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1. INTRODUCTION

In numerous systems, complex behaviors exist that are
characterized not only by sequences of logical events but
also by timing aspects. In order to discuss such aspects
from the perspective of discrete event systems (DESs),
various formalisms have been studied (Brandin and Won-
ham (1994), Berard et al. (2005)) as weighted automata
endowed with a time structure given in terms of transition
weights (Lai et al. (2022)), temporal extensions of Petri
nets (Ramchandani (1973), Merlin (1974), Boyer and Roux
(2008)). One motivation for this research effort is that
timed DESs are interesting to refine analysis and verifica-
tion techniques by improving the information that one can
capture from the execution of a system (Li et al. (2022)).
Domains of application range from cyber physical systems
to logistic, robotics and other industrial systems.

This paper concerns the abstraction of a class of dis-
tributed timed DESs. Our reference model for such sys-
tems is an extension of PNs with time parameters inter-
preted as minimal firing durations associated with transi-
tions. The main contribution of the paper is to prove that
such systems can be represented as a set of modular local
tick automata synchronized with respect to some particu-
lar events. In detail, we define a synchronous composition
of the tick automata and show that this composition is
suitable to represent transition-timed Petri nets with
synchronisation transitions. The proposed composition is
much simpler than other existing timed products like
the product interval automata (D’Souza and Thiagara-
jan (2002)) that is based on parallel composition, the
compositions of interval weighted automata with a single
clock (Komenda et al. (2010)), or the interval synchronous
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product defined for a class of timed automata with time
intervals (Lin et al. (2019)). The advantage of the proposed
approach is that we do not work with explicit intervals
that count the number of ticks, but rather work with
tick automata that can be manipulated as logical (i.e.,
untimed) structures. In particular, the important con-
cept of synchronous product that enables to build more
complex systems (e.g., multi-clock timed automata) out
of smaller ones (e.g., single-clock timed automata) works
well with the tick automata corresponding to automata
with minimal time (as opposed to constant time) that
are used in this paper. In detail, our motivation for this
work is as follows. Synchronous products of automata with
exact transition times modeled by previous approaches
lead to non deterministic weighted automata over semir-
ings where most of fundamental problems (such as equiv-
alence and comparison of behaviors) are undecidable. The
tick automata are certainly not optimal from complexity
viewpoint, but their behaviors are just rational languages
over alphabet of discrete events augmented by the special
tick event corresponding to elapsing of one unit of time.
This class of automata with timing of transitions is stable
by synchronous products. This makes a difference with
automata with exact transition times, where synchronous
product of their tick automata does not work, because it
typically leads to deadlocks due to impossibility to letting
the time pass in order to wait for a correct synchronization
between the components.

The paper is organized as follows. Section 2 is about
the background, where T-time Petri nets as the reference
model for timed DES and automata with minimal time
are recalled. Section 3 introduces the tick automata and
their synchronous product. Section 4 is reserved for the
conclusion and perspectives.
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lead to non deterministic weighted automata over semir-
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∗∗ Université Le Havre Normandie, GREAH, France.

Abstract: This paper is about the representations of distributed timed discrete event systems
(DESs) with synchronisation events and minimal time constraints. A subclass of Timed Petri
nets with specific time semantics is first recalled as a reference model for the considered systems.
Such a model is reformulated according to modular tick automata with minimal times that
behave like logical automata. A synchronous composition of such automata is then defined and
the result of this composition is a new tick automaton that has the same timed language as the
original Petri net, which is not the case for the earlier model of tick automata with constant
(exact) times.

Keywords: timed discrete event systems, distributed discrete event systems, tick automata,
synchronous composition, timed Petri nets.

1. INTRODUCTION

In numerous systems, complex behaviors exist that are
characterized not only by sequences of logical events but
also by timing aspects. In order to discuss such aspects
from the perspective of discrete event systems (DESs),
various formalisms have been studied (Brandin and Won-
ham (1994), Berard et al. (2005)) as weighted automata
endowed with a time structure given in terms of transition
weights (Lai et al. (2022)), temporal extensions of Petri
nets (Ramchandani (1973), Merlin (1974), Boyer and Roux
(2008)). One motivation for this research effort is that
timed DESs are interesting to refine analysis and verifica-
tion techniques by improving the information that one can
capture from the execution of a system (Li et al. (2022)).
Domains of application range from cyber physical systems
to logistic, robotics and other industrial systems.

This paper concerns the abstraction of a class of dis-
tributed timed DESs. Our reference model for such sys-
tems is an extension of PNs with time parameters inter-
preted as minimal firing durations associated with transi-
tions. The main contribution of the paper is to prove that
such systems can be represented as a set of modular local
tick automata synchronized with respect to some particu-
lar events. In detail, we define a synchronous composition
of the tick automata and show that this composition is
suitable to represent transition-timed Petri nets with
synchronisation transitions. The proposed composition is
much simpler than other existing timed products like
the product interval automata (D’Souza and Thiagara-
jan (2002)) that is based on parallel composition, the
compositions of interval weighted automata with a single
clock (Komenda et al. (2010)), or the interval synchronous

⋆ This work was supported by the French National Research Agency
under grant agreement ANR-22-CE10-0002, by RVO 67985840, and
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product defined for a class of timed automata with time
intervals (Lin et al. (2019)). The advantage of the proposed
approach is that we do not work with explicit intervals
that count the number of ticks, but rather work with
tick automata that can be manipulated as logical (i.e.,
untimed) structures. In particular, the important con-
cept of synchronous product that enables to build more
complex systems (e.g., multi-clock timed automata) out
of smaller ones (e.g., single-clock timed automata) works
well with the tick automata corresponding to automata
with minimal time (as opposed to constant time) that
are used in this paper. In detail, our motivation for this
work is as follows. Synchronous products of automata with
exact transition times modeled by previous approaches
lead to non deterministic weighted automata over semir-
ings where most of fundamental problems (such as equiv-
alence and comparison of behaviors) are undecidable. The
tick automata are certainly not optimal from complexity
viewpoint, but their behaviors are just rational languages
over alphabet of discrete events augmented by the special
tick event corresponding to elapsing of one unit of time.
This class of automata with timing of transitions is stable
by synchronous products. This makes a difference with
automata with exact transition times, where synchronous
product of their tick automata does not work, because it
typically leads to deadlocks due to impossibility to letting
the time pass in order to wait for a correct synchronization
between the components.

The paper is organized as follows. Section 2 is about
the background, where T-time Petri nets as the reference
model for timed DES and automata with minimal time
are recalled. Section 3 introduces the tick automata and
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conclusion and perspectives.
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In simple words, an AMT A is a finite automaton 1 en-
dowed with a time structure that associates with each
transition a time parameter interpreted as the minimal
duration required to fire this transition. More precisely, we
say that (x, e, τ, x′) is defined (i.e., (x, e, τ, x′) ∈ ∆) if the
state x′ is reachable from the state x by the occurrence
of event e after an amount of time that equals at least
τ time units (TUs), where τ is count from the previous
event occurrence. In this case, the transition from x to
x′ is said to be an (e, τ)-transition. In other word, we
consider systems with a single clock that is reset once
an event occurs. An AMT is either nondeterministic or
deterministic (in the usual logical sense) depending if there
can be two transitions associated with the same event out
of a given state.

A timed production of length n that begins from the state
xj0 is a sequence of states and pairs formed by events and
their time stamps:

ρ = xj0

(e1,t1)−−−−→ xj1

(e2,t2)−−−−→ xj2 . . . xjn−1

(en,tn)−−−−→ xjn , (2)

where xji ∈ X, ei ∈ E, t0 = 0, ti ∈ R, (xji−1 , ei, τi, xji) ∈
∆, with τi ≤ ti − ti−1, τi being the minimal time from
which ei may occur.

Let us define R(A, x0) as the set of timed productions
starting from state x0 generated by A. The timed string
associated to ρ is w(ρ) = (e1, t1) . . . (en, tn) (w for short
when no confusion holds) and λ denotes the empty string.
The timed language of A, denoted by L(A), is composed
by the time strings associated to the executable produc-
tions in A starting from x0:L(A) = {w(ρ) | ρ ∈ R(A, x0)}.
Two AMTs Ai = (Xii, Ei,∆i, x0i), i = 1, 2 can share
some events in Es = E1 ∩ E2 that synchronize the timed
behaviours of the system. Such automata are referred to
as modular automata.

Example : An example of two modular AMTs A1 =
(X1, E1,∆1, x10) and A2 = (X2, E2,∆2, x20) is presented
in Figure 2 where E1 = {e1, e2, e}, E2 = {e3, e} and
Es = E1 ∩ E2 = {e}, e being the single synchronisation
event.

Fig. 2. Example of two modular AMTs

1 A finite automaton (FA) is a four-tuple A = (X,E,∆, x0), where
X is the set of states, E is the set of events, x0 is the initial state,
∆ ⊆ X × E ×X is the transition relation and x0 is the initial state
(Cassandras and Lafortune (2008)).

3. TICK AUTOMATA

3.1 Tick automata for AMTs

In this section we transform an AMT into a tick automaton
where the time is moving according to an arbitrary number
of time increment of exactly one TU. For the purpose of
abstracting the timing aspects, let us first introduce the
following notations for each xi ∈ X and e ∈ E.

• E(xi) = {e ∈ E | (xi, e, •, •) ∈ ∆} is the set of events
that are activated at xi, i.e., that may occur at xi

after a certain amount of time.
• τmin(xi, e) = min{τ ∈ N | (xi, e, τ, •) ∈ ∆} is the
minimal value of time when e can occur at state
xi and τmax(xi) = max{τmin(xi, e) : e ∈ E(xi)} if
E(xi) ̸= ∅ and τmax(xi) = 0, otherwise. Observe that
τmax(xi) is the time from which any of the events
in E(xi) may occur. But, according to the considered
time semantic, the system may stay for ever at xi and
τmax(xi) is not the maximal sojourn time at xi;

• Y (xi) = {yi,0, ..., yi,τmax(xi)} is the set of extended
states associated to xi. For each extended state yi,j ,
i = 0, ..., τmax(xi), we define an elementary time
interval Ij = [j, j + 1) when j < τmax(xi) and
Iτmax(xi) = [τmax(xi),+∞). Observe that the ex-
tended state yi,j can be written as the pair (xi, Ij);

• Y (xi, e) = {yi,τmin(xi,e), ..., yi,τmax(xi)}, Y (xi, e) ⊆
Y (xi) is the subset of extended states when event e
may occur at xi of the underlying AMT.

Definition: The tick automaton of A = (X,E,∆, xi0) is
defined as a finite state automaton AY = (Y,EY ,∆Y , y0)
where:

• Y =
⋃

xi∈X Y (xi) is the set of extended states where

each state yi,j ∈ Y (xi) is associated to the system
state xi ∈ X and to a timing information j ∈
{0, ..., τmax(xi)}. When j < τmax(xi), yi,j indicates
that the system may stay at xi during the time
interval [j, j + 1). When j = τmax(xi), yi,τmax(xi)

indicates that it may stay at xi during any time
interval [k, k + 1), k ∈ N, k ≥ τmax(xi);

• EY = E ∪ { 1○ } where 1○ is an additional event
associated to the clock and indicating that the time
is moving from one TU;

• ∆Y is the transition relation defined by
(1) (yi,j , 1○, yi,j+1) ∈ ∆Y for yi,j ∈ Y (xi) and j <

τmax(xi). This indicates that a transition from
yi,j to yi,j+1 occurs when the system stays at
state xi during the time interval [j, j + 1). The
transition then simply means that one unit of
time has passed;

(2) (yi,τmax(xi), 1○, yi,τmax(xi)) ∈ ∆Y for xi ∈ X.
This indicates that the self-loop 1○-transition
from yi,τmax(xi) to yi,τmax(xi) occurs at each
tick when the system stays at state xi during
[τmax(xi),+∞);

(3) (yi,j , e, yi′,0) ∈ ∆Y for e ∈ E(xi), yi,j ∈ Y (xi, e),
xi′ ∈ X. This indicates that a transition from
yi,j to yi′,0 occurs when the system switches from
state xi to state xi′ during the time interval
[j, j + 1) if τmin(xi, e) ≤ j < τmax(xi) or during
[τmax(xi, e),+∞).

2. PRELIMINARIES

2.1 Petri nets

Definition: An ordinary Petri net (PN) is a 4-tuple
G = (P,T,F,M0), where P is a finite set of places, T
is a finite set of transitions, F ⊆ (P × T) ∪ (T × P) is a
relation between places and transitions and M is a map
P → N with N the set of integer numbers and M0(p) is
the initial marking of place p ∈ P. □

For transition a ∈ T, •a (resp. a•) denotes the set of its
input (resp. output) places as given by F. When |• a |> 1,
a is called a synchronisation transition and we note Ts
the set of synchronisation transitions of the net. The
marking of a net evolves according to usual firing rules
of transitions:

• A transition a is enabled at M if there exists at least
one token in each of its input places.

• An enabled transition t ∈ T can fire. The firing of a
transforms M into M ′ by removing one token from
each of the input places (p ∈ •a) and adding one
token in each of the output places of a (p ∈ a•).

We say that a word w = a1a2 . . . an ∈ T∗ is a firing
sequence starting from markingM0 if there is a sequence of
markings M1M2 . . .Mn such that transition ai is enabled
at Mi−1 and its firing transforms Mi−1 into Mi. We call
language of the PN the set L ⊂ T∗ of firing sequences
starting from initial marking M0. A PN is said to be safe
(resp. m-bounded) if for all accessible marking each place
contains at most one token (resp. m tokens).

A PN is a bipartite directed graph represented by a
directed graphs with two types of nodes: places in P drawn
as circles and transitions inT drawn as bars. The incidence
matrix given byF is represented by arcs going from a place
to a transition or from a transition to a place. The marking
in place p is drawn as M(p) tokens inside this place.

2.2 T-timed Petri nets with minimal time constraints

One reference model for timed DES is the extension of
PNs with time parameters interpreted as minimal firing
durations associated with transitions. This model meets
the standard definition of transition-timed PNs (T-Timed
PNs) (Ramchandani (1973)) when no earliest firing policy
is considered and firings can be delayed, i.e., a transition
can fire when it has been enabled during a time equal
or larger than its time parameter. In detail, for each
transition a ∈ T its parameter τ(a) is interpreted as the
minimal time that must elapse, starting from the time at
which a is enabled, until this transition can fire. In other
words, one can associate a time interval [τ(a),+∞) to each
transition a that represents the range of times when the
firing of a can occur (from the time at which a is enabled).

Definition: An ordinary T-timed PN with minimal time
constraints is a pair (G, τ), where G = (P,T,F,M0) is an
ordinary PN and τ is a map T → N with τ(a) the minimal
time constraint of transition a ∈ T, i.e., the minimal time
before a can fire. □

The following functioning rules on TPN are adopted:

• for each transition a ∈ T, τ(a) ∈ N (observe that we
can relax this assumption and use real values of time
that are all multiples of a common increment);

• it is assumed that tokens of the initial marking M0

have arrived in the T-timed PN at time instant t =
0;

• in case a place has several output transitions, which
corresponds to a conflict, there exist several semantics
to decide which of the downstream transitions are
to be fired. In this paper we consider all logically
feasible choices, i.e., timing aspects are not taken
into account. This is known as preselection semantics.
There exist other semantics, e.g., race semantics or
open-loop race semantics, where time considerations
are important for choosing transitions are to be fired.

A timed trajectory of length n that begins from the
marking Mj0 is a sequence of markings and pairs formed
by transitions and their firing times:

ρ = Mj0

(a1,t1)−−−−→ Mj1

(a2,t2)−−−−→ . . .
(an,tn)−−−−→ Mjn , (1)

where for i = 1, ...n, Mji are markings, ai ∈ T are
transitions enabled at Mji−1 , and ti−1, ti ∈ R are values
of time that satisfy t0 = 0 and τ(ai) ≤ ti − ti−1.

Example : An example of a safe ordinary T-timed PN
with minimal time constraints G1 is reported in Figure 1.
Observe that a is a synchronisation transition. The min-
imal time constraints are reported near the transitions:
τ(a) = 1, τ(a1) = 2, τ(a2) = 1 and τ(a3) = 3.

Fig. 1. A T-timed PN with minimal time constraints G1.

2.3 Automata with minimal times

The time behaviour of a given T-timed PN with minimal
time constraints can be represented by a set of modular
timed automata and a synchronous product that tracks the
synchronisations and other timing aspects. A particular
class of timed automata is considered for that purpose that
is characterized by a single clock, minimal values of time
and synchronisation events. Such automata are referred to
as automata with minimal times in the following.

Definition: An Automaton with Minimal Times (AMT)
is a four-tuple A = (X,E,∆, x0), where X is a finite set
of states, E is a finite set of events, ∆ ⊆ X × E ×N×X
is a timed transition relation, and x0 is an initial state. □
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In simple words, an AMT A is a finite automaton 1 en-
dowed with a time structure that associates with each
transition a time parameter interpreted as the minimal
duration required to fire this transition. More precisely, we
say that (x, e, τ, x′) is defined (i.e., (x, e, τ, x′) ∈ ∆) if the
state x′ is reachable from the state x by the occurrence
of event e after an amount of time that equals at least
τ time units (TUs), where τ is count from the previous
event occurrence. In this case, the transition from x to
x′ is said to be an (e, τ)-transition. In other word, we
consider systems with a single clock that is reset once
an event occurs. An AMT is either nondeterministic or
deterministic (in the usual logical sense) depending if there
can be two transitions associated with the same event out
of a given state.

A timed production of length n that begins from the state
xj0 is a sequence of states and pairs formed by events and
their time stamps:

ρ = xj0

(e1,t1)−−−−→ xj1

(e2,t2)−−−−→ xj2 . . . xjn−1

(en,tn)−−−−→ xjn , (2)

where xji ∈ X, ei ∈ E, t0 = 0, ti ∈ R, (xji−1 , ei, τi, xji) ∈
∆, with τi ≤ ti − ti−1, τi being the minimal time from
which ei may occur.

Let us define R(A, x0) as the set of timed productions
starting from state x0 generated by A. The timed string
associated to ρ is w(ρ) = (e1, t1) . . . (en, tn) (w for short
when no confusion holds) and λ denotes the empty string.
The timed language of A, denoted by L(A), is composed
by the time strings associated to the executable produc-
tions in A starting from x0:L(A) = {w(ρ) | ρ ∈ R(A, x0)}.
Two AMTs Ai = (Xii, Ei,∆i, x0i), i = 1, 2 can share
some events in Es = E1 ∩ E2 that synchronize the timed
behaviours of the system. Such automata are referred to
as modular automata.

Example : An example of two modular AMTs A1 =
(X1, E1,∆1, x10) and A2 = (X2, E2,∆2, x20) is presented
in Figure 2 where E1 = {e1, e2, e}, E2 = {e3, e} and
Es = E1 ∩ E2 = {e}, e being the single synchronisation
event.

Fig. 2. Example of two modular AMTs

1 A finite automaton (FA) is a four-tuple A = (X,E,∆, x0), where
X is the set of states, E is the set of events, x0 is the initial state,
∆ ⊆ X × E ×X is the transition relation and x0 is the initial state
(Cassandras and Lafortune (2008)).

3. TICK AUTOMATA

3.1 Tick automata for AMTs

In this section we transform an AMT into a tick automaton
where the time is moving according to an arbitrary number
of time increment of exactly one TU. For the purpose of
abstracting the timing aspects, let us first introduce the
following notations for each xi ∈ X and e ∈ E.

• E(xi) = {e ∈ E | (xi, e, •, •) ∈ ∆} is the set of events
that are activated at xi, i.e., that may occur at xi

after a certain amount of time.
• τmin(xi, e) = min{τ ∈ N | (xi, e, τ, •) ∈ ∆} is the
minimal value of time when e can occur at state
xi and τmax(xi) = max{τmin(xi, e) : e ∈ E(xi)} if
E(xi) ̸= ∅ and τmax(xi) = 0, otherwise. Observe that
τmax(xi) is the time from which any of the events
in E(xi) may occur. But, according to the considered
time semantic, the system may stay for ever at xi and
τmax(xi) is not the maximal sojourn time at xi;

• Y (xi) = {yi,0, ..., yi,τmax(xi)} is the set of extended
states associated to xi. For each extended state yi,j ,
i = 0, ..., τmax(xi), we define an elementary time
interval Ij = [j, j + 1) when j < τmax(xi) and
Iτmax(xi) = [τmax(xi),+∞). Observe that the ex-
tended state yi,j can be written as the pair (xi, Ij);

• Y (xi, e) = {yi,τmin(xi,e), ..., yi,τmax(xi)}, Y (xi, e) ⊆
Y (xi) is the subset of extended states when event e
may occur at xi of the underlying AMT.

Definition: The tick automaton of A = (X,E,∆, xi0) is
defined as a finite state automaton AY = (Y,EY ,∆Y , y0)
where:

• Y =
⋃

xi∈X Y (xi) is the set of extended states where

each state yi,j ∈ Y (xi) is associated to the system
state xi ∈ X and to a timing information j ∈
{0, ..., τmax(xi)}. When j < τmax(xi), yi,j indicates
that the system may stay at xi during the time
interval [j, j + 1). When j = τmax(xi), yi,τmax(xi)

indicates that it may stay at xi during any time
interval [k, k + 1), k ∈ N, k ≥ τmax(xi);

• EY = E ∪ { 1○ } where 1○ is an additional event
associated to the clock and indicating that the time
is moving from one TU;

• ∆Y is the transition relation defined by
(1) (yi,j , 1○, yi,j+1) ∈ ∆Y for yi,j ∈ Y (xi) and j <

τmax(xi). This indicates that a transition from
yi,j to yi,j+1 occurs when the system stays at
state xi during the time interval [j, j + 1). The
transition then simply means that one unit of
time has passed;

(2) (yi,τmax(xi), 1○, yi,τmax(xi)) ∈ ∆Y for xi ∈ X.
This indicates that the self-loop 1○-transition
from yi,τmax(xi) to yi,τmax(xi) occurs at each
tick when the system stays at state xi during
[τmax(xi),+∞);

(3) (yi,j , e, yi′,0) ∈ ∆Y for e ∈ E(xi), yi,j ∈ Y (xi, e),
xi′ ∈ X. This indicates that a transition from
yi,j to yi′,0 occurs when the system switches from
state xi to state xi′ during the time interval
[j, j + 1) if τmin(xi, e) ≤ j < τmax(xi) or during
[τmax(xi, e),+∞).
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AY 2 is deterministic); (ii) e /∈ Out(y1) (because e
is not a synchronization event). Consequently, only
the second condition of the synchronous composition
definition is satisfied and their exists a unique state
(y1, y

′
2) ∈ YS such that ((y1, y2), e, (y1, y

′
2)) ∈ ∆S ;

• For e = 1○, (i) there exists a unique state y′1 ∈ Y1 with
(y1, 1○, y′1) ∈ ∆Y 1; (ii) there exists also a unique state
y′2 ∈ Y2 with (y2, 1○, y′2) ∈ ∆Y 2. Consequently, only
the third condition of the synchronous composition
definition is satisfied and their exists a unique state
(y′1, y

′
2) ∈ YS such that ((y1, y2), 1○, (y′1, y

′
2)) ∈ ∆S ;

• For e ∈ Es, (i) there exists a unique state y′1 ∈ Y1

with (y1, e, y
′
1) ∈ ∆Y 1 (because AY 1 is determinis-

tic); (ii) there exists also a unique state y′2 ∈ Y2

with (y2, e, y
′
2) ∈ ∆Y 2 (because AY 2 is determinis-

tic). Consequently, only the third condition of the
synchronous composition definition is satisfied and
their exists a unique state (y′1, y

′
2) ∈ YS such that

((y1, y2), e, (y
′
1, y

′
2)) ∈ ∆S ; □

Now we will show that safe (i.e. 1-bounded) T-time Petri
nets with minimal firing times nets can be represented by
synchronous compositions of AMTs. We will use state ma-
chine covering of safe TPNs, which is a well known result
stating that every safe TPN is behaviorally equivalent to a
composition of its sequential components (state machines).
There are many algorithms for finding the state machine
covering of a safe Petri net in the literature. A polynomial-
time algorithm for finding minimal state machine cover of
a safe Petri net has been proposed in (Karatkevich and
Wisniewski (2020)). Another recent reference on decom-
position of safe Petri nets into state machines components
is (Bouvier et al. (2020)).

Note that state machine components are in fact finite
automata (with current state corresponding to the place
containing its unique marking) and we can endow them
with timing to be AMT by simply taking the same minimal
timing of a transition between two states in AMT as the
one for the transition between the two places in T-time
PN that correspond to these two states in the underlying
AMT.

Proposition 2. Let (G, τ) be a T-timed PN with min-
imal time constraints and let G1, . . . ,GK be the state
machines that form the state machine cover of G. Let
A1 = (X1, E1,∆1, x10),..., AK = (XK , EK ,∆K , xK0) be
K AMTs that correspond to state machines G1, . . . ,GK ,
respectively and let AY,i = (Yi, Ei ∪ { 1○},∆Y i, y0i), i =
1, . . . ,K be their corresponding tick automata.

Then, the synchronous composition of tick automata S =
AY,1 ⊗ ...⊗AY,K encodes all timed productions of (G, τ).

Proof: We first claim that every local tick automaton
AY,i = (Yi, Ei ∪ { 1○},∆Y i, y0i), i = 1, . . . ,K corre-
sponding to the AMT of the state machine Gi encodes
all timed productions of the subnet (Gi, τ). Note that the
timed state machines are sequential timed systems, which
can be viewed as a class of single clock timed automata
with discrete time, hence the underlying AMT Ai and
subsequently its tick automaton AY,i preserve the timed
behavior of the subnet (Gi, τ). This first claim follows

after transformation of the time behavior of state machine
components of the T- Petri net, defined in the common
semantic model for timed systems, timed transition sys-
tems (TTSs), into their corresponding tick automata as
presented in Proposition 1, where every continuous tran-
sition (time elapsing) labeled by ℓ > 1 can be replaced by
the sequence of ℓ > 1 consecutive tick events. Since state
machines are simple (sequential) models, the resulting
TTSs are in fact finite and deterministic (as we do not use
non injective labeling) AMTs. Consequently, Proposition
1 can be applied. Note, finally, that the product of timed
state machines has the same timed behavior as the product
of tick automata AY,i. Since local timed behaviors of tick
automata are the same as the timed behaviours of the
corresponding TTSs and the synchronous product of tick
automata preserves this timed behavior equivalence, we
conclude that the product of the local tick automata is
the same as the product of tick automata corresponding
to TTSs, which is the timed behavior of the whole net.
Notice that the synchronous product of tick automata
corresponding to AMTs preserves their property that at
each state of these tick automata the tick event can fire.
This simply follows from the fact that the tick event acts
as a shared (synchronization) event in the definition of
synchronous product of tick automata.

Example : The synchronous composition of the two tick
automata in Figure 3 is reported in Figure 4. The resulting
structure has 19 extended states and one can notice that
this size does not exceed |Y1| × |Y2| = 30.

Fig. 4. Synchronous composition of AY 1 and AY 2 detailed
in Figure 3.

4. CONCLUSION AND PERSPECTIVES

This paper has shown that a specific subclass of timed
DESs with synchronisation events and minimal time con-
straints can be exactly represented as the synchronous
product of modular tick automata with minimal times.
This modular modeling abstracts the timing aspects and
takes advantages of existing literature about logical au-
tomata.

• y0 = yi0,0, xi0 being the initial state of the system. □

Observe that the event 1○ associated to the clock does not
add nondeterminism in the tick automaton, and the tick
automaton of a deterministic AMT is also a deterministic
automaton. Observe also that the previous definition can
be obviously extended to AMT with non negative real time
parameters as far as this parameters are all multiples of
a common timed increment δt ∈ R. In our setting, the
number of states of AY depends on both the number of
states of A and the time parameters of A and |Y | ≤ |X| ×
max{τmin(xi, e) + 1 : e ∈ E(xi), xi ∈ X}.

Proposition 1. To each timed production ρ of the AMT
A = (X,E,∆, xi0) of the form of equation (2) corresponds
exactly one (logical) production ρY of the tick automaton
AY = (Y,EY ,∆Y , y0).

Proof: The proof is quite similar to the proof proposed in
(Li et al. (2022)) for timed automata with constant times.
In brief, let introduce the general form of a production ρY
in AY that begins from the state yj0,1 :

ρY : yj0,0
1○

−−→ yj0,1 . . .
1○

−−→ yj0,d1︸ ︷︷ ︸
d1

e1−→ yj1,0

1○
−−→ · · · → . . .

en−1−−−→ yjn−1,0
1○

−−→ yjn−1,1

1○
−−→ . . .

1○
−−→ yjn−1,dn︸ ︷︷ ︸

dn

en−→ yjn,0

(3)

where yji,k ∈ Y (xji), ei ∈ E, di ∈ N, (yji−1,ki−1, 1○,
yji−1,ki) ∈ ∆ and (yji−1,di , ei, yji,0) ∈ ∆, ki = 1, ...di,
i = 1, ..., n. Observe, according to the rule 2 in the defini-
tion of the transition relation ∆Y that di can take arbitrary
large values. Then, consider a timed production in A of
the form of equation (2). By defining di = ⌊ti − ti−1⌋,
the production ρY detailed in (3) becomes equivalent to
(2). Note that the language of AY can be defined as
L(AY ) = {w(ρY ) | ρY is of the form of equation (3)
and there exists w = (e1, t1) . . . (en, tn) ∈ L(A) with
di = ⌊ti − ti−1⌋, i = 1, .., n}. In addition, the logical
languages (ignoring the timing aspects) of A and AY are
obviously the same. □

Example : The tick automata of the modular AMTs in
Figure 2 are reported in Figure 3. In detail, the tick au-
tomaton of the top (resp. bottom) of Figure 3 is equivalent
to the AMT on the left (resp. right) of Figure 2. Observe
that an event e may occur at state x1, from y1,1, i.e.,
during time interval [1, 2) or from y1,2, during time interval
[2,+∞), that is to say at any time value at least equal to
1 at x1.

3.2 Synchronous composition of tick automata

In this section we introduce a synchronous composition for
two tick automata that represent modular AMTs We know
already that in a distributed system the only external
events that can be synchronized are the events in set
Es = E1 ∩E2. In addition, there exists one internal event,
generated by the clock, namely the event 1○, that should
also be used for synchronisation. When time is moving

Fig. 3. Example of tick automata for AMTs in Figure 2

ahead in a given timed automaton, it should also move
ahead in all automata that model parts of the system.
The synchronous composition defined below acts as an
automata product for non synchronisation events and as
a parallel composition for events in set Es ∪ { 1○}.

Definition: Let AY 1 = (Y1, E1 ∪ { 1○},∆Y 1, y01) and
AY 2 = (Y2, E2 ∪ { 1○},∆Y 2, y02) be two tick automata.
The synchronous composition of AY 1 by AY 2 is defined
as the tick automaton S = AY 1 ⊗ AY 2 = (YS , E1 ∪ E2 ∪
{ 1○},∆S , (y01, y02)) where YS ⊆ Y1×Y2 and the transition
relation satisfies:

• ((y1, y2), e, (y
′
1, y2)) ∈ ∆S if e ∈ E1 \ Es and

(y1, e, y
′
1) ∈ ∆Y 1;

• ((y1, y2), e, (y1, y
′
2)) ∈ ∆S if e ∈ E2 \ Es and

(y2, e, y
′
2) ∈ ∆Y 2;

• ((y1, y2), e, (y
′
1, y

′
2)) ∈ ∆S if e ∈ Es ∪ { 1○},

(y1, e, y
′
1) ∈ ∆Y 1 and (y2, e, y

′
2) ∈ ∆Y 2. □

Observe that the synchronous composition can be trivially
extended to three or more tick automata. Lemma 1 states
that the synchronous product is conservative with respect
to determinism.

Lemma 1. The synchronous composition of two deter-
ministic tick automata AY 1 = (Y1, E1 ∪ { 1○},∆Y 1, y01)
and AY 2 = (Y2, E2∪{ 1○},∆Y 2, y02) is also as a determin-
istic tick automaton S = (YS , E1∪E2∪{ 1○},∆S , (y01, y02)).

Proof: Let us introduce the notation Out(y) to refer to
the set of events out of the extended state y. Consider a
given state (y1, y2) ∈ YS and the four following cases.

• For e ∈ (E1 \Es) ∩Out(y1), (i) there exists a unique
state y′1 ∈ Y1 with (y1, e, y

′
1) ∈ ∆Y 1 (because AY 1

is deterministic); (ii) e /∈ Out(y2) (because e is not
a synchronization event). Consequently, only the first
condition of the synchronous composition definition is
satisfied and their exists a unique state (y′1, y2) ∈ YS

such that ((y1, y2), e, (y
′
1, y2)) ∈ ∆S ;

• For e ∈ (E2 \ Es) ∩ Out(y2), (i) there exists a
unique state y′2 ∈ Y2 with (y2, e, y

′
2) ∈ ∆Y 2 (because
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AY 2 is deterministic); (ii) e /∈ Out(y1) (because e
is not a synchronization event). Consequently, only
the second condition of the synchronous composition
definition is satisfied and their exists a unique state
(y1, y

′
2) ∈ YS such that ((y1, y2), e, (y1, y

′
2)) ∈ ∆S ;

• For e = 1○, (i) there exists a unique state y′1 ∈ Y1 with
(y1, 1○, y′1) ∈ ∆Y 1; (ii) there exists also a unique state
y′2 ∈ Y2 with (y2, 1○, y′2) ∈ ∆Y 2. Consequently, only
the third condition of the synchronous composition
definition is satisfied and their exists a unique state
(y′1, y

′
2) ∈ YS such that ((y1, y2), 1○, (y′1, y

′
2)) ∈ ∆S ;

• For e ∈ Es, (i) there exists a unique state y′1 ∈ Y1

with (y1, e, y
′
1) ∈ ∆Y 1 (because AY 1 is determinis-

tic); (ii) there exists also a unique state y′2 ∈ Y2

with (y2, e, y
′
2) ∈ ∆Y 2 (because AY 2 is determinis-

tic). Consequently, only the third condition of the
synchronous composition definition is satisfied and
their exists a unique state (y′1, y

′
2) ∈ YS such that

((y1, y2), e, (y
′
1, y

′
2)) ∈ ∆S ; □

Now we will show that safe (i.e. 1-bounded) T-time Petri
nets with minimal firing times nets can be represented by
synchronous compositions of AMTs. We will use state ma-
chine covering of safe TPNs, which is a well known result
stating that every safe TPN is behaviorally equivalent to a
composition of its sequential components (state machines).
There are many algorithms for finding the state machine
covering of a safe Petri net in the literature. A polynomial-
time algorithm for finding minimal state machine cover of
a safe Petri net has been proposed in (Karatkevich and
Wisniewski (2020)). Another recent reference on decom-
position of safe Petri nets into state machines components
is (Bouvier et al. (2020)).

Note that state machine components are in fact finite
automata (with current state corresponding to the place
containing its unique marking) and we can endow them
with timing to be AMT by simply taking the same minimal
timing of a transition between two states in AMT as the
one for the transition between the two places in T-time
PN that correspond to these two states in the underlying
AMT.

Proposition 2. Let (G, τ) be a T-timed PN with min-
imal time constraints and let G1, . . . ,GK be the state
machines that form the state machine cover of G. Let
A1 = (X1, E1,∆1, x10),..., AK = (XK , EK ,∆K , xK0) be
K AMTs that correspond to state machines G1, . . . ,GK ,
respectively and let AY,i = (Yi, Ei ∪ { 1○},∆Y i, y0i), i =
1, . . . ,K be their corresponding tick automata.

Then, the synchronous composition of tick automata S =
AY,1 ⊗ ...⊗AY,K encodes all timed productions of (G, τ).

Proof: We first claim that every local tick automaton
AY,i = (Yi, Ei ∪ { 1○},∆Y i, y0i), i = 1, . . . ,K corre-
sponding to the AMT of the state machine Gi encodes
all timed productions of the subnet (Gi, τ). Note that the
timed state machines are sequential timed systems, which
can be viewed as a class of single clock timed automata
with discrete time, hence the underlying AMT Ai and
subsequently its tick automaton AY,i preserve the timed
behavior of the subnet (Gi, τ). This first claim follows

after transformation of the time behavior of state machine
components of the T- Petri net, defined in the common
semantic model for timed systems, timed transition sys-
tems (TTSs), into their corresponding tick automata as
presented in Proposition 1, where every continuous tran-
sition (time elapsing) labeled by ℓ > 1 can be replaced by
the sequence of ℓ > 1 consecutive tick events. Since state
machines are simple (sequential) models, the resulting
TTSs are in fact finite and deterministic (as we do not use
non injective labeling) AMTs. Consequently, Proposition
1 can be applied. Note, finally, that the product of timed
state machines has the same timed behavior as the product
of tick automata AY,i. Since local timed behaviors of tick
automata are the same as the timed behaviours of the
corresponding TTSs and the synchronous product of tick
automata preserves this timed behavior equivalence, we
conclude that the product of the local tick automata is
the same as the product of tick automata corresponding
to TTSs, which is the timed behavior of the whole net.
Notice that the synchronous product of tick automata
corresponding to AMTs preserves their property that at
each state of these tick automata the tick event can fire.
This simply follows from the fact that the tick event acts
as a shared (synchronization) event in the definition of
synchronous product of tick automata.

Example : The synchronous composition of the two tick
automata in Figure 3 is reported in Figure 4. The resulting
structure has 19 extended states and one can notice that
this size does not exceed |Y1| × |Y2| = 30.

Fig. 4. Synchronous composition of AY 1 and AY 2 detailed
in Figure 3.

4. CONCLUSION AND PERSPECTIVES

This paper has shown that a specific subclass of timed
DESs with synchronisation events and minimal time con-
straints can be exactly represented as the synchronous
product of modular tick automata with minimal times.
This modular modeling abstracts the timing aspects and
takes advantages of existing literature about logical au-
tomata.
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First, our plan is to extend this work to automata with
time intervals, where not only lower bounds but also
upper bounds on the firing times are imposed. It is to
be noted that proposing their synchronous product to be
consistent with weak semantics of underlying safe T-time
Petri nets as composition of sequential components (time
state machines) associated with these automata, will be a
challenging task. Nevertheless, we believe that at least for
some subclasses of systems this will be possible.

It appears also that the proposed transformation is suit-
able to design observers in a distributed setting when some
events are unobservable or when their occurrences deliver
identical labels. For this purpose, we guess that modular
observers can be designed and composed to obtain a global
structure. We believe that modular observers preserve
some (but not all) observation properties. The main ad-
vantages of such modular observers is also to prevent the
combinatorial increase of the complexity resulting from
the time abstraction and determinisation principle. One
can also observe that tick automata contain some addi-
tional information that are not used to build the standard
logical observers. In particular, each extended state of a
tick automaton has a time domain that gives information
about how long the system stays in a given state. Such
information may be helpful for some applications.

In a general perspective, this contribution opens the way
to modular verification and control of timed systems, es-
pecially for systems with different time scales, i.e., a large
differences between the smallest and the highest minimal
firing times involved in AMT. Designing modular logical or
timed observers can facilitate the diagnosis of faults (Sam-
path et al. (1995), Zhang et al. (2018), Hadjicostis (2019))
in a non centralized setting. Consequently, one possible
extension of this contribution is to develop modular diag-
nosers of timed systems. Another promising application is
to study state-based and language-based opacity notions
(Saboori and Hadjicostis (2013), Lin (2011), Tong et al.
(2017), Ma et al. (2021)) in a distributed setting for timed
DESs. For this purpose, the standard notion of opacity
will be alleviated. In particular, it could be helpful to
compute the time intervals during which one can be certain
that a given secret is kept safe to intruders. Computing
the time intervals during which the secret is revealed is
also interesting. Finally, we aim to investigate modular
supervisory control of certain classes of distributed timed
DESs.
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