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Abstract

This study aims to link critical Reynolds numbers associated with either steady-
state or temporal bifurcations to fluid flow regimes described by macroscopic laws
(Darcy, Forchheimer) in a periodic 3D Kelvin foam, using direct numerical sim-
ulations. We first identify the permeability and inertial coefficient of the Darcy’s
law and the Forchheimer’s one. We explicit the different flow regimes that are
accounted for in the Forchheimer’s framework (Darcian, weak inertia and strong
inertia regimes, respectively). We present an original systematic way to determine
the critical Reynolds number associated with both regime transitions. We calcu-
late them over a wide range of porosities and present two power-law correlations
that locate these regime transitions for engineering purposes.
We have performed pore-scale resolved calculations for various porosities with the
Asymptotic Numerical Method (ANM) to find steady-state bifurcations, if any,
along with a Linear Stability Analysis (LSA) to find temporal (Hopf) bifurcations
from steady-state base flows. All the computed bifurcations occur at Reynolds
numbers in the vicinity of the transition from weak to strong inertia regimes,
where a change of behavior takes place. On the other hand, no bifurcation has
been found in the transition between Darcian and weak inertia regimes.

Keywords: Incompressible Navier-Stokes equations, Darcy’s law, Forchheimer’s law,
Asymptotic Numerical Method, Linear Stability Analysis, Steady-state and Hopf
bifurcations
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1 Introduction

Predicting flow structures in porous media is a key task in several environmental and
industrial applications (hydro-geology, geothermal energy, chemical engineering, etc.,
to quote a few). This rich field has been widely studied for the last two centuries. The
pioneering approach is due to Darcy [1], who identified a macroscopic law for creep-
ing flows in a packed-sand beds. Specific macroscopic properties associated with the
porous media were at that time only determined from experiments. It has been veri-
fied countless times and it linearly relates the macroscopic gradient of the fluid phase
average pressure ∂ < pf > /∂x (Pa.m−1) to the filtration (or Darcian, superficial)
velocity u (m.s−1), as follows:

−∂ < p >f

∂x
= µK−1

D u, (1)

with µ the dynamic viscosity of the fluid (Pa.s) and KD the permeability (m2) of the
porous media.

Also from experimental observations, Forchheimer ([2]) extended the Darcy’s law
to accommodate a wider range of velocities by adding a quadratic term into Eq. 1,
which accounts for the fluid-flow kinetic energy. So, the Forchheimer’s law reads:

−∂ < p >f

∂x
= au+ bum, (2)

where a is a constant related to the first order polynomial in u, b is the inertia coeffi-
cient, that depends on the geometry of the porous media (e.g., strut shape, tortuosity,
etc.), and the power coefficient m is close to 2. We have written eq. 2 in a general way
to describe the different methods used for the identification of macroscopic parameters
(a,b) that enter the law. They are related to the way one determines a and b by fit-
ting experimental or from computations at pore-scale data-points. The uniqueness of
the solution is not guaranteed and strongly depends on the working range of Reynolds
numbers ([3]).
There are three main ways to determine (a,b). The first one is to identify a from the
permeability defined from the Darcy’s equation, eq. 1. In a second step, one looks for
b, keeping a fixed ([4, 5]). This method is mainly used with numerical simulations, as
it’s very difficult to obtain accurate experimental data in the Darcian regime ([5])for
such media. A second method determines b first as one intends to fit the high inertia
regime (high Reynolds numbers). Then, a is determined with b fixed. Finally, the third,
mostly used, method is to determine (a,b) altogether, by fitting directly the curve of
the pressure drop as a function of the filtration velocity. The differences between those
methods can be found in [6], which shows a difference of 20-97% for the permeabil-
ity, and up to 6% for the inertia coefficient. In other words, this method while often
used for engineering applications leads to coefficient values valid only for the range
of identification and may leads to significant errors in the prediction of pressure drop
outside of this range (e.g. for creeping flow conditions that are often extrapolated in
industrial situations)
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However, as the macroscopic flow law strongly depends on the flow regime, there is
a need to correctly characterize the validity domain of the previous macroscopic laws,
together with transition regions between them. Three zones are usually identified in
the related literature [7, 8]. The first one is called the Darcian zone, where viscous
effect are dominant with respect to inertia terms, and corresponds at the pore scale to
a Stokes flow. In this region, the Darcy’s law is valid and accurate and predicts that
the filtration velocity linearly depends on the macroscopic pressure drop.
The third zone corresponds to the range of high Reynolds numbers, where turbulence
occurs, characterized by unsteady and chaotic flows. In this zone, non-linear effects
are dominant.
The second zone is the transition zone in between the two previous ones. The inertia
effects are of the same order of magnitude than the viscous ones. It is well established
[9, 10] that we can divide this zone in two secondary sub-zones. The first one defines the
limit from Darcy to what we call the weak inertia regime. In this sub-zone, the higher
the filtration velocity, the greater the pressure drop deviates from the Darcy law (eq.
1). There is therefore a transition between the Darcy zone and the weak inertia one.
Moreover, as the Reynolds number increases, the non-linear effects become dominant,
while the flow remains laminar at the pore scale. We call this zone the strong inertia
regime, which is different from turbulent flows. There is also a transition from weak
inertia to strong inertia regimes or zones, to be defined. All those transitions may be
related to the Reynolds number (Re = ρuL

µ ), which obviously depends on the choice
of the reference length-scale L. Note that the Forchheimer equation models at the
macroscopic scale all of those zones with a reasonable accuracy.

Aside the two famous macroscopic laws (Darcy and Forchheimer equations), some
other works have been devoted to recover macroscopic laws from theoretical develop-
ments. Different techniques were used, e.g., from dimensional analysis [11], capillary
models [12], averaging methods [13], asymptotic expansions [14], volume averaging
[15], etc. Those developments were correlated to the need to understand the physical
meaning of the above macroscopic laws.
However, the origin of the deviation from Darcy’s law is not yet completely under-
stood. Indeed, it was first attributed to turbulence ([8], p.62), even for low Reynolds
numbers (of values ranging from 1 to 10 in that reference). However, as the flow
exhibits non-linear effects without turbulence at even lower Reynolds numbers, other
explanations should be advanced. Giorgi ([14]) suggested that it could originate from
the inertial microscopic forces and lead to a dependence of the inertia coefficient to
the filtration velocity of the Forchheimer’s law.

The increase of computational power enables nowadays to compute the Navier-
Stokes equations at pore scale in realistic 3D geometries. Indeed, they quantitatively
describe the fluid flow behavior for all Reynolds numbers, provided one assigns suitable
spatial resolution to the considered hydrodynamic regime. Moreover, CFD computa-
tions at pore scale give access to a large amount of information, such as streamlines,
fluid accelerations, flow variation around the mean one, drag forces, etc. So, by upscal-
ing the computed flow fields, one can identify the macroscopic parameters.
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Various numerical methods have been used: Finite Element Method ([16]), Lattice
Boltzmann Method [17, 18], along with commercial softwares ([4, 19]), etc. The main
idea is to find laws describing the dependency of the macroscopic properties of the
porous media to intrinsic geometric parameters (such as porosity, tortuosity, etc.). We
can cite the famous Ergun’s law ([20], which links the pressure drop to the porosity
and the grain size. This work leads to many variations (experimental and numerical
ones) depending of the corresponding field (a review can be found in [16], table 2).
Moreover this formulation developed for packed bed of spheres has been applied to
many other media and it has been shown that the macroscopic flow laws depends also
on other geometric quantities.

The bridge between computations at the pore scale and macroscopic laws is the
existence of elementary representative volume from some periodic geometry that could
be found in the porous media. Among idealized elementary representative volumes is
the Kelvin cell, for which a comprehensive survey of macroscopic flow laws is presented
in [21]. Among all the pressure drop studies and correlations presented in this review
paper, critical remarks are summarized as the follows:

� The permeability and inertia coefficients are very sensitive to the porosity range
(mainly low-porosity range) and are strictly strut shape dependent;

� Separate determination of flow law characteristics (KD and CFor in viscous and
inertia regimes) is needed. Extraction of permeability from second-order polynomial
pressure drop data would lead to wrong values of Darcian permeability in the viscous
regime;

� Values of Ergun’s parameters vary clearly with porosity and strut shape and do not
possess constant numerical values;

� Common definition of characteristic length scale (and associated measurements) is
missing to reduce the dispersion in friction factor data.

Thermal instabilities in foams are first studied at the macroscopic level, using
Darcy’s laws for the flow (see for example [22–24]). Those studies aim to examine the
convective heat transfer in a homogeneous porous duct of rectangular cross section.
They link the stability to the Rayleigh number, and find for those configurations some
Hopf bifurcations. Another classical approach, also at macroscopic level, is to study
the stability of the flow overlaying a porous layer, also modeled at the macroscopic
level (see for e.g. [25–27]). They are interested in the interaction between the flow and
the porous layer, in term of production or dissipation of kinetic energy, linking it to
instabilities.
However, the study of fluid-flow instabilities at pore level in 3D foam is a new topic.
To our knowledge, only one paper reported 2D bifurcations into periodic ordered and
disordered non-deformable porous structures, composed of squares or circles ([28]). For
each porous medium, a systematic study of increasing mass-flow rate was performed
for unsteady Navier-Stokes equations, giving the critical Reynolds numbers of the
Hopf bifurcations. Instabilities of 2D fluidic pinball has also been studies [29]. We
can note that 3D flow and/or instabilities have no reason to be identical to 2D ones.
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For example, critical Reynolds number of the Hopf bifurcation for the flow over a 2D
circular cylinder arise at about Rec=43, for the 3D cylinder Rec=188, and for the 3D
sphere, Rec=277. Therefore, critical Reynolds number of the same shape family leads
to very different values in 2D and 3D. In the present work we are interested in intrinsic
3D geometries, presenting their own complexities.

So, to address some of the above remarks, the present work aims to compute the
incompressible Navier-Stokes equations at pore level in a Kelvin’s like foam to provide
reference values for the identification of macroscopic laws. Moreover, we also have
computed the instabilities that take place and identified critical Reynolds numbers at
which they occur. Indeed, we have computed both steady-state and Hopf bifurcations,
depending on the fluid-flow regime. The outcome of this work is to relate the computed
instabilities to the transitions in macroscopic flow regime predicted by macroscopic
laws or correlations.

2 Numerical methods

We are interested in the study of real foams, however, they are too complex as we can
not control individually each parameters (e.g., strut shape, pore elongation, different
local porosities, etc). Moreover, the individual manufacturing process of each producer
(even each batch) lead to specific relations between the geometrical parameters of
the commercially available samples. Therefore, the Kelvin foam structure, a widely
recognized idealized structure of real foams, has been chosen. Its symmetries enable
to restrict the computational domain to the periodic pattern and thus strongly reduce
computational cost. The chosen strut shape is triangular, with various cross-section
to change the porosity. The present study is deliberately focused on the high porosity
range (68% < ε < 97%), which is of industrial application relevance.

At pore scale, we consider an incompressible fluid-flow in laminar regime, which is
governed by the Incompressible Navier-Stokes equations:

∂v

∂t
+ (v · ∇)v = −∇p+

1

Re
∇2v,

∇ · v = 0,
(3)

with v the velocity vector at the x position, p is the pressure, Re is the Reynolds
number based on the relevant length-scale L (Re = ρUL/µ) and t is time.

Periodical boundary conditions are imposed along the streamwise direction (Z
direction), meanwhile symmetry conditions are applied along the span-wise horizontal
directions (X and Y directions). The periodic condition is implemented by chang-
ing the connectivity of the elements While the symmetry conditions are obtained
by cancelling the transverse gradient on the appropriate surfaces As we consider the
streamwise periodicity of the flow, the fluid flow is driven by a macroscopic body force
along the Z direction.
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The governing equations are discretized in space by the Galerkin Finite Element
Method [30, 31], with tri-quadratic Lagrange polynomial approximations for the veloc-
ity and a linear one for the pressure to satisfy the Ladyzhenskaya–Babuška–Brezzi
(LBB) condition.
Three complementary algorithms have been used in the present work:

� a steady-state continuation algorithm, based on the Asymptotic Numerical Method
(ANM, [32, 33]) to compute the branches of steady-state solutions;

� a Linear Stability Analysis algorithm to compute the generalized eigenvalue problem
associated with the linear stability of steady-state solutions ([34, 35]);

� a time integration algorithm of the Incompressible Navier-Stokes equations, based
on an unconditionally stable projection method ([36]) to compute unsteady fluid
flows.

When looking for a steady solution, when it exists, we have used a penalized formu-
lation of the governing equations which enables direct access to the solution. However,
at high Reynolds numbers this process leads to solve a highly non-linear problem.
Therefore, one uses the ANM to compute this non-linear solution with a continuation
algorithm([37]). Moreover this continuation algorithm computes the various branches
of steady-state solutions if present, i.e. when it exists steady-state bifurcations. The
ANM is based on the combination of a perturbation method and a continuation one.
The perturbation method introduces high-order Taylor series representation of the
unknowns along with the continuation parameter. So, it transforms a highly non-linear
and implicit parametric problem into a series of linear ones. As a continuation algo-
rithm, it is based on the implicit function theorem that enables to extrapolate a regular
(continuous and derivable) initial solution to its vicinity along the loading parame-
ter for a regular solution. It is therefore a high-order predictor/corrector algorithm in
which the correction stage is performed with a Newton-Raphson algorithm, if needed.

To overcome the very poor conditioning of the penalized formulation, the resulting
algebraic systems are solved with the direct parallel MUMPS (LU parallel) solver
([38, 39]). This formulation can significantly reduce the computational cost of steady-
state problems, compared to any time-marching algorithm. On the other hand, this
method is costly in terms of RAM, especially for 3D computations.

The implementation of the steady-state solver with the ANM continuation
algorithm is performed into the massively parallel PETSc framework library ([40–42]).

The ANM algorithm enables to compute all steady-state solutions (stable and
unstable ones), but also to detect and compute steady-state bifurcations, if any. There-
fore it has to be complemented by a Linear Stability Analysis (LSA) in order to find
out other bifuraction types, such as Hopf bifurcations.

In the present work, the LSA of steady-state solutions relies on the normal mode
analysis. This method consists in the linearization of the Navier-Stokes equations by
applying a perturbation of exponential form in time. The solution can this way be
decomposed into normal modes. The stability analysis of the steady-state solution
is achieved by solving a generalized eigenvalue problem owing to the Finite Element
discretization of the dynamical terms (the mass matrix). We apply this method to
each steady-state solution computed by the ANM. The implementation of this linear
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analysis aglorithm is performed with the SLEPc library ([43]), which relies on the
PETSc one.

For the unsteady calculations, the use of a projection algorithm leads to a
”segregated” approach, which consists in successively compute velocity-pressure sub-
problems. This choice has two main consequences from a numerical and computational
point of view. The first consequence is that the size of each sub-system is reduced, and
more importantly that the conditioning of each algebraic sub-system is significantly
improved compared to the original global problem. This allows us to efficiently solve
these systems with iterative methods (of preconditioned Krylov subspace type), and
this on massively parallel architectures. Regarding the solution of the incompressible
Navier-Stokes equations, we have implemented the inconditionnaly stable algorithm of
Guermond-Shen ([36]). The time integration is performed with a first order Backward
Euler scheme with appropriate time steps.

3 Results and discussion

The quality of the numerical solution depends strongly on the quality of the mesh, spe-
cially for the presented numerical tools. Indeed, the ANM relies on high order power
series in a recursive way. The numerical errors could then adds up in a dramatic way.
We then want hexahedral meshes as it’s the one that offers accurate solutions com-
pared to others (tetrahedral, pyramids, ...), provided they are not too much distorted
(invertible geometric transformation from parametric to actual elements). However,
the mesh should correctly describe the geometry (negligible geometric discretization
errors). Note this structure is an idealized Kelvin Cell (see Fig. 1) as it is composed
of straight struts of nearly equilateral triangle cross-section (often named Kelvin Like
Cell) while the original Kelvin Cell is composed of sligthly curved struts as it is the
dual of stacked interpenetrating spheres. Gyroid surfaces are also used to create Kelvin
cell structure.

(a) A Kelvin cell.
(b) Exploded view of the same cell.

Fig. 1: Solid phase of a Kelvin cell with triangular struts (porosity ε = 68.3%).
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There are many ways to create these geometric structures. The basic idea is
to start with a truncated octahedron. Then a first option is to create strut cross
section centered along the edge of the face and extrude them; this method is simple,
fast as there is many symmetry planes, allow to parametrically create various strut
shape and cross section and associated unstructured meshes [44]. On the other hand,
the subdivision of the poral space (usually obtained via boolean subtraction of the
assembled struts from a bounding cube) in hexahedral patches if needed is tedious
and complicated. We thus choose to construct directly the poral space.
The domain was obtained by extruding (outward, normal) several faces of the trun-
cated octahedron and taking advantage of the symmetries. The resulting structure
is the poral space of a triangular strut Kelvin cell formed by the empty spaces left
by the extrusion process [45]. This space is then easily subdivided in hexahedral
shapes that are paved with structured hex meshes. The resulting mesh is isotropic
and periodic with only high-quality hexahedral elements, as presented Fig. 2.
This conformal mesh possesses a complicated periodicity, consisting in one cell plus
two half-cells in two directions, and one in the last one. It’s however periodic in all
the directions. We can generate different porosities by changing the extrude length
(which correspond to the strut cross section edge length), which also change the size
of the Kelvin cell. The inner volume of the cell (the original truncated octahedron)
stay the same, but the distance between struts centerline change and thus also the
size of the bounding cuboid enclosing the Kelvin cell.

This domain discretization quality is of primary importance for numerical preci-
sion at higher Reynolds numbers, as the inertia term comes into play.
A previous attempt has been made to use a regular structured grid generated by a
marching cube algorithm applied to the Kelvin cell. In this case, the unstructured mesh
is perfect in the numerical way (small cubes), but it is aligned with the Cartesian coor-
dinate system and does not follow correctly the geometry, creating a staircase effect
on the struts-fluid interfaces. Refining the mesh creates different porous media (the
geometrical discretisation errors change with the mesh size), with different properties
(mostly porosity, specific surface area, and the interface roughness that is artificially
added). Considering these bias we prefer a initially more complicated but far more
efficient mesh creation procedure to ensure that mesh convergence studies were carried
out on the exact same geometry. Note : The dependency of the permeability ( D2

bc),
inertia coefficient ( D−1

bc ) as well as the geometrical parameters of the Kelvin cell with
the size of the Kelvin cell (here the dimension of the bounding cube - Dbc -) is well
known and could be removed from all further analysis [46].
Figure 3 depict the results of a pore scale simulation at ReDh = 183.7, using the
hydraulic diameter Dh as the length scale (see below). We can observe the complicated
flow path going around the struts,with the streamlines highlighting some recirculation
patterns. That dynamic is complex, and is difficult to extract simple -scalar- indicators
to correlate to the shape of the struts.
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Fig. 2: Left-half computational fluid domain, right-half solid-fluid interface. Porosity:
ε = 92.5%, mesh composed of 290’000 hexahedral elements.

3.1 Coefficient identification for macroscopic laws

Identifying flow properties in porous media is critical for distinguishing regime transi-
tions, if any. As highlighted in the introduction, there are several methods to identify
them. We have chosen the one that makes the best use of the our numerical tools. We
have chosen the following form of the Forchheimer’s equation:

−∆p

L
= µK−1

D u+ βρu2, (4)

with β the inertial coefficient (m−1) and ρ is the fluid density (Kg.m−3). The identi-
fication method we have used is as follows. First, we use the computed steady-state
solutions in the range of very small Reynolds numbers (Re ∈ [10−5, 1]) to identify the
Darcian permeability KD from eq. 4 in which we drop the inertial term (see Figure 4a
for the case of porosity ε = 0.68). There are at least seven computations in this range
that enable us to perform a highly accurate identification of the KD coefficient (regres-
sion coefficient: 0.9999534). By doing so, we take advantage of the FE method that
is particularly efficient for elliptic problems. In a second step, we take the deviation
from the Darcy’s law as follows:

(−∆p/L)/u−KD u.
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Fig. 3: Computed results at ReDh = 183.7 for porosity ε = 86.4%. Ribbons (stream-
lines of the flow) and velocity vectors (both colorized by velocity magnitude).

This quantity is a linear function of u2, according to eq. 4. We plot this quantity and
perform the linear fit with results from higher values in velocity. From this fit, we can
group the pair (u, ∂ < p > /∂x) until the deviation to the linear fit does influence
the regression coefficient. We have shown the case of porosity ε = 0.68 in Figure 4b.
We have at least 50 continuation points in this range and get regression coefficient of
0.9999. Finally, we extract the inertia coefficient β, which is the slope of this linear fit.

Regarding the case of open-cell foams as the one considered in this work, one
has to select one among the various characteristic length scales Lc (m), to build up
dimensionless quantities, such as:

� The Reynlods number:

Re =
ρuLc

µ
. (5)

� The Darcy friction coefficient:

fD =
∆P

Lc

2Lc

ρu2
. (6)

There is no consensus in the literature for the relevant choice of Lc. The hydraulic
diameter, a 3D extension to the cylinder diameter historically used in fluid studies,
defined as Dh = 4Vf/Sp, with Vf the volume of the fluid phase (m3, called the total
wetted volume), and Sp the total wetted surface area (m2) are commonly used.

Other reference quantities are also found in the literature, as the strut length Ls,
the periodic length of one cell foam Lp,

√
KD only for Darcian flows, or βKD for

10



Forchheimer’s ones, etc (e.g. [47, 48]), reported in table 1. The first three (Dh, Lp,
Ls) are purely geometrical defined quantities. Dh and Lp are macroscopic quantities
whereas Ls is a 10 times smaller quantity than the two previous ones. Finally the
fourth one,

√
KD combines geometrical quantity (porosity, ...) and macroscopic inte-

gration of the pressure drop over the cell.

Table 1: Permeabilities, inertia coefficients with length
scales for a Kelvin cell of various porosities ε.

Macroscopic properties Length scales

Porosity KD β Dh Lp Ls
√
KD

(%) (m2) (m−1) (m) (m) (m) (m)

97.6 0.1190 0.1441 5.17 2.54 0.1 0.3444
92.5 0.0838 0.5989 3.18 2.77 0.2 0.2895
86.4 0.0646 0.9974 2.52 3.00 0.3 0.2542
80.1 0.0519 1.3677 2.19 3.23 0.4 0.2278
68.3 0.0353 2.2202 1.86 3.69 0.6 0.1878

However, it’s possible to compare the permeability obtained from previous work
with comparable Kelvin cells, since it varies proportionally to the square of the cell
size (i.e., KD ∝ dcell

2). Previous results were obtained with different numerical tools
such as Starccm+ (commercial software) and a in-house code using a kinetic method,
close to Lattice Boltzmann ([18]). The values computed in the present work (Kelvin
cell with triangular struts, numerical model described in §2) are reported in Table 1
and also reported in Figure 5. There is a very good agreement between all methods,
whatever being the strut shape.

3.2 Flow regime transitions

Using the dimensionless pressure drop in the form of friction coefficient as a function of
the Reynolds number leads to the Moody’s diagram. It’s the usual way to qualitatively
identify transition regimes. Using Fig. 8, we recover three regimes: i) the Darcian one
in the linear part with the minus one slope; ii) a first transition departing from the
previous linear zone and corresponding to the weak inertia zone; iii) the strong inertia
zone. The curves are ordered from top to bottom for increasing porosity (68.3% < ε <
97.6%). Indeed, at a given Reynolds number, the friction coefficient increases as the
porosity decreases (as it is proportional to the specific surface area).

When increasing the Reynolds number above the Darcian region (of minus one
slope in Fig. 8), the departure from the Darcy’s law grows as Re increases. So, one
computes the distance to the Darcy’s law and defines a user defined threshold to
identify the critical Reynolds number at which the flow gets out from the Darcian
regime. The pressure-drop relationship to the filtration velocity is nearly linear in
this zone, and changing this threshold only shifts the critical Reynolds number. For
example, taking 1% over 2.5% changes the critical Reynolds of about 25%. In this
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work, we have chosen this threshold to be at 2.5%. Fitting the values reported in Table
2, one finds that the Reynolds number evolves as a function of the compacity (1-ε)
according to the power law:

ReDh = 13.35(1− ε)0.456. (7)

Moving to the transition between weak and strong inertia regions, another method
has been used. We represent the flow as the deviation to Darcy’s law as a function
of u2 (see Fig. 9). This curve has the weak and strong zones. For simplicity, we can
model their respective evolution by a polynomial, for each zone. We found that there
is a unique intersection point of those polynomials, representing the point where the
transition occurs. With this method, we do not need to define a threshold. The critical
Reynolds number related to that transition follow another power law, as follows:

ReDh = 2154.4(1− ε)−0.823. (8)

We have compared the values of transitional critical Reynolds number based on
different length scales, in Table 2 and 3, summarised in Figure 6. Obviously, the slope’s
curves depend of the variation of the considered reference length scale. The zone
defining the weak inertia flow zone is always of two orders of magnitude in Reynolds
number, but is shifted from 0.01 for the strut size considered as the length scale, to 10
for the hydraulic diameter. The shift is so huge that the critical Reynolds transition
from weak to strong inertia based on the strut size is at the same order of magnitude
of the end of the Darcian regime based on the periodic length.

We can make a mechanical analysis to chose a particular length scale as the char-
acteristic one. Two factors play a high role in modifying the pressure drop: the change
of cross section, and the change of direction due to the path taken by the fluid in the
porous media. The first one is related to the divergence free velocity field, changing
the flow velocity between each section that the fluid cross. The second one is related to
the tortuosity of the porous media. Thus, the friction length is related to both param-
eter. From all the possible length scales cited above, the hydraulic diameter could be
seen as a friction length, and therefore could be more accurate to express the changes
at which the macroscopic regimes occur. We use from now on the hydraulic diameter
as the characteristic length scale.

Table 2: Reynolds number of the right bound of the
Darcian validity domain, based on several length scales.

Rec (Darcy) based on

porosity (%) Compacity (%) Dh Lp Ls
√
KD

97.6 2.4 8.59 4.21 0.17 0.57
92.5 7.5 5.61 4.88 0.35 0.51
86.4 13.6 4.22 5.02 0.50 0.43
80.1 19.9 3.45 5.10 0.63 0.36
68.3 31.7 2.61 5.19 0.84 0.26
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Table 3: Critical Reynolds number of the transition from
weak to strong inertia regimes, based on several length
scales.

Rec (strong inertia) based on

porosity (%) Compacity (%) Dh Lp Ls
√
KD

97.6 2.4 1099.2 539.3 21.2 73.2
92.5 7.5 467.0 406.2 29.3 42.4
86.4 13.6 228.8 272.2 27.2 23.1
80.1 19.9 184.4 272.1 33.7 19.2
68.3 31.7 135.4 269.1 43.7 13.7

3.3 Pore-scale analysis: fluid flow bifurcations

Using the numerical tools presented in Section 2, two types of bifurcations have been
encountered while spanning the fluid-flow rate in the range of ReDh ∈ [0 − 2500].
The first one is the Hopf bifurcation (or dynamic one), and the second one is the
steady-state bifurcation (or static one).

We have performed a spatial convergence study (see Table 4) to check the mesh
sensitivity on the critical Reynolds number associated with the first encountered bifur-
cation. We have used a smaller (quarter) representative domain, which enables to
get a finer mesh. One effectively gets a convergence to the same critical Reynolds as
the mesh gets finer. Applying the LSA to all steady-state solutions computed by the
ANM, we find the critical Reynolds numbers associated with the first Hopf bifurca-
tions, reported in Table 5. A steady-state bifurcation study has been done for various
porosities and is summarized in Table 6 and Figure 7. The higher the porosity the
higher is the Reynolds number for a given pressure drop. For such high porosities
the first encountered bifurcation is a Hopf one. This means that the steady-state flow
looses at that point its stability towards a periodical limit cycle, telling us that iner-
tia changes the dynamics of the system. On the other hand, for low porosity cases,
the Reynolds number is much lower for the same given pressure drop and the first
encountered bifurcation is a steady-state one, whose nature is reported in table 6.

The Reynolds numbers associated with such steady-state bifurcations evolve as a
function of the porosity according to the following power law:

ReDh = 4778.4(1− ε)−1.03 (9)

Two main points are noteworthy. The first one is that in the range of spanned
flow rates we found two Hopf bifurcations for the Kelvin foam at porosity 86.4%. It’s
not uncommon, but we only have this behavior for this porosity. The second remark
is that in the range of spanned flow rates we didn’t find any Hopf bifurcation for
the porosity of 80.1%. In this case, the main branch along the control parameter’s
path computed by the ANM is unstable. We were able to take the first branch at the
steady-state bifurcation point, which is a pitchfork, and take the stable branch. But
this bifurcation act like a strong attractor, making it difficult to explore this branch,
as this would need further algorithmic developments.
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Table 4: Spatial convergence study for the critical Reynolds
number Rec (based on the hydraulic diameter) associated
with the first Hopf bifurcation. h is the mean edge size of all
the elements of the domain.

porosity = 97.6% mesh #1 mesh #2 mesh #3 mesh #4

mean h 0.0601 0.0451 0.0361 0.0285
Number of dof 262 466 611 750 1 182 650 2 382 666
Rec Hopf 1376 1390 1399 1410
Relative error 2.41% 1.38% 0.76% -

Moreover, from a more practical point of view, the ANM algorithm may sometimes
detect some strange bifurcations, specially at low Reynolds number. To check the
physical or spurious origin of the computed bifurcations, the kernel size of the algebraic
system was also computed. Indeed, at a bifurcation point, the matrix associated to
this algebraic problem is rank-deficient. That means that there is different orders in
magnitude between the smallest eigenvalues, some at zero to the numeric precision.
For each bifurcation candidate, we have checked this property, and we are thus aware
of the physical relevance of the steady-state bifurcation. The spurious bifurcations
arise when the truncation order of the power series computed by the ANM is too high
compared to the spatial discretization. In this case, the errors coming from the spatial
discretization grow as the terms of the series expansion get smaller. The bifurcation
detection is perturbed by this artefact.

Table 5: Critical
Reynolds number asso-
ciated with the first
Hopf bifurcation.

porosity (%) Rec Hopf

97.6 710.7
92.5 294.1
86.4 317.5
80.1 -
68.3 154.0

3.4 Discussion: pore-scale instabilities and impact on flow law
at macroscopic-scale

After identifying the transition between the various flow regimes (creeping, weak and
strong intertia), and found the critical Reynolds numbers associated with the encoun-
tered bifurcations (Hopf or steady-state), we can compare their respective position in
a same plot (Fig. 10). The first comment is that all bifurcations are located in the
vicinity of the transition between the weak and strong inertia regimes. They occur
at moderate Reynolds numbers that depend on the foam porosity, (expressed in term
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Table 6: Critical Reynolds associated with the first steady-
state bifurcation, with the bifurcation type

porosity (%) Rec for steady-state bifurcation bifurcation type

97.6 2077.5 transcritical
92.5 485.6 pitchfork
86.4 385.7 pitchfork
80.1 209.7 pitchfork
68.3 137.6 transcritical

of compacity). The Hopf bifurcations are mainly located just before this transition,
whereas the steady-state ones are located just beyond it. Moreover, as the porosity
decreases, the steady-state bifurcations occur much closer to the transition between
the weak and strong inertia regimes.

Both steady-state and Hopf bifurcations have at least one eigenvalue that has a
null real part. The hopf bifurcation has a non null imaginary part, whereas the steady-
state one is null. They both indicate a stability change, where any non-infinitesimal
perturbation results in a change in the fluid-flow pattern or feature. It thus makes
sense to gather them and represent their evolution using the same fitting curve, which
has been shown in Fig. 10 (solid black line). This curve is almost confounded with the
transition from weak to strong inertia regimes, which has been clearly established. The
bifurcations which are fluid-flow instabilities at pore-scale, are then located in the area
where the inertia terms are more significant as compared to the viscous forces. They
happen at a relatively moderate Reynolds number and clearly depend on the porosity.
No more detailed influence of foam geometry (e.g. strut shape) has yet been obtained.

4 Conclusion

The incompressible Navier-Stokes equations have been computed at the pore-scale
in a Kelvin foam in order to get all knowledge necessary to identify a macroscopic
behavior in such periodic geometry. We have identified macroscopic properties such as
the permeability and the inertia term of a complex idealized 3D foams. To do so, we
considered the first order polynomial of the Forchheimer’s equation to be the Darcian
permeability and identified in a subsequent step the inertia term.

We have introduced a systematic way to define flow transitions from three different
regimes (creeping, weak and strong inertia), in which the flow has different macroscopic
behaviors. They all follow a power law equation, whose fitting parameters have been
given.

To our knowledge, it’s the first time that the ANM and LSA method were used
to automatically detect bifurcations in such complex geometrical fluid-flow configura-
tions. We found some steady-state and Hopf bifurcations, for Kelvin cells with various
porosities. We have correlated the critical Reynolds numbers related to those bifurca-
tions to the flow regimes and showed that they appear in the vicinity of the transition
from weak to strong inertia regimes. This strong result validates our methodology in
defining flow transitions, where flow behavior changes. We may also emphasize that
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the used numerical strategies are computationally efficient, as they rely on steady-state
solutions to perform linear stability analyses.

We partially used the field information given by the direct numerical solutions in
such spatially resolved configurations. Some other valuable quantities can be exploited
in a future work, such that the eigenvector field associated with the most unstable
mode given by the LSA, which provides the most dangerous perturbation field along
with its magnitude. It will help to better understand the flow behavior, linking it to
the foam geometry.
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Fig. 4: Identification of the macroscopic flow properties of a Kelvin cell for the porosity
ε = 0.68.
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