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SPECTRUM OF HYPERBOLIC AND PARABOLIC
WEIGHTED COMPOSITION OPERATORS

FRÉDÉRIC BAYART, LUCAS OGER

Abstract. We compute the spectrum of a weighted composition operator induced by
a hyperbolic or a parabolic symbol when it acts on the Fréchet space of holomorphic
functions on the unit disc. We discuss situations where these results extend and do
not extend to the unit ball.
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1. Introduction

This paper is a contribution to a series of works which intend to compute the spectrum
of weighted composition operators acting on spaces of holomorphic functions. Let Ω be
a domain in Cd, and Hol(Ω) the set of all complex-valued holomorphic functions on Ω.

For φ : Ω → Ω holomorphic and m ∈ Hol(Ω), the weighted composition operator
with symbol φ and multiplier m is defined as

Wm,φ(f) = m(f ◦ φ), f ∈ Hol(Ω).

We shall only consider the cases where Ω = D is the unit disc or Ω = Bd is the
(euclidean) unit ball in Cd. There is a huge literature on this subject (see e.g. [12, 17]
for a general study, or the recent articles [7, 8]), in particular when they are considered
as acting on Banach spaces of holomorphic functions like Hardy spaces or Bergman
spaces.
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In this paper, we focus on the Fréchet space Hol(Ω) endowed with the compact-open
topology. When Ω = D, the spectrum of Wm,φ has already been thoroughly studied in
[3, 2, 1]. Our aim in this paper is to complete the picture by filling the cases left open
in these papers and by studying how the results can be extended to the ball.

The results obtained so far depend on the nature of the Denjoy-Wolff point of the
symbol and on the behaviour of the multiplier near this attractive fixed point. Recall
that for a holomorphic self-map φ of D, one of the following two properties hold.r The map φ has a fixed point ξ inside D. In that case, φ is said to be elliptic. If

φ is not an automorphism, then the sequence of iterates (φ[n]) of φ converges to
ξ in Hol(D).r The map φ has no fixed point in D. In that case, there exists ξ ∈ T such that (φ[n])
converges to ξ in Hol(D). Moreover, φ admits an angular derivative φ′(ξ) ∈ (0, 1]
at ξ. The symbol φ is called parabolic if φ′(ξ) = 1 and hyperbolic if φ′(ξ) < 1.

Elliptic automorphisms behave very differently and we refer to [1] for results con-
cerning them. Regarding the other cases, assuming some regularity of m and φ at the
Denjoy-Wolff point ξ if it belongs to T, the following table summarizes the results of
[2] on the point spectrum of Wm,φ.

Elliptic, φ′(ξ) ̸= 0 Elliptic, φ′(ξ) = 0, φ ̸= ξ Hyperbolic Parabolic

m = 1 {φ′(ξ)n : n ∈ N} {1} C∗ C∗

m(ξ) ̸= 0 {m(ξ)φ′(ξ)n : n ∈ N} {m(ξ)} C∗ ?

m(ξ) = 0 ∅ ∅ ? ?

Table 1. Results in the disc

Moreover, if φ is not an automorphism, then σ(Wm,φ) = σp(Wm,φ)∪{0}. Otherwise,
σ(Wm,φ) = σp(Wm,φ).

The cases in grey are left open in [2], even if some interesting examples are given.
Our first main result will be that, for these three cases, under natural regularity as-
sumptions on φ and m (precise statements will be given later on), σp(Wm,φ) = C∗. This
property keeps true if we assume that ξ is a pole for m, again assuming some regularity
assumptions. As in [2], the proof will be based on a careful study on how φ[n](z) goes
to ξ and on a renormalization of m(φ[n](z)). Nevertheless, we will have to change the
normalization for parabolic maps and we will need much more precise estimates, leading
to replace the results of Valiron [18], Pommerenke [15] and Baker-Pommerenke [4] by
those of Bourdon-Shapiro [9].

Regarding the several variables situation, we will mainly concentrate on the two-
dimensional case. A similar classification occurs and we will be able, when m(ξ) ̸= 0,
to prove similar statements, using now [5] and [11]. When m(ξ) = 0, the situation will
become much more involved. Indeed, a new difficulty arises : in dimension two or more,
we cannot easily factorize a holomorphic function vanishing at some point.
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We will obtain some partial results, and also exhibit a very simple example of a
weight m and symbol φ, regular at the Denjoy-Wolff point, with m(ξ) = 0, such that
σp(Wm,φ) = ∅. Hence the results dramatically break down on the ball.

We end up this introduction with the following lemma, that we will use repeatedly.

Lemma 1.1. Let m1,m2 ∈ Hol(Ω) and φ : Ω → Ω holomorphic. Then

σp(Wm1,φ) · σp(Wm2,φ) ⊂ σp(Wm1m2,φ).

Proof. Let λ1 ∈ σp(Wm1,φ) and λ2 ∈ σp(Wm2,φ). By definition, there exist two nonzero
maps f1, f2 of Hol(Ω) such that

m1(f1 ◦ φ) = λ1f1, m2(f2 ◦ φ) = λ2f2.

Hence, considering f = f1f2 and m = m1m2, we get

m(f ◦ φ) = m1m2(f1 ◦ φ)(f2 ◦ φ) = m1(f1 ◦ φ)m2(f2 ◦ φ) = λ1f1λ2f2 = λ1λ2f.

Finally, we obtain λ1λ2 ∈ σp(Wm,φ), the desired result. □

Notation. Throughout the paper, if f, g : X → R are two functions defined on the
same set X, the notation f ≲ g will mean that there exists some constant C > 0 such
that f ≤ Cg on X. The notation f ≍ g will simply mean f ≲ g and g ≲ f .

2. On the disc

We begin this section by recalling some definitions.

Definition 2.1. The Stolz angle with vertex ξ ∈ T and radius R > 0 is

S(ξ, R) :=

{
z ∈ D :

|z − ξ|
1− |z|

< R

}
.

The horodisc of vertex ξ ∈ T and radius α > 0 is

H(ξ, α) := {z ∈ D : |z − ξ|2 < α(1− |z|2)} = D

(
ξ

1 + α
,

α

1 + α

)
where D(w, r) is the (euclidean) disc of center w and radius r > 0. The right half-plane
of C is H := {z ∈ C : ℜ(z) > 0}.

In what follows, as it is often the case, we will transfer the problem on the right
half-plane H through the Cayley transform

τ(z) =
1 + z

1− z
.

For φ : D → D holomorphic with Denjoy-Wolff point at 1, we will set Φ = τ ◦φ◦ τ−1,
which is a self-map of H, with ∞ as attractive fixed point.

Setting w = τ(z), we will repeatedly use

1− z =
2

1 + w
and 1− φ(z) =

2

1 + Φ(w)
.
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The analogues of the Stolz angles (with vertex 1) on the right half-plane are the
angular sectors {w ∈ H : arg(w) < α}, for α ∈ (0, π/2). We will still call them Stolz
angles at ∞.

As mentioned in the introduction, we will sometimes need that φ has some regularity
properties at its Denjoy-Wolff point. Here are the relevant definitions.

Definition 2.2. Let ξ ∈ T, and φ : D ∪ {ξ} → D ∪ {ξ} a holomorphic map on D.
For n ∈ N and 0 ≤ ε < 1, we say that φ ∈ Cn+ε(ξ) if φ has a nth derivative at ξ, and if

φ(z) =
n∑

k=0

φ(k)(ξ)

k!
(z − ξ)k + o(|z − ξ|n+ε), z ∈ D.

Definition 2.3. A holomorphic map φ : D → D is regular if φ is continuous on D, and
if φ(D) ⊂ D ∪ {ξ}, where ξ is the Denjoy-Wolff point of φ.

We assume now, and for the rest of the paper, that ξ = 1 and φ(1) = 1.
If we translate Definition 2.2 onto the map Φ, it means that we may write

Φ(w) = a0w + a1 +
n−2∑
j=2

aj
(w + 1)j

+ o

(
1

|w + 1|n−2+ε

)
,

with a0, · · · , an−2 ∈ C.

2.1. Hyperbolic symbol with nonvanishing weight at the Denjoy-Wolff point.
We begin by a well-known result about the iterates of hyperbolic selfmaps of D within
a Stolz angle.

Lemma 2.4 ([12, Lemma 2.66]). Let φ : D → D be a hyperbolic holomorphic map, with
Denjoy-Wolff point ξ ∈ T. Then, for all compact subsets K of D, there exists R > 0
such that for all n ∈ N0,

φ[n](K) ⊂ S(ξ, R).

The computation of σp(Wm,φ) when φ is hyperbolic and m does not vanish at the
Denjoy-Wolff point ξ of φ has already been done in [2], where the following theorem is
obtained. Recall that ℓ is the angular limit of f ∈ Hol(D) at ξ ∈ T if there exists a
Stolz angle S such that f(z) → ℓ when z → ξ and z ∈ S.

Theorem 2.5 ([2, Theorem 6.3]). Let φ : D → D be a hyperbolic holomorphic map,
with Denjoy-Wolff point ξ, and m ∈ Hol(D) with a non-zero angular limit m(ξ), and a
finite angular derivative at ξ. Then, σp(Wm,φ) = C∗.

We shall improve it by slightly relaxing the assumptions. This will be important to
handle the case m(ξ) = 0.

Theorem 2.6. Let φ : D → D be a hyperbolic holomorphic map, with Denjoy-Wolff
point ξ, and m ∈ Hol(D) with non-zero angular limit m(ξ) at ξ. Assume that

(1) m(z) = m(ξ) + Λ(z),
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and that for all Stolz angles S with vertex ξ, there exist β ∈ (0, 1) and a nondecreasing
map g : R → R+ such that

∀x ∈ (0, 1),
∑
n≥0

g(xn) < +∞ and z ∈ S, |z| ≥ 1− β =⇒ |Λ(z)| ≤ g(|z − ξ|).

Then, σp(Wm,φ) = C∗.

The assumptions of Theorem 2.5 mean that (1) is true with Λ(z) = m′(ξ)(z − ξ) +
o(z− ξ). Therefore, we may choose g(x) = Mx for a suitable M > 0. It is nevertheless
natural (think at Definition 2.2) to be able to use g(x) = Mxε for some ε > 0, or even
g(x) = M

|log(x)|1+η , η > 0.

Proof. Since φ and m are non-constant maps, if m(f ◦ φ) = 0, then f = 0, so we have
0 ̸∈ σp(Wm,φ). For n ∈ N and z ∈ D, we define

fn(z) =
1

m(ξ)n

n−1∏
k=0

m(φ[k](z)).

Hence,

Wm,φ(fn)(z) = m(z)
1

m(ξ)n

n−1∏
k=0

m(φ[k+1](z))

= m(ξ)
1

m(ξ)n+1

n∏
k=0

m(φ[k](z)) = m(ξ)fn+1(z).

We show that (fn)n≥0 converges uniformly on all compact subsets of D. Let K be
such a compact. By Lemma 2.4, there exists a Stolz angle S with vertex ξ such that
for all n ∈ N0, φ[n](K) ⊂ S. For all z ∈ K,∣∣∣∣m(φ[n](z))

m(ξ)
− 1

∣∣∣∣ =
∣∣m(φ[n](z))−m(ξ)

∣∣
|m(ξ)|

≤ 1

|m(ξ)|
g
(∣∣φ[n](z)− ξ

∣∣) .
Let us now consider α > 0 such that K ⊂ H(ξ, α). Using Julia’s lemma, and Julia-

Wolff-Caratheodory theorem ([10], [17]), for all n ∈ N,

φ[n](K) ⊂ H(ξ, αφ′(ξ)n).

Therefore, for all n ∈ N and z ∈ K,∣∣φ[n](z)− ξ
∣∣2 < 2αφ′(ξ)n.

Hence, if n is sufficiently large and x ∈ (φ′(ξ)1/2, 1),

g(
∣∣φ[n](z)− ξ

∣∣) ≤ g(xn).

Finally, (fn)n≥0 converges uniformly on K to a nonzero function f , which satisfies
Wm,φ(f) = m(ξ)f , so that m(ξ) ∈ σp(Wm,φ). Since σp(Cφ) = C∗ (see [2, Theorem 6.1]),
by Lemma 1.1, we obtain C∗ ⊂ σp(Wm,φ). □
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2.2. Hyperbolic symbol with vanishing weight at the Denjoy-Wolff point. In
this section, we intend to prove the following result.

Theorem 2.7. Let φ : D → D be a hyperbolic regular holomorphic map, with Denjoy-
Wolff point ξ, and m ∈ Hol(D). Assume that there exist ε ∈ (0, 1), a ∈ C∗, α ∈ R∗ and
Λ ∈ Hol(D) such that φ ∈ C1+ε(ξ),

m(z) = a(z − ξ)α(1 + Λ(z)),

and for all Stolz angles S with vertex ξ, there exist β ∈ (0, 1) and a nondecreasing map
g : R → R+ such that

∀x ∈ (0, 1),
∑
n≥0

g(xn) < +∞ and z ∈ S, |z| ≥ 1− β =⇒ |Λ(z)| ≤ g(|z − ξ|).

Then σp(Wm,φ) = C∗.

In particular, we may apply this theorem when m is meromorphic at ξ.

Proof. We shall prove the theorem on H, by assuming that ξ = 1. Let Φ : H → H be
holomorphic, which extends to a continuous function on H∪ {∞} and maps Φ(H) into
H. We shall also assume that Φ may be written

Φ(w) = λw +Θ(w),

with λ > 1 and |Θ(w)| ≲ |w + 1|1−ε. Let also m : H → C be such that

m(w) =
a

(w + 1)α
(
1 + Λ(w)

)
.

In this context, for all Stolz angles S with vertex ∞, there exist C > 0 and a non-
decreasing map g : R → R+ such that

∀x ∈ (0, 1),
∑
n≥0

g(xn) < +∞ and w ∈ S, |w| ≥ C =⇒ |Λ(w)| ≤ g(1/|w|).

By the linear fractional model (see [9, Theorem 4.9]), there exist a holomorphic self-
map H : H → H and c > 1 such that H ◦Φ = cH and H(w) = (w+1)(1 +G(w)) with
|G(w)| ≲ |w + 1|−ε for |w| large enough.

Our strategy for the proof is the following. We will first consider the weighted com-
position operator WH−α,Φ and show that it admits a nonzero eigenvalue by exhibiting
an eigenvector. Next, we will set m1 = mHα and we will apply Theorem 2.6 to Wm1,Φ.
We will finally conclude by Lemma 1.1.

Step 1 : We show that σp(WH−α,Φ) ∩ C∗ ̸= ∅. Set λ = α/2 log(c), and

F = exp[λ log2(H)].
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Then,

WH−α,Φ(F ) =
exp[λ log2(H ◦ Φ)]

Hα
=

exp[λ log2(cH)]

Hα

=
exp[λ log2(c) + 2λ log(c) log(H) + λ log2(H)]

Hα

= eλ log2(c)H2λ log(c)−αF = eλ log2(c)F.

Since eλ log2(c) ̸= 0, we obtain the desired result.

Step 2 : We show that σp(Wm1,Φ) = C∗. Indeed, using the estimates on m and H,
we know that m1 = mHα can be written

m1(w) = a(1 + Λ(w))(1 +G(w))α.

In addition, (1 +G(w))α = 1 + αG(w) + η(w), with |η(w)| ≲ |w + 1|−2ε. Finally, we
may write

m1(w) = a+ Λ̃(w),

with Λ̃ = a(Λ+αG+αGΛ+η+ηΛ). By sums and products, for all Stolz angles S with
vertex ∞, there exist C̃ > 0 and a nondecreasing map g̃ such that for all x ∈ (0, 1),∑

g̃(xn) < +∞, and

w ∈ S, |w| ≥ C̃ =⇒ |Λ̃(w)| ≤ g̃(1/|w|).

We obtain the result by applying Theorem 2.6.

Conclusion : Using Lemma 1.1 together with the results of Step 1 and Step 2, we
get σp(Wm,Φ) = C∗. □

2.3. General discussion on parabolic symbols. We turn to the case where the sym-
bol φ is a parabolic self-map of D, and we will always assume that 1 is its Denjoy-Wolff
point. The strategy to prove that, under some regularity assumptions, σp(Wm,φ) = C∗

is the same as in the hyperbolic case.
We will first prove that this holds true if m does not vanish at 1 by renormalizing the

sequence m(φ[n](z)). Then, we will handle the case where m vanishes at 1 by exhibiting
an eigenvector when m has a specific form related to the symbol, and we will conclude
in the general case by factorizing the multiplier.

Nevertheless, every step becomes harder. The key point is that φ[n](z) converges
much more slowly to 1 when φ is parabolic, and the convergence of the sequences
which come into play will be more difficult to prove.

The linear fractional model gives us now the existence of a map H : H → C such that
H ◦Φ = H+a. As in the proof of Theorem 2.7, we will need estimates on the behaviour
of H near infinity, and even more precise estimates due to the parabolic nature of the
symbol.

Our starting point is again [9], now Theorem 4.12. Bourdon and Shapiro give there
a linear fractional model with estimates for φ a parabolic self-map of D belonging to
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C3+ε(1), with φ′′(1) ̸= 0 and φ regular. Indeed, in such case, we get ℜ(φ′′(1)) ≥ 0, and
we can write

φ(z) = 1 + (z − 1) + φ′′(1)
(z − 1)2

2
+ φ′′′(1)

(z − 1)3

6
+ γ(z),

with γ(z) = o(|z − 1|3+ε). Setting again Φ = τ ◦ φ ◦ τ−1, then for all w ∈ H,

Φ(w) = w + a+
b

w + 1
+ Θ(w), Θ(w) = o

(
1

|w + 1|1+ε

)
,

with a = φ′′(1) and b = φ′′(1)2 − 2φ′′′(1)/3. If ℜ(φ′′(1)) = 0, we may and shall assume
that ℑ(φ′′(1)) > 0. Bourdon-Shapiro’s theorem reads as follows.

Theorem 2.8 ([9], Theorem 4.12).
Let φ : D → D be a parabolic holomorphic map, with Denjoy-Wolff point 1. Assume

that φ is regular, C3+ε(1), and that φ′′(1) ̸= 0. Then, there exists a function H : H → C
such that H ◦ Φ = H + a, and

(2) H(w) = w − b

a
log(1 + w) +B(w), w ∈ Ω,

with B holomorphic, bounded on Ω and continuous on Ω, wherer if ℜ(a) > 0, then Ω = H,r if ℜ(a) = 0 and ℑ(a) > 0, then Ω = H+ = {z ∈ C : ℜ(z) > 0,ℑ(z) > 0}.

It turns out that we will need the following enhancement of this theorem, giving a
slightly more precise information on the behaviour of H.

Proposition 2.9. Under the assumptions of Theorem 2.8, there exist R > 0, a domain
Ω ⊂ H and a map H : H → C such that H ◦ Φ = H + a and

(3) H(w) = w + c− b

a
log(1 + w) + θ(w), w ∈ Ω,

with c ∈ C, θ : H → C holomorphic, satisfying |θ(w)| ≲ |w|−ε/2 for |w| sufficiently large
and r if ℜ(a) > 0, then Ω = H,r if ℜ(a) = 0 and ℑ(a) > 0, then Ω = HR = {z ∈ C : ℜ(z) > 0,ℑ(z) > R}.

Proof. We follow the method of [9] but we have to go a step further in the expansion.
We start from the last formula p.74 and [9, Proposition 4.19] : there exists some R > 0
such that H is the uniform limit on compact subsets of Ω of the maps Hn defined by

Hn(w) = w − w0 − bw
n−1∑
j=0

1

w(j)w0(j)
+ bS2,n(w) + S3,n(w),

with w0 ∈ Ω, w(n) = Φ[n](w) + 1, and

S2,n(w) =
n−1∑
j=0

w0 − (Hj(w)−H0(w))

w(j)w0(j)
, S3,n(w) =

n−1∑
j=0

[Θ(w(j))−Θ(w0(j))].
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To achieve the proof, we need to study all the terms of Hn. First, [9, Proposition
4.18] gives us the very useful inequality

|w(n)| ≳ |w|+ n, w ∈ Ω, n ≥ 0.

r Let us start with S3,n. For j ≥ 1 and w ∈ Ω, if we set γ = max(|w| , j), then

|w|ε/2 |Θ(w(j))| ≲ |w|ε/2

|w(j)|1+ε ≲
|w|ε/2

(|w|+ j)1+ε
≤ γε/2

γ1+ε
≤ 1

γ1+ε/2
≤ 1

j1+ε/2
.

Moreover, the sum
∑

Θ(w0(j)) converges, so

S3(w) = lim
n→∞

S3,n(w) =
∑
j≥0

Θ(w(j))−
∑
j≥0

Θ(w0(j)) = θ3(w) + c3,

with |θ3(w)| ≲ |w|−ε/2 for |w| large enough.

r We now focus on S2,n. For j ≥ 1 and w ∈ Ω,

|w|ε

|w(j)w0(j)|
≲

|w|ε

(|w|+ j)(|w0|+ j)
≤ γε

γj
≤ 1

γ1−εj
≤ 1

j2−ε
.

Since |Hj(w)−H0(w)| ≲ log(j + 1) (cf. [9, p. 76]), we also get

|w|ε
∣∣∣∣Hj(w)−H0(w)

w(j)w0(j)

∣∣∣∣ ≲ |w|ε log(j + 1)

(|w|+ j)(|w0|+ j)
≤ log(j + 1)

γ1−εj
≤ log(j + 1)

j2−ε
.

Therefore, we have shown that

S2(w) = lim
n→∞

S2,n(w) = θ2(w) + c2,

with |θ2(w)| ≲ |w|−ε for |w| large enough.
For the moment, setting d1 = c2 + c3 − w0 and ∆1 = θ2 + θ3, we get

H(w) = w − bw
∑
j≥0

1

w(j)w0(j)
+ d1 +∆1(w), |∆1(w)| ≲ |w|−ε/2 .

Now, note that using Lemma 4.20 of [9], for each w ∈ Ω and each j ≥ 0,

|w + ja| ≳ (|w|+ j), |w(j)− w − ja| ≲ log(j + 1).

Hence, let us write

bw
∑
j≥0

1

w(j)w0(j)
= I1(w) + I2(w) + I3(w) + b

∑
j≥1

w

(w + ja)(w0 + ja)
,

with I1(w) = bw/(w + 1)(w0 + 1), and

I2(w) = b
∑
j≥1

w

w + ja

[
1

w0(j)
− 1

w0 + ja

]
, I3(w) = b

∑
j≥1

w

w0(j)

[
1

w(j)
− 1

w + ja

]
.
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Then,

I1(w) =
b

w0 + 1
− b

(w0 + 1)(w + 1)
= c4 − θ4(w),

with |θ4(w)| ≲ |w|−1 for |w| large. In addition,

I2(w) = b
∑
j≥1

[
1

w0(j)
− 1

w0 + ja

]
︸ ︷︷ ︸

=c5

− b
∑
j≥1

ja

w + ja

[
1

w0(j)
− 1

w0 + ja

]
︸ ︷︷ ︸

=θ5(w)

,

with ∣∣∣∣ ja

w + ja

[
1

w0(j)
− 1

w0 + ja

]∣∣∣∣ ≲ j log(j + 1)

(|w|+ j)(|w0|+ j)2
≤ log(j + 1)

|w|1/2 j3/2
,

so |θ5(w)| ≲ |w|−1/2. Finally, to study I3(w), we only have to see that∣∣∣∣ w

w0(j)

[
1

w(j)
− 1

w + ja

]∣∣∣∣ ≲ |w| log(j + 1)

(|w0|+ j)(|w|+ j)2
≤ log(j + 1)

|w|1/2 j3/2
.

Thus, |I3(w)| ≲ |w|−1/2. Setting d2 = d1 − c4 − c5 and ∆2 = ∆1 + θ4 + θ5 − I3, we get

H(w) = w − b
∑
j≥1

w

(w + ja)(w0 + ja)
+ d2 +∆2(w), |∆2(w)| ≲ |w|−ε/2 .

Next, note that∑
j≥1

w

(w + ja)(w0 + ja)
=

∑
j≥1

[
1

w0 + ja
− 1

w + ja

]
︸ ︷︷ ︸

=J1(w)

+w0

∑
j≥1

1

(w + ja)(w0 + ja)︸ ︷︷ ︸
=J2(w)

.

For the second term, we have

|J2(w)| ≤ |w0|
∑
j≥1

∣∣∣∣ 1

(w + ja)(w0 + ja)

∣∣∣∣ ≤ |w0|
|w|1/2

∑
j≥1

1

j3/2
≲

1

|w|1/2
,

and for the first one,

J1(w)−
∫ ∞

1

[
1

w0 + ta
− 1

w + ta

]
dt

=
∑
j≥1

∫ j+1

j

a(t− j)

(w0 + ja)(w0 + ta)
dt︸ ︷︷ ︸

=c6

−
∑
j≥1

∫ j+1

j

a(t− j)

(w + ja)(w + ta)
dt︸ ︷︷ ︸

=θ6(w)

,

with, for j ≤ t ≤ j + 1, ∣∣∣∣ a(t− j)

(w0 + ja)(w0 + ta)

∣∣∣∣ ≲ 1

(|w0|+ j)2
≤ 1

j2

and
∣∣∣∣ a(t− j)

(w + ja)(w + ta)

∣∣∣∣ ≲ 1

(|w|+ j)2
≤ 1

|w|1/2 j3/2
.
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Finally,

J1(w)−
∫ ∞

1

[
1

w0 + ta
− 1

w + ta

]
dt = c6 + θ6(w), |θ6(w)| ≲

1

|w|1/2
.

Therefore, setting d3 = d2 − c6 and ∆3 = ∆2 + θ6 − J2, we obtain

H(w) = w − b

∫ ∞

1

[
1

w0 + ta
− 1

w + ta

]
dt+ d3 +∆3(w), |∆3(w)| ≲ |w|−ε/2 .

But it is well-known that∫ ∞

1

[
1

w0 + ta
− 1

w + ta

]
dt =

1

a
log

(
w + a

w0 + a

)
,

so

H(w) = w − b

a
log

(
w + a

w0 + a

)
+ d3 +∆3(w), |∆3(w)| ≲ |w|−ε/2 .

We conclude, using the identity

log

(
w + a

w0 + a

)
− log(w + 1) = log

(
1 +

a− 1

w + 1

)
︸ ︷︷ ︸

=θ7(w)

− log(w0 + a)︸ ︷︷ ︸
=c7

,

with |θ7(w)| ≲ |w|−1 for |w| large. Finally, if c = d3 + bc7/a and θ = ∆3 − bθ7/a, then

H(w) = w − b

a
log(w + 1) + c+ θ(w), |θ(w)| ≲ |w|−ε/2 . □

Regarding the behaviour of the sequences (φ[n](z)), we will need the following lemma.

Lemma 2.10 ([6, Lemma 5.8]). Under the assumptions of Theorem 2.8, for all w ∈ H,

Φ[n](w) = an+
b

a
log(n) +Bn(w),

with Bn bounded (independently of n) on all compact subsets of H.

2.4. Parabolic symbols with nonvanishing weight at the Denjoy-Wolff point.
The preliminary results of the previous section allow us to get the following theorem.
Here again, we set a = φ′′(1), b = φ′′(1)2 − 2φ′′′(1)/3.

Theorem 2.11. Let φ : D → D be a parabolic holomorphic map, with Denjoy-Wolff
point 1. Assume that φ is regular, C3+ε(1), and that φ′′(1) ̸= 0. Let m ∈ Hol(D).
Assume also that there exist a neighborhood U of 1, r > 0, δ > 0 and Λ : D → C such
that setting Dr = τ−1(Hr) and

V (r) =

{
U ∩ D if ℜ(φ′′(1)) > 0,

U ∩ Dr if ℜ(φ′′(1)) = 0 and ℑ(φ′′(1)) > 0,

the map m satisfies
∀z ∈ D, m(z) = m(1) + Λ(z),
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with m(1) ̸= 0, and

∀z, z′ ∈ V (r), |Λ(z)− Λ(z′)| ≲ |z − 1|1+δ + |z′ − 1|1+δ
+ |z − z′|

1
2
+δ

Then, σp(Wm,φ) = C∗.

In particular, our assumptions imply that m admits a nonzero limit at 1 along Dr.
They are satisfied if m ∈ C1+δ(1) and m(1) ̸= 0.

Proof. We may assume that r ≥ R, where R is given by Proposition 2.9. We move on H
and consider m ∈ Hol(H) which can be written m(w) = m(∞)+Λ(w), with m(∞) ̸= 0
and for all w ∈ Ω,

(4) |Λ(w)− Λ(w′)| ≲ 1

|w + 1|1+δ
+

1

|w′ + 1|1+δ
+

∣∣∣∣ w − w′

(w + 1)(w′ + 1)

∣∣∣∣ 12+δ

,

where Ω = H ∩ {|w| > M} if ℜ(φ′′(1)) > 0, and Ω = Hr ∩ {|w| > M} otherwise, with
M > 0 sufficiently large.

Arguing as in the proof of Theorem 2.6, it is sufficient to show that m(∞) is an
eigenvalue of Wm,Φ. Let K be a compact subset of H containing 1. We claim that
Φ[n](K) ⊂ Ω provided n is large enough. This is a consequence of the Denjoy-Wolff
theorem if ℜ(φ′′(1)) > 0. If ℜ(φ′′(1)) = 0, we set w0 = 1 + i(r + 1) and consider ρ > 0
so that K ⊂ ∆(w0, ρ), where ∆(ζ, r) is the pseudo-hyperbolic disc with center ζ and
radius r. Using Schwarz-Pick’s lemma, for all n ∈ N,

Φ[n](K) ⊂ ∆(Φ[n](w0), ρ) = ℜ(Φ[n](w0))∆(1, ρ) + ℑ(Φ[n](w0)).

However, the sequence (ℜ(Φ[n](w0)))n≥0 is bounded (see [9, Proposition 4.25]), and
ℑ(Φ[n](w0)) −−−→

n→∞
+∞. Thus, for n large, Φ[n](K) ⊂ Ω.

In particular, there exists n0 ∈ N such that for n ≥ n0, m(Φ[k](1)) ̸= 0. Hence, for
all w ∈ H and n ≥ n0, we may set

Fn(w) =
n∏

k=n0

m(Φ[k](w))

m(Φ[k](1))
.

We intend to show that (Fn) converges uniformly on K. For w ∈ K and n large,∣∣∣∣m(Φ[n](w))

m(Φ[n](1))
− 1

∣∣∣∣ ≲ ∣∣m(Φ[n](w))−m(Φ[n](1))
∣∣

≤
∣∣∣∣ 1

Φ[n](w) + 1

∣∣∣∣1+δ

+

∣∣∣∣ 1

Φ[n](1) + 1

∣∣∣∣1+δ

+

∣∣∣∣ Bn(w)−Bn(1)

(Φ[n](w) + 1)(Φ[n](1) + 1)

∣∣∣∣ 12+δ

.
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Since |Φ[n](w) + 1|, |Φ[n](1) + 1| ≥ C(K)n, an application of Lemma 2.10 yields the
desired convergence. We conclude since

Wm,Φ(F )(w) = m(w)F (Φ(w)) = m(w) lim
n→+∞

n∏
k=n0

m(Φ[k+1](w))

m(Φ[k](1))

= lim
n→+∞

m(Φ[n+1](1))
n+1∏
k=n0

m(Φ[k](w))

m(Φ[k](1))
= m(∞)F (w).□

When φ is a parabolic automorphism (hence, excluding the identity), the problem is
much simpler to solve. Indeed, in such case, there exists a ∈ R∗ such that for all w ∈ H,
Φ(w) = w+ ia. Hence, for all compact subsets K of H containing 1, and for all w ∈ K,

|w| ≤ C =⇒
∣∣Φ[n](w)

∣∣ = |w + ina| ≥ n |a| − |w| ≥ n |a| − C.

For n0 ≥ (M + C)/ |a| (M > 0 being in the definition of Ω) and n ≥ n0, we obtain
m(Φ[n](w)) ̸= 0, and∣∣∣∣m(Φ[n](w))

m(Φ[n](1))
− 1

∣∣∣∣ ≲ ∣∣m(Φ[n](w))−m(Φ[n](1))
∣∣ .

Under the same hypotheses as in Theorem 2.11, (Fn) converges uniformly on K, and
we get the result.

2.5. Parabolic symbols with vanishing weight at the Denjoy-Wolff point. If
the weight m does vanish, or admits a pole at the Denjoy-Wolff point of the symbol,
we get a similar result.

Theorem 2.12. Let φ : D → D be a parabolic holomorphic map, with Denjoy-Wolff
point 1. Assume that φ is regular, C3+ε(1), and that φ′′(1) ̸= 0. Let m ∈ Hol(D).
Assume also that there exist a neighborhood U of 1, r > 0, δ > 0 and Λ : D → C such
that setting Dr = τ−1(Hr) and

V (r) =

{
U ∩ D if ℜ(φ′′(1)) > 0,

U ∩ Dr if ℜ(φ′′(1)) = 0 and ℑ(φ′′(1)) > 0,

the map m satisfies
∀z ∈ D, m(z) = (z − 1)α(β + Λ(z)),

with α ∈ R∗, β ∈ C∗, and

∀z, z′ ∈ V (r), |Λ(z)− Λ(z′)| ≲ |z − 1|1+δ + |z′ − 1|1+δ
+ |z − z′|

1
2
+δ

.

Then, σp(Wm,φ) = C∗.

Proof. Again, we shall prove the theorem on H and we follow a strategy similar to that
of Theorem 2.7. Therefore, we fix m : H → C, which may be written

m(w) = (w + 1)−α(β + Λ(w)),
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where Λ satisfies (4). By Theorem 2.8 and Proposition 2.9, we shall find a map H :
H → C such that H ◦ Φ = H + a, and

(5) H(w) = w − b

a
log(1 + w) + c+ θ(w), w ∈ Ω,

with Ω = H or H+, and |θ(w)| ≲ |w + 1|−ε. First, we show that we may always assume
that H(H) ∩ {ya : y ≤ 0} = ∅.r If ℜ(a) = 0, then H(H) ⊂ H (cf. [9, p.64]), which gives the result.r Otherwise, let x ≥ 0 be such that if B(w) = c + θ(w), then |B(w)| ≤ x/2 on H.

We first show that for |w| large enough, say |w| > ρ and y ≤ −x/ℜ(a), then one
cannot have H(w) = ya. Otherwise

z := w − b

a
log(1 + w) = ya−B(w)

would belong to D(w, |w|/2) and to B(ya, |y|ℜ(a)/2), but these two discs have
empty intersection. Moreover, H is bounded on the compact set H ∩ {|w| ≤ ρ},
so we get the existence of s > 0 such that

H(H) ∩ {ya : y ≤ 0} ⊂ {ya : −s ≤ y ≤ 0}.

We conclude by considering H + sa instead of H.

Step 1 : We show that σp(WH−α,Φ) ∩ C∗ ̸= ∅. Indeed, set F (w) = Γα(H(w)/a),
where Γ is the gamma function. Then, F is well-defined since H(w)/a ̸∈ R−, and

H−α(w)(F ◦ Φ)(w) = H−α(w)Γα

(
H(w)

a
+ 1

)
= H−α(w)

Hα(w)

aα
F (w) = a−αF (w).

Therefore, a−α ∈ σp(WH−α,Φ).

Step 2 : We show that σp(Wm1,Φ) = C∗, where m1 = mHα. This will be a conse-
quence of Theorem 2.11. Indeed, we may write, for w ∈ Ω,

m1(w) = (w + 1)−α
(
β + Λ(w)

)(
w + 1− b

a
log(1 + w) + (c− 1) + θ(w)

)α

=
(
β + Λ(w)

)(
1− b

a

log(w + 1)

w + 1
+

c− 1

w + 1
+

θ(w)

w + 1

)α

=
(
β + Λ(w)

)(
1− αb

a

log(w + 1)

w + 1
+

α(c− 1)

w + 1
+

αθ(w)

w + 1
+ Λ2(w)

)
,

with |θ(w)| ≲ |w|−ε/2 and |Λ2(w)| ≲ |w|−3/2, for |w| large.
We expand the product and verify that we can write m1(w) = m1(∞) + Λ̃(w), with

m1(∞) = β ̸= 0 and Λ̃(w) satisfying (4). The last point follows from the easy fact that
the product of two functions which are bounded on Ω and satisfy (4) still verifies (4).
Thus we just have to check that each term satisfies this condition.
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r The map p1 : w 7→ log(w+1)
w+1

satisfies, for w,w′ ∈ Ω,

|p1(w)− p1(w
′)| ≲

∣∣∣∣ w − w′

(w + 1)(w′ + 1)

∣∣∣∣3/4 .
r The map p2 : w 7→ (w + 1)−1 satisfies, for w,w′ ∈ Ω,

|p2(w)− p2(w
′)| ≤

∣∣∣∣ w − w′

(w + 1)(w′ + 1)

∣∣∣∣ .
r The map p3 : w 7→ θ(w)

w+1
satisfies, for w,w′ ∈ Ω,

|p3(w)− p3(w
′)| ≲

∣∣∣∣ 1

w + 1

∣∣∣∣1+ε

+

∣∣∣∣ 1

w′ + 1

∣∣∣∣1+ε

.

r The map Λ2 satisfies, for w,w′ ∈ Ω,

|Λ2(w)− Λ2(w
′)| ≲

∣∣∣∣ 1

w + 1

∣∣∣∣3/2 + ∣∣∣∣ 1

w′ + 1

∣∣∣∣3/2 .
We conclude by applying Lemma 1.1. □

3. Multivariable case

We now study the spectrum of weighted composition operators defined on the eu-
clidean unit ball Bd of Cd. We also denote by Sd−1 the unit sphere.

As proved by MacCluer in [13], the Denjoy-Wolff theorem keeps true for holomorphic
self-maps of Bd. Precisely, let φ : Bd → Bd be such a map without any fixed point in Bd.
Then there exists ξ ∈ Sd−1 such that φ[n] converges uniformly on all compact subsets
of Bd to ξ. Moreover, the boundary dilation coefficient λ(φ) of φ at ξ, defined by

λ(φ) = lim inf
z→ξ

1− ∥φ(z)∥
1− ∥z∥

,

belongs to (0, 1]. We will say that φ is parabolic if λ(φ) = 1 and hyperbolic otherwise.

When m(ξ) ̸= 0 and φ is hyperbolic, the one-dimensional proof can be easily modified
to cover Bd. The parabolic case will be substantially more difficult and we will use the
results of [5]. We shall restrict ourselves to the case d = 2. Since the point spectrum
is stable under conjugation by automorphisms, we are allowed to reduce the matrix of
dφ(ξ) and we will distinguish two cases.

r the parabolic diagonalizable case, with dφ(ξ) =

(
1 0
0 µ

)
,

r the parabolic nondiagonalizable case, with dφ(ξ) =

(
1 0
α 1

)
and α > 0,

(see [5] for details). The orbits (φ[n](0)) behave very differently for these two kinds of
maps and we will need to handle them separately.
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3.1. Hyperbolic symbols with nonvanishing weight at the Denjoy-Wolff point.
We begin this paragraph by recalling some definitions.
Definition 3.1. The horodisc with vertex ξ ∈ Sd−1 and radius r > 0 is defined by

H(ξ, r) =

{
z ∈ Bd :

|1− ⟨z, ξ⟩|2

1− ∥z∥2
< r

}
.

We obtain the following theorem, very close to the one-variable one.
Theorem 3.2. Let φ : Bd → Bd be a hyperbolic holomorphic map, with Denjoy-Wolff
point ξ ∈ Sd−1, and m ∈ Hol(Bd) having a non-zero K-limit at ξ. Assume that

m(z) = m(ξ) + Λ(z),

and that for all horodisc H with vertex ξ, there exist δ ∈ (0, 1) and a nondecreasing
map g : R → R+ such that

∀x ∈ (0, 1),
∑
n≥0

g(xn) < +∞ and z ∈ H, ∥z∥ ≥ 1− δ =⇒ |Λ(z)| ≤ g(∥z − ξ∥).

Then, σp(Wm,φ) = C∗.
Proof. By [16, Theorem 8.5.3] (see also [5, Theorem 2.3]), setting λ ∈ (0, 1) the bound-
ary dilation coefficient of φ, for all r > 0, φ(H(ξ, r)) ⊂ H(ξ, λr). By induction, we
obtain φ[n](H(ξ, r)) ⊂ H(ξ, λnr), n ∈ N.

Consider once again the sequence (fn) defined by

fn(z) =
1

m(ξ)n

n−1∏
k=0

m(φ[k](z)) =
n−1∏
k=0

m(φ[k](z))

m(ξ)
.

Then, as in the proof of Theorem 2.6,∣∣∣∣m(φ[n](z))

m(ξ)
− 1

∣∣∣∣ ≤ 1

|m(ξ)|
g
(∥∥φ[n](z)− ξ

∥∥) .
Let K be a compact subset of Bd. Consider R > 0 such that K ⊂ H(ξ, R). Hence,

for all z ∈ K,∥∥φ[n](z)− ξ
∥∥2

=
∥∥φ[n](z)

∥∥2
+ 1− 2ℜ

〈
φ[n](z), ξ

〉
≤ 2[1−ℜ

〈
φ[n](z), ξ

〉
] +

∥∥φ[n](z)
∥∥2 − 1

≤ 2ℜ(1−
〈
φ[n](z), ξ

〉
)

≤ 2
∣∣1− 〈

φ[n](z), ξ
〉∣∣ ≤ 2

√
Rλn/2

√
1− ∥φ[n](z)∥2 ≤ 2

√
Rλn/2.

Finally, for n large enough, if x ∈ (λ1/4, 1), we get
∥∥φ[n](z)− ξ

∥∥ ≤ xn for n large
enough. Thus, ∣∣∣∣m(φ[n](z))

m(ξ)
− 1

∣∣∣∣ ≤ 1

|m(ξ)|
g (xn) ,

so that (fn) converges uniformly on K. We conclude as in Theorem 2.6, using the fact
that σp(Cφ) = σp(W1,φ) = C∗ (see [14, Proposition 3.3]). □
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3.2. Parabolic non-diagonalizable symbol. In the following subsections, we will
focus on two-variables symbols, and we will always assume that φ is a holomorphic
self-map of B2 with Denjoy-Wolff point at e1 = (1, 0).

An element of C2 will be denoted (w, z). To apply the results of [5], we need a notion
of regularity at e1 which emphasizes the dissymmetry between w − 1 and z as (w, z)
goes to e1. Indeed, one always has |z|2 ≤ 1 − |w|2 ≤ 2(1 − |w|). This leads up to the
following definition.

Definition 3.3. A holomorphic map φ : B2 → B2 is in Dm(e1), m ≥ 2, if we can write
it as

φ(w, z) =

1 + λ(w − 1) +
∑

j+k≥2, j/2+k≤m/2

aj,kz
j(w − 1)k + ε1(w, z),

α(w − 1) + µz +
∑

j+k≥2, j/2+k≤m/2

bj,kz
j(w − 1)k + ε2(w, z)

 ,

with εi(w, z) = o(|w − 1|m/2). Similarly, we say that φ is in Dm+ε(e1), m ≥ 2, ε ∈ (0, 1),
if εi(w, z) = O(|w − 1|(m+ε)/2).

As in the one-variable case, we will move from B2 to another domain where the
computations will be easier. The relevant domain here is the Siegel half-space, defined
by

H2 := {(w, z) ∈ C2 : ℜ(w) > |z|2}.
Let τ be the Cayley map from B2 onto H2 defined by

τ(w, z) =

(
w + 1

1− w
,

z

1− w

)
, τ−1(w, z) =

(
w − 1

w + 1
,

2z

w + 1

)
.

We will set Φ = τ ◦ φ ◦ τ−1. Regarding distances between points, it is easy to check
that if (w0, z0) = τ(w, z) and (w′

0, z
′
0) = τ(w′, z′) then

∥(w, z)− (w′, z′)∥2 ≍ |w0 − w′
0|2

|w0 + 1|2|w′
0 + 1|2

+

∣∣∣∣ z0
w0 + 1

− z′0
w′

0 + 1

∣∣∣∣2 .
In this paragraph, we will assume that φ is parabolic and that

dφ(e1) =

(
1 0
α 1

)
,

with α > 0. We call it a parabolic non-diagonalizable map.
As for the one variable case, the construction of eigenvectors will follow from a careful

analysis of the behaviour of φ[n](w, z). Moving to H2, for (w, z) ∈ H2, we will denote
(w(n), z(n)) = Φ[n](w, z). To study how (w(n), z(n)) goes to ∞, it is convenient to
introduce the following sets. For A,M > 0, let

KM,A := {(w, z) ∈ H2 : ℜ(z) ≥ A,ℜ(w) ≥ M, 4ℑ(z) ≤ ℜ(z), 2 |ℑ(w)| ≤ ℜ(w)}.
From the results of [5], we will extract the following lemma.
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Lemma 3.4. Let ε ∈ (0, 1) and assume that φ ∈ D5+ε(e1) is parabolic non-diagonalizable.
Let A,M > 0. Then, for all compact sets K ⊂ H2, there exists n0 ∈ N such that
Φ[n](K) ⊂ KM,A for n ≥ n0. Morever there exists a > 0 such that, for all η ∈ (0, 1),
for all (w, z) ∈ K,∣∣w(n)− n(n− 1)a2

∣∣ ≲ n1+η, |z(n)− na| ≲ nη,

∣∣∣∣ z(n)w(n)
− 1

an

∣∣∣∣ ≲ 1

n2−η
.

Proof. The first assertion is [5, Lemma 3.3]. The estimates are direct consequences of
[5, Proposition 3.8 and Lemma 3.10]. □

We deduce the following result.

Theorem 3.5. Let ε > 0. Assume that φ ∈ D5+ε(e1) is parabolic nondiagonalizable.
Let m ∈ Hol(D). Assume also that there exist M,A > 0 and δ ∈ (0, 1) such that, setting
VM,A = τ−1(KM,A), the map m satisfies

m(z) = m(e1) + Λ(z),

with m(e1) ̸= 0 and for all (w, z), (w′, z′) ∈ VM,A,

|Λ(w, z)− Λ(w′, z′)| ≲ ∥(w, z)− e1∥1+δ + ∥(w′, z′)− e1∥1+δ
+ ∥(w, z)− (w′, z′)∥

1
2
+δ

.

Then, σp(Wm,φ) = C∗.

Proof. We move on H2 and consider m ∈ Hol(H2), which can be written

m(w, z) = m(∞) + Λ(w, z),

with m(∞) ̸= 0 and for all (w, z), (w′, z′) ∈ KM,A,

|Λ(w, z)− Λ(w′, z′)|2 ≲
(
1 + |z|2

|w + 1|2

)1+δ

+

(
1 + |z′|2

|w′ + 1|2

)1+δ

+

(
|w − w′|

|w + 1| · |w′ + 1|

)1+2δ

+

∣∣∣∣ z

w + 1
− z′

w′ + 1

∣∣∣∣1+2δ

.

As in the one-dimensional case we consider

Fn(w, z) =
n∏

k=n0

m(Φ[k](w, z))

m(Φ[k](1, 0))
,

and it is sufficient to prove that (Fn) converges uniformly on all compact subsets of H2

to conclude that m(∞) ∈ σp(Wm,Φ). Setting (w0, z0) = (1, 0), we get∣∣m(Φ[n](w, z))−m(Φ[n](1, 0))
∣∣2

≤ |Λ(w(n), z(n))− Λ(w0(n), z0(n))|2

≤
(
1 + |z(n)|2

|w(n) + 1|2

)1+δ

+

(
1 + |z0(n)|2

|w0(n) + 1|2

)1+δ

+

(
|w(n)− w0(n)|

|w(n) + 1| · |w0(n) + 1|

)1+2δ

+

∣∣∣∣ z(n)

w(n) + 1
− z0(n)

w0(n) + 1

∣∣∣∣1+2δ

.
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Now Lemma 3.4 allows us to conclude that∣∣m(Φ[n](w, z))−m(Φ[n](1, 0))
∣∣ ≲ 1

nβ
,

for some β > 1. Indeed,(
1 + |z(n)|2

|w(n) + 1|2

)1+δ

≲

(
n2

n4

)1+δ

≤ 1

n2+2δ
,

whereas (
|w(n)− w0(n)|

|w(n) + 1| · |w0(n) + 1|

)1+2δ

≲

(
n1+η

n4

)1+2δ

≲
1

n2+2δ
,

provided η > 0 is small enough. Finally,∣∣∣∣ z(n)

1 + w(n)
− z0(n)

1 + w0(n)

∣∣∣∣ ≲ ∣∣∣∣z(n)− z0(n)

w(n)w0(n)

∣∣∣∣+ ∣∣∣∣ z(n)w(n)
− z0(n)

w0(n)

∣∣∣∣
≲

1

n4−η
+

1

n2−η
.

By choosing η > 0 sufficiently small,∣∣∣∣ z(n)

1 + w(n)
− z0(n)

1 + w0(n)

∣∣∣∣ 12+δ

≲
1

n1+γ

for some γ > 0.
Thus, m(∞) ∈ σp(Wm,Φ). To conclude, we need to observe that σp(CΦ) = C∗. This

follows from [5, Theorem 3.1], which gives the existence of G ∈ Hol(H2) and a ∈ C∗

such that G◦Φ = G+a. For all λ ∈ C, the function H = exp(λG) is then an eigenvector
of CΦ corresponding to the eigenvalue exp(λa). □

3.3. Parabolic diagonalizable symbol. We firstly come back to general considera-
tions for φ a holomorphic self-map of B2 with e1 as Denjoy-Wolff point. Assume that
φ ∈ D2(e1) and (by reduction)

dφ(e1) =

(
λ1 0
α1 µ1

)
.

Then, φ may be written

φ(w, z) = (1 + λ1(w − 1) + γ1z
2 + o(|w − 1|), α1(w − 1) + µ1z + κ1z

2 + o(|w − 1|))
To ensure that φ maps B2 into itself, it is mandatory that

(6) λ1 ≥ |µ1|2 + 2|γ1|
(see [5, Equation (2.1)]) and the γ1z

2 term is the source of many troubles.
If we translate this on Φ, we find that

Φ1(w, z) =
λ∞w

1− γ∞
z2

w+1

+ o(w),

Φ2(w, z) =
µ∞z

1− γ∞
z2

w+1

− α∞

1− γ∞
z2

w+1

+ F∞

(
z2

w + 1

)
+ o

(
z2

w + 1

)
,
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with λ∞ = 1/λ1, µ∞ = µ1/λ1, γ∞ = 2γ1/λ1, α∞ = α1/λ1 and F∞ holomorphic in D.
In particular, (6) becomes

λ∞ ≥ |µ∞|2 + λ∞|γ∞|.
As for the one-dimensional case, the study of the orbits of φ done in [5] require some

regularity assumptions on φ. Recall that Wolff’s lemma says that, for any (w, z) ∈ H2,

ℜ(Φ1(w, z))− |Φ2(w, z)|2 ≥ ℜ(w)− |z|2.

Definition 3.6. We say that φ satisfies the strong Wolff’s condition if

λ∞ > |µ∞|2 + λ∞|γ∞|

and there exists δ > 0 such that for any (w, z) ∈ H2,

ℜ(Φ1(w, z))− |Φ2(w, z)|2 ≥ ℜ(w)− |z|2 + δ.

To study the spectrum of Wm,Φ, we will need the following estimates on (w(n), z(n)).

Lemma 3.7. Let ε ∈ (0, 1), and assume that φ ∈ D6+ε(e1) is parabolic diagonalizable
and that φ satisfies the strong Wolff condition. There exist a ∈ C∗ and a sequence of
complex numbers (an) such that for any compact K ⊂ H2, there exist C(K) satisfying,
for all (w, z) ∈ K, for all n ≥ 1,

|w(n)− na| ≤ C(K) log(n+ 1)

|z(n)| ≤ C(K)

n

|z(n)− an| ≤
C(K) log(n+ 1)

n2
.

Proof. The two first inequalities already appear in [5] (see Lemma 5.4 and the discussion
after Lemma 5.3). For the third one, we shall need that our assumptions on φ ensure
that on H2, we can write

Φ2(w, z) = µ∞z +
b

w + 1
+

∑
p+q=2
q>0

zp

(w + 1)q
Fp,q(w, z) + δ(w, z),

with b, bp,q ∈ C, |Fp,q(w, z)| ≲ 1, |δ(w, z)| ≲ 1
|w|2+ε and |µ∞| < 1 (see [5, p. 811]).

If we iterate this, then we find

z(n) = µn
∞

z +
n−1∑
k=0

1

µk+1
∞

 b

w(k) + 1
+

∑
p+q=2
q>0

zp(k)

(w(k) + 1)q
Fp,q(w(k), z(k)) + δ(w(k), z(k))


 .

Now the known estimate on w(k) implies that∣∣∣∣ 1

w(k) + 1
− 1

ka+ 1

∣∣∣∣ ≤ C(K) log(k + 1)

k2
.
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Taking into account the estimate on |z(k)| we get for p+ q = 2,∣∣∣∣ zp(k)

(w(k) + 1)q

∣∣∣∣ ≤ C(K)

k2
.

Setting

an = bµn
∞

n−1∑
k=0

1

µk+1
∞ (ka+ 1)

,

we infer the result from the estimate
n−1∑
k=0

1

|µ∞|k+1(k + 1)2
≲

1

|µ∞|nn2
. □

We are now ready to state the theorem regarding the spectrum of Wm,Φ.

Theorem 3.8. Let ε ∈ (0, 1), and assume that φ ∈ D6+ε(e1) is parabolic diagonalizable,
and that φ satisfies the strong Wolff condition. Let m ∈ Hol(B2) be such that

m(w, z) = m(e1) + Λ(w, z),

with m(e1) ̸= 0 and, for any (w, z), (w′, z′) ∈ U ∩ B2,

|Λ(w, z)− Λ(w′, z′)| ≲ ∥(w, z)− e1∥1+δ + ∥(w′, z′)− e1∥1+δ + ∥(w, z)− (w′, z′)∥
1
2
+δ,

with δ > 0 and U a neighbourhood of e1. Then σp(Wm,Φ) = C∗.

Proof. We follow eactly the proof of Theorem 3.5, using now the estimates coming from
Lemma 3.4 which yield

1 + |z(n)|2

|w(n) + 1|2
≲

1

n4
,

|w(n)− w0(n)|
|w(n) + 1| · |w0(n) + 1|

≲
log(n)

n2
,∣∣∣∣ z(n)

w(n) + 1
− z0(n)

w0(n) + 1

∣∣∣∣ ≲ log(n)

n2
.

We conclude the proof thanks to Lemma 1.1 and [5, Theorem 5.1] which asserts that
σp(CΦ) = C∗. □

3.4. Hyperbolic symbols and vanishing weights. We now consider the case where
the weight vanishes at the Denjoy-Wolff point. It turns out that the situation becomes
much more complicated than in the disc and that, even for very simple symbols and
multipliers, the point spectrum can be empty. We provide an example on H2.

Example 3.9. Let Φ(w, z) = (2w, z) and m(w, z) = z
w+1

. Then σp(Wm,Φ) = ∅.

Proof. Suppose that f is a nonzero eigenvector of Wm,Φ corresponding to λ ̸= 0. For a
fixed w with ℜ(w) > 0, z 7→ f(w, z) is analytic in |z|2 < ℜ(w). Therefore we can write
it f(w, z) =

∑
n≥0 an(w)z

n.
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Evaluating mf ◦ Φ = λf at (w, 0), we find f(w, 0) = 0 thus a0(w) = 0. Now the
relation mf ◦ Φ = λf also implies that for all n ≥ 0,

λan+1(w) =
an(2w)

w + 1
,

which in turn yields an(w) = 0 for all n ∈ N and all w ∈ C with ℜ(w) > 0. Therefore
f = 0, a contradiction. □

Observe that the previous weight has a very simple expression on B2: m(w, z) = z.
This is one of the easiest example of a weight vanishing at e1 !

Nevertheless, we will be able to get positive results. We did not look for the most
general statement, and we will only handle the case where m is a polynomial vanishing
at e1 with no linear term in z, and with a nonzero linear term in w − 1.

Theorem 3.10. Let φ ∈ D3(e1) be a hyperbolic map with a Denjoy-Wolff point at e1.
Let m : B2 → C be a polynomial writing

m(w, z) = w − 1 +
∑

p+q≥2

ap,q(w − 1)pzq.

Then, σp(Wm,φ) = C∗.

Proof. We move on the Siegel half-space H2 and show that, for

m(w, z) =
1

w + 1
+

∑
p+q≥2

ap,q
zq

(w + 1)p+q
,

then σp(Wm,Φ) = C∗. First, we focus on the case λ∞ > |µ∞|2. We will use some results
of [5], in particular Lemma 4.2, Lemma 4.4 and Proposition 4.5. Let us review this
material. For M > 0, we set

LM =

{
(w, z) ∈ H2 : |w| > M and

|z|
|w + 1|1/2

<
1

log |w + 1|

}
.

There exist κ ∈ (0, 1) and M > 0 such thatr LM is Φ-stable,r For each compact set K ⊂ H2, for each (w, z) ∈ K,

(7)
|z(n)|2

|w(n) + 1|
≲ κn,

r For each compact set K ⊂ H2, there exists n0 ∈ N such that Φ[n0](K) ⊂ LM ,r For each compact set K ⊂ H2, for all (w, z) ∈ K, |w(n)| ≳ λn
∞, as proved in [5,

Proposition 4.5] or [11, Lemma 2.4]),r There exists E : H2 → H holomorphic such that on LM ,

E ◦ Φ = λ∞E and |E(w, z)− w| ≲ |z|2 + |w + 1|1/2.
That E maps H2 into H is not written explicitly in [5], but this follows from the
definition of E as the limit of w(n)/λn

∞.
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We set m1 = mE, and first show that σp(Wm1,Φ) = C∗. Arguing as in the proof of
Theorem 3.2, it is enough to prove that

∑
|m1(w(n), z(n))− 1| converges uniformly on

each compact set K ⊂ H2. We may even assume that K ⊂ LM . We write

|m1(w(n), z(n))− 1| ≤
∣∣∣∣E(w(n), z(n))

w(n) + 1
− 1

∣∣∣∣+ ∑
p+q≥2

|ap,q|
∣∣∣∣E(w(n), z(n))z(n)q

(w(n) + 1)p+q

∣∣∣∣ .
On the one hand, using (7),∣∣∣∣E(w(n), z(n))z(n)q

(w(n) + 1)p+q

∣∣∣∣ ≲ κnq

|w(n) + 1|p+ q
2
−1

.

For p+ q ≥ 2, we deduce p+ q
2
− 1 ≥ 0 and this gives rise to a convergent series. On

the other hand,∣∣∣∣E(w(n), z(n))

w(n) + 1
− 1

∣∣∣∣ ≲ ∣∣∣∣E(w(n), z(n))− w(n)

w(n) + 1

∣∣∣∣+ 1

λn
∞

≲

(
|z2(n)|+ |w(n) + 1|1/2

|w(n) + 1|
+

1

λn
∞

)
≲

(
κ2n +

1

λ
n/2
∞

)
and we also obtain uniform convergence of the induced series.

Finally, we show that σp(WE−1,Φ)∩C∗ ̸= ∅. But as in the one-dimensional case, it is
easy to check that f = exp(µ log2E) is an eigenvector of WE−1,Φ for µ = −1/2 log(λ∞).

We turn to the case |µ∞|2 = λ∞, which is simpler (since it implies that γ∞ = 0).
From [11], in particular Proposition 2.1 and Lemma 2.4, we know thatr There exists E : H2 → H such that

E ◦ Φ = λ∞E, |E(w, z)− w| ≲ |w|1/2 for all w ∈ H2.r For all compact sets K ⊂ H2, for all (w, z) ∈ K,

|z(n)| ≲ |µ∞|n = λn/2
∞ and |w(n)| ≳ λn

∞.

This comes from the fact that w(n)/λn
∞ and z(n)/µn

∞ converge uniformly on com-
pact subsets of H2 to a holomorphic function and that E, which is the limit of
w(n)/λn

∞, does not vanish.
Hence, if m1 = mE, we obtain

|m1(w(n), z(n))− 1| ≤
∣∣∣∣E(w(n), z(n))

w(n) + 1
− 1

∣∣∣∣+ ∑
p+q≥2

|ap,q|
∣∣∣∣E(w(n), z(n))z(n)q

(w(n) + 1)p+q

∣∣∣∣
≲

1

λ
n/2
∞

+
1

λ
n(p−1+q/2)
∞

,

and we conclude as above. □
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Open question. What happens if the symbol φ is parabolic and the weight m does
vanish at the Denjoy-Wolff point ?
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