ON UNIVERSALITY OF GENERAL DIRICHLET SERIES FR ÉD ÉRIC BAYART AND ATHANASIOS KOUROUPIS

In the present work we establish sufficient conditions for a Dirichlet series induced by general frequencies to be universal with respect to vertical translations. Applying our methodology we give examples of universal Dirichlet series such as the alternating prime zeta function n≥1 (-1) n p -s n .

Introduction

The study of the universal properties of Dirichet series goes back to 1975 with the seminal work of Voronin on the Riemann zeta function [START_REF] Voronin | A theorem on the "universality" of the Riemann zeta-function[END_REF]. Voronin's theorem says:

Let K be a compact subset of {1/2 < e(s) < 1} with connected complement, let f be a nonvanishing function continuous on K and holomorphic in the interior of K. Then dens τ ≥ 0 : sup s∈K |ζ(s + iτ ) -f (s)| < ε > 0 where dens(A) denotes the lower density of A ⊂ R + , that is dens(A) = lim inf

T →∞ T 0 1 A (t) dt.
Let us introduce the following definitions: let Ω 1 ⊂ Ω ⊂ C be two domains such that Ω 1 +iτ ⊂ Ω 1 for all τ > 0, and, for all compact sets K ⊂ Ω, there exists τ > 0 with K +iτ ⊂ Ω 1 . Let D : Ω 1 → C be holomorphic. We say that D is universal in Ω if, for all compact subsets K of Ω with connected complement, for all nonvanishing functions f : K → Ω, continuous on K and holomorphic in the interior of K,

dens τ ≥ 0 : sup s∈K |D(s + iτ ) -f (s)| < ε > 0.
We say that f is strongly universal if the restriction that it is non-vanishing can be eased. Since Voronin's work, the area of universality gained popularity. Many authors studied aspects of (strong) universality for various classes of Dirichlet series n a n e -λns , where (a n ) ⊂ C N and (λ n ) is an increasing sequence of nonnegative real numbers tending to +∞. The case (λ n ) = (log n) corresponds to ordinary Dirichlet series. The survey paper [START_REF] Matsumoto | A survey on the theory of universality for zeta and L-functions[END_REF] provides a thorough examination of the subject up to 2015.

The first author in [START_REF] Bayart | Universality of general Dirichlet series with respect to translations and rearrangements[END_REF] improving the work of [START_REF] Laurinčikas | The universality of general Dirichlet series[END_REF] on strong universality of general Dirichel series obtained the following result:

Let P ∈ R d [X] with d ≥ 1 and lim +∞ P = +∞, let Q ∈ R d-1 [X]
, let ω ∈ R\2πZ and let κ ∈ R. Assume moreover that the sequence (log(P (n)) n≥1 is Q-linearly independent. Then the Dirichlet series D(s) = n≥1 Q(n)(log n) κ e iωn (P (n)) -s is strongly universal in {(2d -1)/2d < e(s) < 1}. This generalizes the case of the Lerch zeta function (see [START_REF] Laurinčikas | The Lerch zeta-function[END_REF]) when Q(n) = 1, κ = 0 and P (n) = n + α with α transcendental.

One of the objectives of this article is to study potential cases of universal Dirichlet series for which the methods of [START_REF] Bayart | Universality of general Dirichlet series with respect to translations and rearrangements[END_REF] are not applicable, see for example [START_REF] Bayart | Universality of general Dirichlet series with respect to translations and rearrangements[END_REF]Question 6.8]. The first one concerns the frequencies (λ n ). The simplest example of a frequency (λ n ) such that (log(λ n )) is Q-linearly independent is probably the sequence (p n ) of prime numbers. However, this sequence is not regular enough to be handled by the methods of [START_REF] Bayart | Universality of general Dirichlet series with respect to translations and rearrangements[END_REF]. The main barrier for this problem is that the sequence of primes is not regular enough to estimate its partial sums using the classical techniques from harmonic analysis like the method of non-stationary phase/ Van der Corput type lemmas 2.5 or decoupling [START_REF] Bourgain | Decoupling, exponential sums and the Riemann zeta function[END_REF]. We are able to prove strong universality for Dirichlet series with type of frequencies and with similar (and even slightly relaxed) conditions on the coefficients. However, the universal property is only shown on a smaller strip.

Theorem 1.1. Let D(s) = n≥1 a n e -λns be a Dirichlet series and let d ∈ N. Assume that

• λ n = log P (p n ) where P ∈ R d [X] and lim +∞ P = +∞. • there exist C, κ > 0 such that for n ≥ 2, n d-1 C(log n) κ ≤ |a n | ≤ Cn d-1 (log(n)) κ . • σ c (D) = 0. • The sequence (λ n ) is Q-linearly independent. Then D is strongly universal in {(3d -1)/d < e(s) < 1}. Corollary 1.2. The Dirichlet series n (-1) n p -s n is strongly universal in the strip { 2 3 < e(s) < 1}.
Observe that for the examples coming from [START_REF] Bayart | Universality of general Dirichlet series with respect to translations and rearrangements[END_REF] or from Theorem 1.1, the Dirichlet series itself converges in its strip of universality. This does not cover the case of the Riemann zeta function or that of the Hurwitz zeta functions n (n + α) -s , α transcendental, which have a pole at 1 and are known to be universal in { 1 2 < e(s) < 1}. We extend those results to a large class of general Dirichlet series, even in the case 1 is a branching point and not a pole. In what follows we denote by C σ the half-plane { e(s) > σ} and by C + σ its restriction to the complex numbers of positive imaginary part, {s ∈ C : e(s) > σ, m(s) > 0}.

Theorem 1.3. Let P ∈ R d [X] with lim +∞ P = +∞, let Q ∈ R d-1 [X] and let κ ∈ R. Assume moreover that the sequence (log(P (n))) is Q-linearly independent. Then the Dirichlet series D(s) = n Q(n)(log(n)) κ [P (n)] -s admits a holomorphic continuation to C + 1-1 d ∪ C 1 and even to C 1-1 d \{1} if κ ∈ N 0 .
Moreover, it is strongly universal in the strip {(2d -1)/d < e(s) < 1} . Notation. Throughout the paper, if f, g : E → R are two functions defined on the same set E, the notation f g will mean that there exists some constant C > 0 such that f ≤ Cg on E. It is well-known that D = n a n e -λns converges in the half-plane C σc(D) and that it defines a holomorphic function there. (3) for all σ 1 > σ 0 , there exist t 0 , B > 0 such that, for all s = σ + it with σ ≥ σ 1 and

t ≥ t 0 , |D(σ + it)| ≤ t B ; (4) for all σ 2 > σ 1 > σ 0 , sup σ∈[σ1,σ2] sup T >0 1 T ˆT 1 |D(σ + it)| 2 dt < +∞; (5) the sequence (λ n ) is Q-linearly independent.
Definition 2.2. We say that a Dirichlet series D = n a n e -λns belongs to D dens provided for all α, β > 0, there exist C > 0 and x 0 ≥ 1 such that, for all x ≥ x 0 ,

λn∈[x,x+ α x 2 ] |a n | ≥ Ce (σa(D)-β)x .
The main interest of introducing these definitions is the following theorem (see [START_REF] Bayart | Universality of general Dirichlet series with respect to translations and rearrangements[END_REF]). It should be pointed out that Definition 2.1 in [START_REF] Bayart | Universality of general Dirichlet series with respect to translations and rearrangements[END_REF] mentions the whole half-plane C σ0 and not the quarter half-plane as here. However, this does not change anything for the proofs. The key points are that the half vertical lines σ + it, t > 0, σ > σ 0 , are contained in C + σ0 and that for any compact set K included in the strip {σ 0 < e(s) < σ a (D)}, there exists τ > 0 such that K + iτ ⊂ C + σ0 .

2.3.

Two lemmas to estimate exponential sums. We shall need two inequalities which have been widely used in this context. The first one deals with exponential sums and is due to Montgomery and Vaughan (see [START_REF] Montgomery | Hilbert's inequality[END_REF]).

Lemma 2.4. Let (a n ) be a sequence of complex numbers such that n |a n | 2 < +∞. Let (λ n ) be a sequence of real numbers and set

θ n := inf m =n |λ n -λ m | > 0 for every n. Then ˆT 0 n a n e iλnt 2 dt = T n |a n | 2 + O n |a n | 2 θ n
where the O-constant is absolute.

We also need the following classical inequality for exponential sums, which goes back to J. G. van der Corput (see [START_REF] Bayart | Dynamics of linear operators[END_REF]Lemma 11.5]).

Lemma 2.5. Let a < b and let f, g : [a, b] → R be two functions of class C 2 . Assume that • f is monotonic with |f | < 1/2;
• g is positive, non-increasing and convex. Then

b n=a g(n)e 2πif (n) = ˆb a g(u)e 2πif (u) du + O(g(a) + |g (a)|).
2.4. The incomplete Gamma function/ Prym's function. We will make a short presentation and we refer the interested reader to [START_REF]Handbook of mathematical functions, with formulas, graphs, and mathematical tables[END_REF][START_REF] Frank | Asymptotics and special functions[END_REF][START_REF] Temme | Special functions[END_REF]. For e(a) > 0 and e(z) > 0, we define the incomplete Gamma function Γ(a, z) by

Γ(a, z) = ˆ+∞ z t a-1 e -t dt.
For fixed z, as in the classical case it has a meromorphic extension in C with simple poles at the nonpositive integers. This can be easily obtained from the recurrence relation:

Γ(a + 1, z) = aΓ(a, z) + z a e -z .
For a fixed value of a, Γ admits a holomorphic extension (its principal branch) to C\R -and even to C when a is a positive integer. When a is not a nonpositive integer, this follows for instance from the relation

Γ(a, z) = Γ(a)(1 -z a-1 γ * (a, z)),
where the function γ * is entire in both a and z. When a is a nonpositive integer, this follows from the corresponding statement for a = 0 (in that case, the incomplete Gamma function is also called the exponential integral). For this principal branch (and for a fixed a), we have the estimation

(1) Γ(a, z) = e -z ˆ+∞ 0 e -u (z + u) a-1 du = O(z a-1 e -z ),
as |z| → +∞.

2.5.

A remark on [START_REF] Bayart | Universality of general Dirichlet series with respect to translations and rearrangements[END_REF]. In [4, Theorem 1.6], the theorem on rearrangement universality of Dirichlet series states that a Dirichlet series n a n e -λns is rearrangement universal if for any f ∈ H(Ω), where Ω is the strip σ c (D) < e(s) < σ a (D), there exists a permutation σ of N such that n a σ(n) e -λ σ(n) s converges to f in H(Ω)). This theorem is false. Indeed it would imply that n (-1) n n -s is rearrangement universal. This cannot hold: any rearrangement of n (-1) n n -s will take values in R for real values of the parameter s. The mistake which is made in [START_REF] Bayart | Universality of general Dirichlet series with respect to translations and rearrangements[END_REF] lies on the fact that a lemma due to Banaszczyk is only true for some real Fréchet spaces and was applied to the complex Fréchet space H(Ω).

Proof of Theorem 1.1

The main difficulty in order to apply Theorem 2.3 is to estimate the square moments of D on vertical lines. We follow a method introduced in [START_REF] Balazard | The mean square of the logarithm of the zeta-function[END_REF] where the authors estimate the square moments of the logarithm of the zeta function. Let σ 0 ∈ (α, 1) with σ 0 > σ 2 (D) and let us set A = B/(σ 0 -α). Then for all T ≥ 1, for all σ > σ 1 > σ 0 ,

ˆT 0 |D(σ + it)| 2 dt T + n |a n | 2 exp(-2λ n σ) exp -2 e λn T A min(λ n -λ n-1 , λ n+1 -λ n ) .
Proof. The inverse Mellin transform (see [START_REF] Montgomery | Multiplicative number theory. I. Classical theory[END_REF]Appendix 3]) applied to the Γ function says that, for all x > 0,

(2)

e -x = 1 2πi ˆ2-σ0+i∞ 2-σ0-i∞
x -w Γ(w)dw.

Let T ≥ 2 and set X = T A . We apply (2) for x = e λn X , yielding to exp -

e λn X = 1 2πi ˆ2-σ0+i∞ 2-σ0-i∞ exp(-λ n w)X w Γ(w)dw.
Therefore, for any σ > σ 0 and any t ∈ [0, T ], setting s = σ + it, for any n ≥ 1,

a n exp (-λ n s) exp - e λn X = 1 2πi ˆ2-σ0+i∞ 2-σ0-i∞ a n exp (-λ n (s + w)) X w Γ(w)dw.
Since e(s + w) > 1 provided e(w) = 2 -σ 0 , we can sum these equalities and interchange summation and integral to get

(3) n≥1 a n exp (-λ n s) exp e -λn X = 1 2πi ˆ2-σ0+i∞ 2-σ0-i∞ D(s + w)X w Γ(w) dw.
We set τ = σ 0 -α and we introduce the following contour C, defined as the union of five segments or half-lines.

x y log 2 (T ) -τ C 1 C 5 C 2 C 3 C 4 2 -σ 0 On C 1 ∪ C 5 , |D(s + w)| 1.
Moreover, writing w = u + iv with u = 2 -σ 0 , Stirling's formula for the Γ-function (see again [START_REF] Montgomery | Multiplicative number theory. I. Classical theory[END_REF]Appendix 3]) says that

|Γ(u + iv)| e -C|v| for some C > 0 (independent of w ∈ C 1 ∪ C 5 ). Hence, ˆC1∪C5 |D(s + w)X w Γ(w)|dw X 2-σ0 ˆ+∞ log 2 (T ) e -Cv dv 1. Pick now w = u + iv ∈ C 2 ∪ C 3 ∪ C 4 . Then | m(s + w)| ≤ log 2 (T ) + T T e(s + w) ≥ σ 0 -τ = α. Therefore, |D(s + w)| T B . This implies ˆC2∪C4 |D(s + w)X w Γ(w)|dw T B T A(2-σ0) e -C log 2 (T )
1.

Finally,

ˆC3 |D(s + w)X w Γ(w)|dw T -Aτ T B ˆR |Γ(-τ + it)|dt
by our choice of A and τ . Summing the estimates we obtain (4) ˆC |D(s + w)X w Γ(w)|dw 1.

Let now R be the rectangle

C 2 ∪ C 3 ∪ C 4 ∪ C 6 with C 6 = [2 -σ 0 -i log 2 T, 2 -σ 0 + i log 2 T ] so that (5) ˆC = ˆ2-σ0+i∞ 2-σ0-i∞ + ˆR .
The function w → D(s + w)X w Γ(w) has a single pole 0 inside R, with residue D(s). Hence, by

, ( 4) and ( 5),

|D(s)| 1 + n≥1 a n exp(-λ n s) exp -e λn X .
We set b n = a n exp(-λ n σ) exp -e λn

X

. Taking the square and integrating over [0, T ], we find

ˆT 0 |D(σ + it)| 2 dt T + ˆT 0 n≥1 b n exp(-iλ n t) 2 dt.
We apply the Montgomery-Vaughan inequality, yielding to the following estimate:

ˆT 0 |D(σ + it)| 2 dt T + T n≥1 |a n | 2 exp(-2λ n σ) + n≥1 |b n | 2 min(λ n -λ n-1 , λ n+1 -λ n ) .
Since σ 0 > σ 2 (D), we have proven Lemma 3.1.

To estimate the sum appearing in the last lemma, we shall use the following result.

Lemma 3.2. Let (λ n ) be a sequence of frequencies, let (a n ) be a sequence of complex numbers.

Assume that there exist a ∈ R, b, c, β > 0 such that

|a n | n a , λ n ≥ b log n, min(λ n -λ n-1 , λ n+1 -λ n ) ≥ c exp(-βλ n ).
Then for all X > 0 and all σ > β/2,

n≥1 |a n | 2 exp(-2λ n σ) exp -2 e λn X min(λ n -λ n-1 , λ n+1 -λ n ) max 1, X 2a+(β-2σ)b+1 b .
In particular, if e λn+1 -e λn ≥ 1 for all n, we may choose β = 1 in the previous lemma. Indeed, the inequality

λ n+1 -λ n ≥ exp(-λ n ) is clear if λ n+1 -λ n ≥ 1. Otherwise, λ n+1 -λ n e λn+1-λn -1 = (e λn+1 -e λn )e -λn .
Proof. Denote by S the sum. Then

S n n 2a exp ((β -2σ)λ n ) exp -2 e λn X n n 2a+(β-2σ)b exp -2 n b X .
We split the sum into two parts. We first sum up to X 1/b and we denote by S 1 this sum. Then

S 1 n≤X 1/b n 2a+(β-2σ)b max 1, X 2a+(β-2σ)b+1 b .
Regarding the second sum, say S 2 , we write

S 2 = n≥X 1/b n 2a+(β-2σ)b exp - 2n b X ˆ+∞ X 1/b t 2a+(β-2σ)b exp - 2t b X dt
We do the change of variables u = t b /X which yields

S 2 X 2a+(β-2σ)b+1 b ˆ+∞ 1 u 2a+(β-2σ)b+1-b b exp(-2u)du X 2a+(β-2σ)b+1 b .
Using what has been done above, we may complete the first part of the proof of Theorem 1.1, that is: • there exist C, κ > 0 such that for n ≥ 2,

Corollary 3.
n d-1 C(log n) κ ≤ |a n | ≤ Cn d-1 (log(n)) κ . • σ c (D) = 0. • the sequence (λ n ) is Q-linearly independent.
Then D belongs to D w.a. (σ 0 ) where σ 0 = 1 -1 3d . Proof. Under the above conditions, σ a (D) = 1, σ c (D) = 0 and σ 2 (D) = 1 -1 2d . Therefore, conditions (1) to (3) of Definition 2.1 are satisfied. Let us prove (4). Let σ 1 > σ 0 and let ε < σ 1 -σ 0 . We set α = ε, and observe that D has order 1 in C α (see [START_REF] Hardy | The general theory of Dirichlet's series[END_REF]Theorem 12]). We apply Lemma 3.1 and then Lemma 3.2 with a = (d -1) + ε, b = d -ε and β = 1 to obtain that, for σ ≥ σ 1 , for T ≥ 2,

ˆT 0 |D(σ + it)| 2 dt T + T B(ε) with B(ε) = 2 (d -1) + ε) + (1 -2σ 0 )(d -ε) + 1 (d -ε)(σ 1 -ε) . Now, lim ε→0 B(ε) = 3d -2dσ 0 -1 dσ 1 = σ 0 σ 1 < 1.
Hence, choosing ε > 0 small enough, we have shown that

´T 0 |D(σ + it)| 2 dt T.
Let us proceed with the second half. First let us state the following lemma proved in [4, Lemma 6.1]: Lemma 3.4. Let P (X) = d k=0 b k X k be a polynomial of degree d, with b d > 0. Then, there exist x 0 , y 0 > 0 such that P induces a bijection from [x 0 , +∞] to [y 0 , +∞], and • there exist C, κ > 0 such that for n ≥ 2,

P -1 (x) = x 1/d (b 1/d d ) - b d-1 b (d-1)/d d + o(1), as x → +∞.
n d-1 C(log n) κ ≤ |a n | ≤ Cn d-1 (log(n)) κ .
Then D belongs to D dens .

Proof. Let α, β > 0. Without loss of generality, we may assume that P is one-to-one on [log(p 1 ), +∞). Then

λ n ∈ x, x + α x 2
if and only if p n ∈ P -1 (e x ), P -1 (e x+ α x 2 ) .

Using Lemma 3.4, there exist c 1 > 0, c 2 ∈ R such that for small ε > 0 and for every x sufficiently large:

p n ∈ c 1 e x d + c 2 + ε, c 1 e x d + α dx 2 + c 2 -ε implies that λ n ∈ x, x + α x 2 .
By Hadamard -De la Vallée Poussin estimate, we also know that Π(u) := card{n :

p n ≤ u} = ˆu 2 dt log(t) + O ue -c √ log u . If p n e x d , then n e x d
x . Therefore 

Proof of Theorem 1.3

As above the main difficulty is to estimate the square moments of D. The situation is not as clear as in the previous case since D now will be defined via an analytic continuation. We need to understand how to define this analytic continuation and how close it is to the partial sums of D.

Lemma 4.1. Let P ∈ R d [X] with lim +∞ P = +∞, let Q ∈ R d-1 [X] and let κ ∈ R. Then the Dirichlet series D(s) = n Q(n)(log n) κ (P (n)) -s admits a holomorphic continuation to C + 1-1 d ∪ C 1 and even to C 1-1 d \{1} provided κ ∈ N 0 . Moreover, let σ 1 > 1 -1 d and σ 2 > 1.
(a) There exist t 0 , B > 0 such that, for all s = σ + it with σ ≥ σ 1 and t ≥ t 0 ,

|D(s)| ≤ t B .
(b) There exist δ, ε > 0 such that, for all x > 0, for all s = σ + it with σ ∈ [σ 1 , σ 2 ] and

1 ≤ t ≤ δx, D(s) = x n=2 Q(n)(log n) κ (P (n)) -s + O(x -ε ) + O (log P (x)) κ (s -1)P (x) s-1
(here, the O-constants do not depend neither on s nor on x).

Proof. As in the classical case of the Riemann zeta function, see for example [START_REF] Bayart | Dynamics of linear operators[END_REF], our plan is to use the regularity and smoothness of the coefficients and the frequencies of our Dirichlet series D to estimate its order and how close the partial sums approximate D. We will rely again on the principle of non-stationary phase, that is Lemma 2.5. But first we need to deal with some technical difficulties that arise from the "unknown" polynomials P and Q. We start with s = σ + it, σ > 1 and let N ≥ 1. We write

D(s) = N -1 n=2 Q(n)(log n) κ (P (n)) -s + +∞ n=N Q(n)(log n) κ (P (n)) -s
and we apply Euler's summation formula (see [5, (11.3)]). Setting

φ(u) = Q(u)(log u) κ (P (u)) -s and ρ(u) = u -u - 1 2 , we get (6) 
D(s) = N -1 n=2 Q(n)(log n) κ (P (n)) -s + ˆ+∞ N φ(u)du + ˆ+∞ N ρ(u)φ (u)du + 1 2 φ(N ).
These integrals are convergent when s ∈ C 1 . Moreover it is easy to check that there exists ε > 0 such that, provided

s = σ + it with σ ≥ σ 1 > 1 -1 d , for any u > 2, |φ(u)| u -ε and |φ (u)| |s|u -1-ε .
In particular, the last integral in (6) defines a holomorphic function in

C 1-1 d which is O(|s|N -ε ) in C σ1 .
Let us now see how to control the first integral. Up to multiply Q by some constant, we may write it

Q(u) = P (u) + Q 1 (u) with deg(Q 1 ) ≤ d -2. As above, the integral ´+∞ N Q 1 (u)(log u) κ (P (u)) -s du defines an analytic function in C 1-1 d which is O(N -ε ).
Therefore we have obtained so far that D may be written in C 1

D(s) = N -1 n=2 Q(n)(log n) κ (P (n)) -s + ˆ+∞ N P (u)(log u) κ (P (u)) s du + R N (s)
where

R N is analytic in C 1-1 d and |R N (s)| |s|N -ε uniformly for σ ≥ σ 1 .
We choose N sufficiently large such that P is one-to-one on [N, +∞). By change of variables we obtain:

ˆ+∞ N P (u)(log u) κ (P (u)) s du = ˆ+∞ P (N ) (log P -1 (u)) κ u s du.
By Lemma 3.4 we have the following formula:

P -1 (u) = a d u 1/d (1 + ε 1 (u)) with |ε 1 (u)| u -1/d ,
where a d > 0. Therefore,

(log P -1 (u)) κ = log κ (a d u 1/d ) + ε 2 (u) with |ε 2 (u)| u -1/d log κ-1 (u).
As before, the integral

´+∞ P (N ) ε 2 (u)u -s du defines an analytic function in C 1-1 d which is O(P (N ) -ε ) in C σ1 .
On the other hand, setting b d = a d d and restricting ourselves to s ∈ C 1 , we may write ˆ+∞

P (N ) log κ (a d u 1/d ) u s du = ˆ+∞ P (N ) 1 d κ log κ (b d u) u s du = b s-1 d d κ ˆ+∞ b d P (N ) log κ (v) v s dv (v = b d u) = b s-1 d d κ ˆ+∞ log(b d P (N ))
y κ e (1-s)y dy

(y = log v) = b s-1 d d κ (s -1) κ+1 Γ(κ + 1, (s -1) log(b d P (N ))).
Hence we have shown that for s ∈ C 1 , we may write

D(s) = N -1 n=2 Q(n)(log n) κ (P (n)) -s + R N (s)+ b s-1 d d κ (s -1) κ+1 Γ(κ + 1, (s -1) log(b d P (N )))
where R N (s) is holomorphic in C 1-1 d and is O(|s|N -ε )+O(P (N ) -ε ) in C σ1 . Since we know that Γ(κ+1, •) admits an analytic continuation to C\R -we can conclude to the analytic continuation of

D to C + 1-1 d ∪ C 1 . When κ ∈ N, the analytic continuation even holds on C 1-1 d \{1}.
The estimation (a) (which is trivial for σ ≥ σ 2 > 1) follows easily for σ ∈ [σ 1 , σ 2 ] by what we already know on R N and by [START_REF]Handbook of mathematical functions, with formulas, graphs, and mathematical tables[END_REF].

Let us turn to the proof of (b). Choosing N ≥ x, we may write

D(s) = x n=2 Q(n)(log n) κ (P (n)) -s + N n=x+1 Q(n)(log n) κ (P (n)) -s + b s-1 d d κ (s -1) κ+1 Γ(κ + 1, (s -1) log(b d P (N ))) + O(|s|N -ε ) + O(P (N ) -ε ).
We apply Lemma 2.5 to the second sum with

g(u) = Q(u) log κ (u)(P (u)) -σ , f (u) = -t log(P (u)) 2π .
Observe that, for σ ∈ [σ 1 , σ 2 ] and u ∈ [x, N ], provided t ≤ δx with δ small enough,

|g(u)| x -ε , |g (u)| σx -1-ε ≤ x -ε , |f (u)| ≤ 1 2 .
Hence,

D(s) = x n=2 Q(n)(log n) κ (P (n)) -s + ˆN x Q(u) log κ (u) (P (u)) s du+ b s-1 d d κ (s -1) κ+1 Γ(κ + 1, (s -1) log(b d P (N ))) + O(x -ε + |s|N -ε + P (N ) -ε ).
We let N → +∞, yielding to:

D(s) = x n=2 Q(n)(log n) κ (P (n)) -s + ˆ+∞ x Q(u) log κ (u) (P (u)) s du + O(x -ε ), s ∈ C 1 .
Now writing Q(u) = P (u) + Q 1 (u) and repeating the argument in the first part of this proof one can obtain the following identity T -ε .

D(s) = x n=2 Q(n)(log n) κ (P (n)) -s + b s-1 d d κ (s -1) κ+1 Γ(κ + 1, (s -1) log(b d P (x))) + R(s), where R(s) is holomorphic in C 1-1 d and is O(x -ε ) in C σ1 .
Hence, applying Lemma 2.4

ˆT T /2 |D(σ + it)| 2 dt ˆT T /2 T /δ n=2 |Q(n)(log n) κ (P (n)) -s 2 dt + T 1-2ε T T /δ n=2 |Q(n)| 2 (log n) 2κ |P (n)| -2σ + T /δ n=2 |Q(n)| 2 (log n) 2κ |P (n)| -2σ log(P (n + 1)) -log(P (n)) + T 1-2ε .
The first sum is dominated by some constant since σ ≥ σ 1 > σ 2 (D). Regarding the second sum, for n ∈ [2, T /δ],

|Q(n)| 2 (log n) 2κ |P (n)| -2σ log(P (n + 1)) -log(P (n)) T n 2(d-1)-2dσ (log n) 2κ T n 2d(1-σ1)-2 (log n) 2κ ,
and we get the estimate

T /δ n=2 |Q(n)| 2 (log n) 2κ |P (n)| -2σ log(P (n + 1)) -log(P (n)) T, since 2d(1 -σ 1 ) < 1. Hence, we have obtained ˆT T /2 |D(σ + it)| 2 dt T,
for all T ≥ 1 and all σ ∈ [σ 1 , σ 2 ], where the involved constant does not depend neither on σ nor on T. Taking T 2 -j instead of T in the latter formula and summing over j, we get the proposition.

The second half of the proof of Theorem 1.3 has been proven in [4, Proposition 6.2], for the sake of completeness we repeat the argument below.

Proposition 4.3. Let P ∈ R d [X] with lim +∞ P = +∞, let Q ∈ R d-1 [X] and let κ ∈ R. Then the Dirichlet series D(s) = n Q(n)(log n) κ (P (n)) -s belongs to D dens .
Proof. Let α, β > 0. There exists x 0 > 1 such that for every x ≥ x 0 the polynomial P is positive and increasing and Q behaves like its leading term. By Lemma 3.4 there exist constants

c 1 > 0, c 2 ∈ R such that n ∈ c 1 e x d -c 2 + ε, c 1 e x d + α dx 2 -c 2 -ε implies that λ n ∈ x, x + α x 2 . Thus λn∈[x,x+ α x 2 ] |Q(n)(log n) κ | e x d x 2 e d-1 d x(1-β 2 )
e (1-β)x .

Theorem 1.3 now follows from Proposition 4.2, Proposition 4.3 and Theorem 2.3.

Random models and further discussion

One of the motivations behind our work is to give concrete examples of convergent universal objects like the alternating prime zeta function P -(s) = n≥1 (-1) n p -s n . As we have already proved P -is strongly universal in { 2 3 < e < 1}. But, the universality of this object in the whole critical strip remains an open question. Question 5.1. Is P -strongly universal in { 1 2 < e ≤ 2 3 }? It is worth mentioning that Theorem 1.1 implies that every series of the form

P χ (s) = n≥1 χ n p -s n , |χ n | = 1,
with σ c (P χ ) ≤ 0, is strongly universal in { 2 3 < e < 1}. We expect such P χ to be strongly universal in the whole critical strip even when we only have σ c (P χ ) ≤ 1/2. To justify our claim let us randomize our series. Let {X n } be a sequence of unimodular independent identically distributed Steinhaus or Rademacher (coin tossing) random variables and P X (s) = n≥1 X n p -s n . Kolmogorov's three-series theorem [15, Chapter 5] implies that P X converges almost surely in C 1 2 . To obtain that such series are strongly universal almost surely, we need to obtain more information about their order in the critical strip. Proposition 5.2. Let P X (s) = n≥1 X n p -s n , where {X n } is as above. Then, P X is of sublogarithmic order in the critical strip and as a consequence is strongly universal, almost surely.

Proof. We consider the corresponding randomized zeta functions [START_REF] Carlson | Contributions à la théorie des séries de Dirichlet. III[END_REF] ζ

X (s) = n≥1 1 1 -X n p -s n .
It is easy to see that ζ X converges absolutely for es > 1 + ε, ε > 0. It is also known that ζ X and the reciprocal 1/ζ X converge in C 1 2 , almost surely. For Steinhaus random variables (X 1 , X 2 , . . . ) ∈ T × T × . . . this can be obtained from the work of Helson [START_REF] Helson | Compact groups and Dirichlet series[END_REF] or as an application of Menchoff's theorem [START_REF] Bayart | Hardy spaces of Dirichlet series and their composition operators[END_REF]. In the case of Rademacher random variables X n = r n (t) = sign(sin(2π2 n t)), 0 < t < 1 this has been done by Carlson and Wintner [7,[START_REF] Wintner | Random factorizations and Riemann's hypothesis[END_REF].

Starting from [START_REF] Carlson | Contributions à la théorie des séries de Dirichlet. III[END_REF] one can prove that there exists an absolutely convergent Dirichlet series F (s, X) in C 1 2 such that: log ζ X -P X = F, in C 1 2 . Using the Borel-Carathéodory theorem in a similar manner as in the proof of the implication the Riemann hypothesis implies the Lindelöf hypothesis, [18, Chapter XIV], we obtain that for all ε > 0

|P X (σ + it)| = O (log t) 2-2σ+ε , t → ∞,
uniformly for σ ≥ σ 0 > 1 2 . Fix such X 0 , the fact that P X0 ∈ D dens follows immediately from Proposition 3.5. It remains to show that P X0 ∈ D w.a. ( 12 ). We will work as in Lemma 3.1. Let T > 2, we set X = T ε , τ = δ and σ ≥ σ 0 > 1 2 + 2δ, where ε, δ > 0 are sufficiently small. We consider the contour C = ∪ 5 i=1 C i , where 
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 221 Abscissas of convergence. To a Dirichlet series D = +∞ n=1 a n e -λns we will associate three abscissas, its abscissa of convergence, σ c (D) := inf e(s) : n a n e -λns converges , its abscissa of absolute convergence σ a (D) := inf σ ∈ R : n |a n |e -λnσ converges , and also σ 2 (D) := inf σ ∈ R : n |a n | 2 e -2λnσ converges .

Theorem 2 . 3 .

 23 Let D be a Dirichlet series and let σ 0 > σ 2 (D). Assume that D ∈ D w.a. (σ 0 ) ∩ D dens . Then D is strongly universal in the strip {σ 0 < e(s) < σ a (D)}

Lemma 3 . 1 .

 31 Let D = n≥1 a n e -λns be a Dirichlet series with σ a (D) ≤ 1. Assume that D extends continuously to C α , 0 ≤ α < 1, analytically in C α , and that D has order B in C α .

3 .

 3 Let D(s) = n≥1 a n e -λns be a Dirichlet series and let d ∈ N. Assume that • λ n = log P (p n ) where P ∈ R d [X] and lim +∞ P = +∞.

Proposition 3 . 5 .

 35 Let D(s) = n≥1 a n e -λns be a Dirichlet series and let d ∈ N. Assume that • λ n = log P (p n ) where P ∈ R d [X] and lim +∞ P = +∞.

λn∈[x,x+ α x 2 ] 1 . 5 .

 215 |a n | e x(d-1) d x d-1+κ card n : p n ∈ c 1 e x d + c 2 + ε, c 1 e It follows immediately from Theorem 2.3, Corollary 3.3 and Proposition 3.Remark. To prove Theorem 1.1, we use rather weak properties of prime numbers to prove Corollary 3.3. Hence we could easily replace (log(P (p n ))) by another sequence of frequencies satisfying some conditions in the statement of this corollary. Nevertheless, in Proposition 3.5, we use the much more profound Hadamard -De la Vallée Poussin estimate.

  Using one last time (1), we obtain (b) of Lemma 4.1.From this and Lemma 2.4, we may deduce the first half of Theorem 1.3.

Proposition 4 . 2 .

 42 Let P ∈ R d [X] with lim +∞ P = +∞, let Q ∈ R d-1 [X] and let κ ∈ R. Assume moreover that (log(P (n))) is Q-linearly independent. Then the Dirichlet series D(s) = n Q(n)(log n) κ (P (n)) -s belongs to D w.a. (σ 0 ) with σ 0 = 1 -1 2d . Proof.It is clear that σ 2 (D) = (2d -1)/2d and thus it just remains to prove (4). We fix T ≥ 1 and we first estimate ´T T /2 |D(σ + it)| 2 dt where 1 -1 2d < σ 1 ≤ σ ≤ σ 2 . We apply the estimate given by Lemma 4.1 with x = T /δ so that O(x -ε ) = O(T -ε ) and log κ (P (x)) (s -1)P (x) s-1 log κ T T T d(σ-1)

We observe that n X n p -s n e -pn X = 1 2πi

To prove that the integral over the line segment C 3 is bounded note that our function P X0 is of zero order uniformly in C 1 2 +δ , thus

Applying Cauchy's theorem and the Montgomery-Vaughan inequality as in Lemma 3.1, we obtain 1

Therefore [START_REF] Balazard | The mean square of the logarithm of the zeta-function[END_REF] ). Question 5.3. Is it true that if the series P X converges, then it will be strongly universal in { 1 2 < e < 1}?

In view of the proof of Proposition 5.2, this question is clearly linked to the order of the Dirichlet series in C 1/2 . Question 5.4. Let α > 0. What is the order of n≥1 (-1) n p -s n in C α ?