u)du

. X
2a+(β−2σ)b+1

b .

�

Using what has been done above, we may complete the first part of the proof of Theorem
1.1, that is:

Corollary 3.3. Let D(s) =
∑
n≥1 ane

−λns be a Dirichlet series and let d ∈ N. Assume that

• λn = log
(
P (pn)

)
where P ∈ Rd[X] and lim+∞ P = +∞.

• there exist C, κ > 0 such that for n ≥ 2,

nd−1

C(log n)κ
≤ |an| ≤ Cnd−1(log(n))κ.

• σc(D) = 0.
• the sequence (λn) is Q-linearly independent.

Then D belongs to Dw.a.(σ0) where σ0 = 1− 1
3d .

Proof. Under the above conditions, σa(D) = 1, σc(D) = 0 and σ2(D) = 1 − 1
2d . Therefore,

conditions (1) to (3) of Definition 2.1 are satisfied. Let us prove (4). Let σ1 > σ0 and let
ε < σ1 − σ0. We set α = ε, and observe that D has order 1 in Cα (see [8, Theorem 12]). We
apply Lemma 3.1 and then Lemma 3.2 with a = (d− 1) + ε, b = d− ε and β = 1 to obtain that,
for σ ≥ σ1, for T ≥ 2, ˆ T

0

|D(σ + it)|2dt . T + TB(ε)

with

B(ε) =
2
(
(d− 1) + ε) + (1− 2σ0)(d− ε) + 1

(d− ε)(σ1 − ε)
.

Now,

lim
ε→0

B(ε) =
3d− 2dσ0 − 1

dσ1
=
σ0

σ1
< 1.

Hence, choosing ε > 0 small enough, we have shown that
´ T

0
|D(σ + it)|2dt . T. �

Let us proceed with the second half. First let us state the following lemma proved in [4,
Lemma 6.1]:

Lemma 3.4. Let P (X) =
∑d
k=0 bkX

k be a polynomial of degree d, with bd > 0. Then, there
exist x0, y0 > 0 such that P induces a bijection from [x0,+∞] to [y0,+∞], and

P−1(x) =
x1/d

(b
1/d
d )

− bd−1

b
(d−1)/d
d

+ o(1),

as x→ +∞.
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Proposition 3.5. Let D(s) =
∑
n≥1 ane

−λns be a Dirichlet series and let d ∈ N. Assume that

• λn = log
(
P (pn)

)
where P ∈ Rd[X] and lim+∞ P = +∞.

• there exist C, κ > 0 such that for n ≥ 2,

nd−1

C(log n)κ
≤ |an| ≤ Cnd−1(log(n))κ.

Then D belongs to Ddens.

Proof. Let α, β > 0. Without loss of generality, we may assume that P is one-to-one on
[log(p1),+∞). Then

λn ∈
[
x, x+

α

x2

]
if and only if pn ∈

[
P−1(ex), P−1(ex+ α

x2 )
]
.

Using Lemma 3.4, there exist c1 > 0, c2 ∈ R such that for small ε > 0 and for every x sufficiently
large:

pn ∈
[
c1e

x
d + c2 + ε, c1e

x
d+ α

dx2 + c2 − ε
]

implies that λn ∈
[
x, x+

α

x2

]
.

By Hadamard - De la Vallée Poussin estimate, we also know that

Π(u) := card{n : pn ≤ u}

=

ˆ u

2

dt

log(t)
+O

(
ue−c

√
log u

)
.

If pn & e
x
d , then n & e

x
d

x . Therefore

∑
λn∈[x,x+ α

x2
]

|an| &
e
x(d−1)
d

xd−1+κ
card

{
n : pn ∈

[
c1e

x
d + c2 + ε, c1e

x
d+ α

dx2 + c2 − ε
]}

&
e
x(d−1)
d

xd−1+κ

ˆ c1e
x
d

+ α
dx2 −c2−ε

c1e
x
d−c2+ε

dt

log(t)
+O

(
e
x
d−c
√
x
)

&
e
x(d−1)
d

xd−1+κ

(
e
x
d
e

α
dx2 − 1

x
+O

(
e
x
d−c

′√x
))

&
ex

xd+κ+2

& e(1−β)x.

�

Proof of Theorem 1.1. It follows immediately from Theorem 2.3, Corollary 3.3 and Proposition
3.5. �

Remark. To prove Theorem 1.1, we use rather weak properties of prime numbers to prove
Corollary 3.3. Hence we could easily replace (log(P (pn))) by another sequence of frequencies
satisfying some conditions in the statement of this corollary. Nevertheless, in Proposition 3.5,
we use the much more profound Hadamard - De la Vallée Poussin estimate.
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4. Proof of Theorem 1.3

As above the main difficulty is to estimate the square moments of D. The situation is not as
clear as in the previous case since D now will be defined via an analytic continuation. We need
to understand how to define this analytic continuation and how close it is to the partial sums
of D.

Lemma 4.1. Let P ∈ Rd[X] with lim+∞ P = +∞, let Q ∈ Rd−1[X] and let κ ∈ R. Then
the Dirichlet series D(s) =

∑
nQ(n)(log n)κ(P (n))−s admits a holomorphic continuation to

C+
1− 1

d

∪ C1 and even to C1− 1
d
\{1} provided κ ∈ N0. Moreover, let σ1 > 1− 1

d and σ2 > 1.

(a) There exist t0, B > 0 such that, for all s = σ + it with σ ≥ σ1 and t ≥ t0,

|D(s)| ≤ tB .
(b) There exist δ, ε > 0 such that, for all x > 0, for all s = σ + it with σ ∈ [σ1, σ2] and

1 ≤ t ≤ δx,

D(s) =

x∑
n=2

Q(n)(log n)κ(P (n))−s +O(x−ε) +O

(
(logP (x))κ

(s− 1)P (x)s−1

)
(here, the O-constants do not depend neither on s nor on x).

Proof. As in the classical case of the Riemann zeta function, see for example [5], our plan is to
use the regularity and smoothness of the coefficients and the frequencies of our Dirichlet series
D to estimate its order and how close the partial sums approximate D. We will rely again
on the principle of non-stationary phase, that is Lemma 2.5. But first we need to deal with
some technical difficulties that arise from the ”unknown” polynomials P and Q. We start with
s = σ + it, σ > 1 and let N ≥ 1. We write

D(s) =

N−1∑
n=2

Q(n)(log n)κ(P (n))−s +

+∞∑
n=N

Q(n)(log n)κ(P (n))−s

and we apply Euler’s summation formula (see [5, (11.3)]). Setting

φ(u) = Q(u)(log u)κ(P (u))−s and ρ(u) = u− buc − 1

2
,

we get

(6) D(s) =

N−1∑
n=2

Q(n)(log n)κ(P (n))−s +

ˆ +∞

N

φ(u)du+

ˆ +∞

N

ρ(u)φ′(u)du+
1

2
φ(N).

These integrals are convergent when s ∈ C1. Moreover it is easy to check that there exists ε > 0
such that, provided s = σ + it with σ ≥ σ1 > 1− 1

d , for any u > 2,

|φ(u)| . u−ε and |φ′(u)| . |s|u−1−ε.

In particular, the last integral in (6) defines a holomorphic function in C1− 1
d

which is O(|s|N−ε)
in Cσ1 . Let us now see how to control the first integral. Up to multiply Q by some con-
stant, we may write it Q(u) = P ′(u) + Q1(u) with deg(Q1) ≤ d − 2. As above, the integral´ +∞
N

Q1(u)(log u)κ(P (u))−sdu defines an analytic function in C1− 1
d

which is O(N−ε). There-

fore we have obtained so far that D may be written in C1

D(s) =

N−1∑
n=2

Q(n)(log n)κ(P (n))−s +

ˆ +∞

N

P ′(u)(log u)κ

(P (u))s
du+RN (s)

where RN is analytic in C1− 1
d

and |RN (s)| . |s|N−ε uniformly for σ ≥ σ1.
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We choose N sufficiently large such that P is one-to-one on [N,+∞). By change of variables
we obtain: ˆ +∞

N

P ′(u)(log u)κ

(P (u))s
du =

ˆ +∞

P (N)

(logP−1(u))κ

us
du.

By Lemma 3.4 we have the following formula:

P−1(u) = adu
1/d(1 + ε1(u)) with |ε1(u)| . u−1/d,

where ad > 0. Therefore,

(logP−1(u))κ = logκ(adu
1/d) + ε2(u)

with

|ε2(u)| . u−1/d logκ−1(u).

As before, the integral
´ +∞
P (N)

ε2(u)u−sdu defines an analytic function in C1− 1
d

which isO(P (N)−ε)

in Cσ1 . On the other hand, setting bd = add and restricting ourselves to s ∈ C1, we may write

ˆ +∞

P (N)

logκ(adu
1/d)

us
du =

ˆ +∞

P (N)

1

dκ
logκ(bdu)

us
du

=
bs−1
d

dκ

ˆ +∞

bdP (N)

logκ(v)

vs
dv (v = bdu)

=
bs−1
d

dκ

ˆ +∞

log(bdP (N))

yκe(1−s)ydy (y = log v)

=
bs−1
d

dκ(s− 1)κ+1
Γ(κ+ 1, (s− 1) log(bdP (N))).

Hence we have shown that for s ∈ C1, we may write

D(s) =

N−1∑
n=2

Q(n)(log n)κ(P (n))−s + R̃N (s)+

bs−1
d

dκ(s− 1)κ+1
Γ(κ+ 1, (s− 1) log(bdP (N)))

where R̃N (s) is holomorphic in C1− 1
d

and is O(|s|N−ε)+O(P (N)−ε) in Cσ1
. Since we know that

Γ(κ+1, ·) admits an analytic continuation to C\R− we can conclude to the analytic continuation
of D to C+

1− 1
d

∪ C1. When κ ∈ N, the analytic continuation even holds on C1− 1
d
\{1}. The

estimation (a) (which is trivial for σ ≥ σ2 > 1) follows easily for σ ∈ [σ1, σ2] by what we already

know on R̃N and by (1).
Let us turn to the proof of (b). Choosing N ≥ x, we may write

D(s) =

x∑
n=2

Q(n)(log n)κ(P (n))−s +

N∑
n=x+1

Q(n)(log n)κ(P (n))−s+

bs−1
d

dκ(s− 1)κ+1
Γ(κ+ 1, (s− 1) log(bdP (N))) +O(|s|N−ε) +O(P (N)−ε).

We apply Lemma 2.5 to the second sum with

g(u) = Q(u) logκ(u)(P (u))−σ, f(u) =
−t log(P (u))

2π
.
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Observe that, for σ ∈ [σ1, σ2] and u ∈ [x,N ], provided t ≤ δx with δ small enough,

|g(u)| . x−ε, |g′(u)| . σx−1−ε ≤ x−ε, |f ′(u)| ≤ 1

2
.

Hence,

D(s) =

x∑
n=2

Q(n)(log n)κ(P (n))−s +

ˆ N

x

Q(u) logκ(u)

(P (u))s
du+

bs−1
d

dκ(s− 1)κ+1
Γ(κ+ 1, (s− 1) log(bdP (N))) +O(x−ε + |s|N−ε + P (N)−ε).

We let N → +∞, yielding to:

D(s) =

x∑
n=2

Q(n)(log n)κ(P (n))−s +

ˆ +∞

x

Q(u) logκ(u)

(P (u))s
du+O(x−ε), s ∈ C1.

Now writing Q(u) = P ′(u) +Q1(u) and repeating the argument in the first part of this proof
one can obtain the following identity

D(s) =

x∑
n=2

Q(n)(log n)κ(P (n))−s +
bs−1
d

dκ(s− 1)κ+1
Γ(κ+ 1, (s− 1) log(bdP (x))) + R̃(s),

where R̃(s) is holomorphic in C1− 1
d

and is O(x−ε) in Cσ1
. Using one last time (1), we obtain

(b) of Lemma 4.1. �

From this and Lemma 2.4, we may deduce the first half of Theorem 1.3.

Proposition 4.2. Let P ∈ Rd[X] with lim+∞ P = +∞, let Q ∈ Rd−1[X] and let κ ∈ R.
Assume moreover that (log(P (n))) is Q-linearly independent. Then the Dirichlet series D(s) =∑
nQ(n)(log n)κ(P (n))−s belongs to Dw.a.(σ0) with σ0 = 1− 1

2d .

Proof. It is clear that σ2(D) = (2d− 1)/2d and thus it just remains to prove (4). We fix T ≥ 1

and we first estimate
´ T
T/2
|D(σ + it)|2dt where 1 − 1

2d < σ1 ≤ σ ≤ σ2. We apply the estimate

given by Lemma 4.1 with x = T/δ so that O(x−ε) = O(T−ε) and∣∣∣∣ logκ(P (x))

(s− 1)P (x)s−1

∣∣∣∣ . logκ T

TT d(σ−1)
. T−ε.

Hence, applying Lemma 2.4

ˆ T

T/2

|D(σ + it)|2dt .
ˆ T

T/2

∣∣∣∣∣∣
T/δ∑
n=2

|Q(n)(log n)κ(P (n))−s

∣∣∣∣∣∣
2

dt+ T 1−2ε

. T
T/δ∑
n=2

|Q(n)|2(log n)2κ|P (n)|−2σ+

T/δ∑
n=2

|Q(n)|2(log n)2κ|P (n)|−2σ

log(P (n+ 1))− log(P (n))
+ T 1−2ε.

The first sum is dominated by some constant since σ ≥ σ1 > σ2(D). Regarding the second sum,
for n ∈ [2, T/δ],

|Q(n)|2(log n)2κ|P (n)|−2σ

log(P (n+ 1))− log(P (n))
. Tn2(d−1)−2dσ(log n)2κ . Tn2d(1−σ1)−2(log n)2κ,
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and we get the estimate
T/δ∑
n=2

|Q(n)|2(log n)2κ|P (n)|−2σ

log(P (n+ 1))− log(P (n))
. T,

since 2d(1− σ1) < 1. Hence, we have obtainedˆ T

T/2

|D(σ + it)|2dt . T,

for all T ≥ 1 and all σ ∈ [σ1, σ2], where the involved constant does not depend neither on
σ nor on T. Taking T2−j instead of T in the latter formula and summing over j, we get the
proposition. �

The second half of the proof of Theorem 1.3 has been proven in [4, Proposition 6.2], for the
sake of completeness we repeat the argument below.

Proposition 4.3. Let P ∈ Rd[X] with lim+∞ P = +∞, let Q ∈ Rd−1[X] and let κ ∈ R. Then
the Dirichlet series D(s) =

∑
nQ(n)(log n)κ(P (n))−s belongs to Ddens.

Proof. Let α, β > 0. There exists x0 > 1 such that for every x ≥ x0 the polynomial P is
positive and increasing and Q behaves like its leading term. By Lemma 3.4 there exist constants
c1 > 0, c2 ∈ R such that

n ∈
[
c1e

x
d − c2 + ε, c1e

x
d+ α

dx2 − c2 − ε
]

implies that λn ∈
[
x, x+

α

x2

]
.

Thus ∑
λn∈[x,x+ α

x2
]

|Q(n)(log n)κ| & e
x
d

x2
e
d−1
d x(1− β2 ) & e(1−β)x.

�

Theorem 1.3 now follows from Proposition 4.2, Proposition 4.3 and Theorem 2.3.

5. Random models and further discussion

One of the motivations behind our work is to give concrete examples of convergent universal
objects like the alternating prime zeta function P−(s) =

∑
n≥1(−1)np−sn . As we have already

proved P− is strongly universal in { 2
3 < <e < 1}. But, the universality of this object in the

whole critical strip remains an open question.

Question 5.1. Is P− strongly universal in { 1
2 < <e ≤

2
3}?

It is worth mentioning that Theorem 1.1 implies that every series of the form

Pχ(s) =
∑
n≥1

χnp
−s
n , |χn| = 1,

with σc(Pχ) ≤ 0, is strongly universal in { 2
3 < <e < 1}.

We expect such Pχ to be strongly universal in the whole critical strip even when we only
have σc(Pχ) ≤ 1/2. To justify our claim let us randomize our series. Let {Xn} be a sequence of
unimodular independent identically distributed Steinhaus or Rademacher (coin tossing) random
variables and PX(s) =

∑
n≥1Xnp

−s
n . Kolmogorov’s three-series theorem [15, Chapter 5] implies

that PX converges almost surely in C 1
2
. To obtain that such series are strongly universal almost

surely, we need to obtain more information about their order in the critical strip.

Proposition 5.2. Let PX(s) =
∑
n≥1Xnp

−s
n , where {Xn} is as above. Then, PX is of sub-

logarithmic order in the critical strip and as a consequence is strongly universal, almost surely.
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Proof. We consider the corresponding randomized zeta functions

(7) ζX(s) =
∏
n≥1

1

1−Xnp
−s
n
.

It is easy to see that ζX converges absolutely for <es > 1 + ε, ε > 0. It is also known that
ζX and the reciprocal 1/ζX converge in C 1

2
, almost surely. For Steinhaus random variables

(X1, X2, . . . ) ∈ T × T × . . . this can be obtained from the work of Helson [9] or as an appli-
cation of Menchoff’s theorem [3]. In the case of Rademacher random variables Xn = rn(t) =
sign(sin(2π2nt)), 0 < t < 1 this has been done by Carlson and Wintner [7, 20].

Starting from (7) one can prove that there exists an absolutely convergent Dirichlet series
F (s,X) in C 1

2
such that:

log ζX − PX = F, in C 1
2
.

Using the Borel–Carathéodory theorem in a similar manner as in the proof of the implication
the Riemann hypothesis implies the Lindelöf hypothesis, [18, Chapter XIV], we obtain that for
all ε > 0

|PX(σ + it)| = O
(
(log t)2−2σ+ε

)
, t→∞,

uniformly for σ ≥ σ0 >
1
2 .

Fix such X0, the fact that PX0
∈ Ddens follows immediately from Proposition 3.5. It remains

to show that PX0 ∈ Dw.a.(
1
2 ). We will work as in Lemma 3.1. Let T > 2, we set X = T ε, τ = δ

and σ ≥ σ0 >
1
2 + 2δ, where ε, δ > 0 are sufficiently small. We consider the contour C = ∪5

i=1Ci,
where

x

y

log2(T )

−δ

C1

C5

C2

C3

C4

3
2 − δ
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We observe that ∑
n

Xnp
−s
n e−

pn
X =

1

2πi

ˆ 3
2−δ+i∞

3
2−δ−i∞

PX0(s+ w)XwΓ(w) dw,

ˆ
Ci
|PX0

(s+ w)XwΓ(w)| dw . 1, i = 1, 2, 4, 5.

To prove that the integral over the line segment C3 is bounded note that our function PX0
is of

zero order uniformly in C 1
2 +δ, thusˆ
C3
|PX0(s+ w)XwΓ(w)| dw . T ε

2−ε . 1.

Applying Cauchy’s theorem and the Montgomery-Vaughan inequality as in Lemma 3.1, we
obtain

1

T

ˆ T

0

|PX0
(σ + it)|2dt . 1 +

∑
n

p1−2σ
n e−2 pnX .

∑
n

n1−2σe−2 nX . 1 + T−1+ε(2−(1+δ)) . 1.

Therefore PX0 ∈ Dw.a.(
1
2 ). �

Question 5.3. Is it true that if the series PX converges, then it will be strongly universal in
{ 1

2 < <e < 1}?

In view of the proof of Proposition 5.2, this question is clearly linked to the order of the
Dirichlet series in C1/2.

Question 5.4. Let α > 0. What is the order of
∑
n≥1(−1)np−sn in Cα?
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[10] Antanas Laurinčikas and Ramūnas Garunks̆tis, The Lerch zeta-function, Kluwer Academic Publishers, Dor-

drecht, 2002.
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