
HAL Id: hal-04468870
https://hal.science/hal-04468870

Submitted on 4 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Fault pattern diagnosis of discrete-event systems by
means of logical verifiers

Ye Liang, Dimitri Lefebvre, Zhiwu Li

To cite this version:
Ye Liang, Dimitri Lefebvre, Zhiwu Li. Fault pattern diagnosis of discrete-event systems by means of
logical verifiers. IFAC-PapersOnLine, 2022, 55 (6), pp.551-556. �10.1016/j.ifacol.2022.07.186�. �hal-
04468870�

https://hal.science/hal-04468870
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


IFAC PapersOnLine 55-6 (2022) 551–556

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.07.186

10.1016/j.ifacol.2022.07.186 2405-8963

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Fault Pattern Diagnosis of Discrete-Event
Systems by Means of Logical Verifiers

Ye Liang ∗ Dimitri Lefebvre ∗∗ Zhiwu Li ∗∗∗

∗ School of Electro-Mechanical Engineering, Xidian University, Xi’an
710071, China (e-mail: liangye@stu.xidian.edu.cn)

∗∗ GREAH Laboratory, Normandy University, 75 rue Bellot, 76600 Le
Havre, France (e-mail: dimitri.lefebvre@univ-lehavre.fr)

∗∗∗ Institute of Systems Engineering, Macau University of Science and
Technology, Taipa, Macau and School of Electro-Mechanical

Engineering, Xidian University, Xi’an 710071, China (e-mail:
zhwli@xidian.edu.cn)

Abstract: In this paper, a diagnosis problem of discrete event systems (DESs) is considered,
including fault pattern detection and diagnosability. A fault pattern in a DES is modeled
by an automaton that represents the occurrence of complex faults, i.e., the language of the
automaton is the objective to be diagnosed. To solve the problem of fault pattern detection, two
verifiers are provided. The former, based on state isolation, can perform state estimation in an
efficient manner recursively such that at any point during recursion, the states can be isolated.
The latter, inspired by the notion of synchronous product, allows us to concisely synthesize
and analyze the system information. Comparing these two verifiers, it is found that the two
structures are equivalent from the perspective of pattern detection and diagnosability. On the
basis of aforementioned verifier structures, we establish their respective diagnosers, and develop
algorithms for fault pattern diagnosability.
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Diagnosability.

1. INTRODUCTION

In the context of discrete event systems (DESs) Cassan-
dras and Lafortune (2009), fault diagnosis is a crucial and
challenging task to ensure reliability Lin (1994); Sampath
et al. (1995), which involves two objectives, fault detection
and fault diagnosability, where fault detection aims at
detecting whether the faults are recognized from a given
sequence of observations and fault diagnosability focuses
on determinating whether any predetermined failure can
be distinguished within a finite delay after its occurrence.

To this end, a systemic procedure for fault diagnosis
with its formal formulation, namely the construction of
a diagnoser, is proposed in Sampath et al. (1995), where
the diagnoser verifies off-line the necessary and sufficient
conditions for diagnosability; it is also used to perform
diagnosis by on-line observations of system behavior. Once
a diagnoser in Sampath et al. (1995) has been built, diag-
nosability can be tested in polynomial time with respect
to the size of state space of the diagnoser. However, the
state space of a diagnoser is in the worst case exponential
with respect to the size of a system model. To overcome the
potential state explosion problem by using diagnoser, a so-
called “twin machine” technique Jiang et al. (2001); Yoo
and Lafortune (2002) is introduced to provide a worst-case
polynomial test in the number of system states for diag-
nosability, without constructing a diagnoser. An algorithm
with linear complexity proposed in Hadjicostis (2019) con-

verts the fault detection problem into state isolation, with
aim of determining whether the observations allow us to
isolate the states to be within a particular state set which
represents the failures.

All the aforementioned works assume that the faults are
permanent, i.e., once a fault occurs, the system remains
indefinitely faulty. Experience with monitoring of dynamic
systems shows that there is a larger spectrum of faulty
situations in practical systems, such as multiple faults,
intermittent faults Contant et al. (2004), temporary faults
Biswas (2012), fault repetitions Jiang et al. (2003). There-
fore, a more general method which involves fault pattern
detection and fault pattern diagnosability, is needed to
solve the diagnosis problem Jeron et al. (2006); Ye and
Dague (2012); Yan et al. (2010); Gougam et al. (2017),
where fault pattern detection aims at deciding whether
a fault pattern is recognized from a given sequence of
observations, and diagnosability focuses on determinating
whether a fault pattern can be distinguished with certainly
within a finite delay. This also is the core of this work.

A fault pattern is modeled by an automaton that repre-
sents the occurrence of complex faults, whose language is
the objective to be diagnosed. Pattern diagnosis is intro-
duced by Jeron et al. (2006). Differently from this former
work, our paper presents an algorithm to detect the fault
patterns with state isolation and to detail how state isola-
tion can be used for diagnosability, which provides another
possible vehicle for fault diagnosis. The advantage of the
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algorithm proposed in this paper is that state estimation
can be performed recursively in an efficient manner and, at
any point during the recursion, the state can be isolated.

The problem of diagnosis with fault patterns have received
widespread attention in a broad class of frameworks, such
as the work in Gougam et al. (2017), which focuses on the
diagnosibility analysis of Petri nets so that the problem of
pattern diagnosis can be worked out by using synchronous
product. In Gougam et al. (2014), the study on discern-
ability, as opposed to diagnosability, is considered to detect
the occurrence of the exclusive behavior, thus expanding
the application of patterns. In Ye and Dague (2012); Yan
et al. (2010), the authors put forward the methods of con-
structing local pattern diagnosers for distributed systems.
In Jiang and Kumar (2004), the Linear-time Temporal
Logic formulas are used to specify failures in the system
such that the problem of testing diagnosability is reduced
to that of model checking. The work in Pencolé and Subias
(2017) investigates the problem of fault pattern diagnosis
for bounded labeled Petri nets, which relies on a matching
relation between the system and the pattern that turns the
pattern diagnosis problem into a model checking problem.
In Boussif et al. (2021), the authors review the main
definitions of diagnosability with regard to intermittent
faults, and discuss appropriate verification techniques.

The aim of this paper is to investigate fault pattern diagno-
sis of DESs that includes both fault pattern detection and
fault pattern diagnosability. Specifically, we concentrate
on the case of labeled finite automata and its fault pattern
diagnosis. In order to solve the problem of fault pattern
detection, we propose two verifiers. The former is based on
state isolation, which captures the ability to determinate,
following a sequence of observations, whether a state falls
within a given set of states of interest, thereby achieving
failure diagnosis. Also, in the foregoing verifier, one pos-
sibility is that there may exist some non-reachable states
beginning from the initial state. With slight differences,
we establish another verifier inspired by the concept of
synchronous product, which can concisely analyze the sys-
tem information. Comparing these two verifiers, we found
that the two structures are equivalent from the perspective
of pattern diagnosis. By synthesizing diagnosers of the
two verifiers, we develop the algorithms for fault pattern
diagnosability.

2. PRELIMINARIES

In this paper, we use N and N0 to denote the set of strictly
positive integers and the set of non-negative integers
respectively.

2.1 Finite state automaton

In the following, we review the model of finite automaton
and its related notions.

Definition 1. A deterministic finite automaton (DFA) is a
four-tuple G0 = (L,Σ, e, l0), where L is the set of states, Σ
is the set of events, l0 is the initial state, and e : L×Σ → L
is the transition function: l′ = e(l, σ) means that there is
a transition labeled with event σ from the state l to l′.

For a finite automaton, the set Σ can be partitioned into
two disjoint subsets Σ = Σo ∪ Σuo, where Σo and Σuo

represent the sets of observable events and unobservable
events, respectively. The set of all strings defined on Σ is
denoted by Σ∗, including the empty string λ. A string
w = σ0σ1 . . . σn over Σ is a sequence of events, where
σi ∈ Σ for i = 0, 1, . . . , n. The concatenation of two strings
w′,w′′ ∈ Σ∗ is a new string w = w′w′′ ∈ Σ∗, where w′ is
followed by w′′. To model unobservable events, we use a
special label, namely the empty label, denoted by ε. We
also use the symbol λ to denote a special string, called
the empty string, that contains no symbol. In order to be
more general, we introduce the notion of output labels.
Let Qε = Q ∪ {ε} be the set of output labels, where Q
is the set of observable labels. The labeling function is
defined as Lab : Σ → Qε, where Lab(σ) ∈ Q if σ ∈ Σo

and Lab(σ) = ε if σ ∈ Σuo. A labeled finite automaton is
defined as follows.

Definition 2. A labeled finite automaton (LFA) is a three-
tuple G = (G0, Qε, Lab), where G0 = (L,Σ, e, l0) is a DFA,
Qε is a set of output labels, and Lab : Σ → Qε is a labeling
function.

Given a state l ∈ L, the set of active events at l is defined
as Λ(l) = {σ ∈ Σ|∃l′ ∈ L : l′ = e(l, σ)}. The transition
function e is extended to a string w ∈ Σ∗ in the usual
way. We use |w| to denote the length of w. We use w′ ≤ w
to denote that the string w′ is a prefix of w, i.e., there
exists w′′ such that w = w′w′′. The language generated by
LFA G is denoted by L(G). For each string w ∈ L(G),
we use L(G)/w to denote the post-language of L(G) after
w, defined as L(G)/w = {w′ ∈ Σ∗ | ww′ ∈ L(G)}. A run
beginning from the initial state l0 has the form

ρ = l0
σ0−→ l1

σ1−→ · · · ln
σn−−→ ln+1,

where li, li+1 ∈ L, σi ∈ Σ, li+1 = e(li, σi), i = 0, 1, . . . , n.
The run ρ is associated to the string w = σ0 . . . σn. A
cycle is a run such that ln+1 = l0. Given an LFA G, a
projection function P : Σ∗ → Q∗ can be defined as follows.
For w ∈ Σ∗ and σ ∈ Σ,

P(wσ) =

{
P(w)q if Lab(σ) = q

P(w) if Lab(σ) = ε,

and P(λ) = λ. In simple words, labeling function Lab
replaces the events by their corresponding labels, including
unobservable events, while projection function P removes
all the unobservable events and tracks only the observable
events.

We use LQ(G) to denote the observable language, defined
by LQ(G) = {wq ∈ Q∗|P(w) = wq,w ∈ L(G)}. Given a
sequence of observations wq, the inverse projection P−1 :
Q∗ → Σ∗ is defined by P−1(wq) = {w ∈ L(G)|P(w) =
wq}. Given an LFA G, we use RG(l,wq) to denote the set
of states reached from l by the execution of the strings w
such that P(w) = wq, which is defined by

RG(l,wq) = {l′ ∈ L|∃w ∈ L(G) : l′ = e(l,w),P(w) = wq}.
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algorithm proposed in this paper is that state estimation
can be performed recursively in an efficient manner and, at
any point during the recursion, the state can be isolated.

The problem of diagnosis with fault patterns have received
widespread attention in a broad class of frameworks, such
as the work in Gougam et al. (2017), which focuses on the
diagnosibility analysis of Petri nets so that the problem of
pattern diagnosis can be worked out by using synchronous
product. In Gougam et al. (2014), the study on discern-
ability, as opposed to diagnosability, is considered to detect
the occurrence of the exclusive behavior, thus expanding
the application of patterns. In Ye and Dague (2012); Yan
et al. (2010), the authors put forward the methods of con-
structing local pattern diagnosers for distributed systems.
In Jiang and Kumar (2004), the Linear-time Temporal
Logic formulas are used to specify failures in the system
such that the problem of testing diagnosability is reduced
to that of model checking. The work in Pencolé and Subias
(2017) investigates the problem of fault pattern diagnosis
for bounded labeled Petri nets, which relies on a matching
relation between the system and the pattern that turns the
pattern diagnosis problem into a model checking problem.
In Boussif et al. (2021), the authors review the main
definitions of diagnosability with regard to intermittent
faults, and discuss appropriate verification techniques.

The aim of this paper is to investigate fault pattern diagno-
sis of DESs that includes both fault pattern detection and
fault pattern diagnosability. Specifically, we concentrate
on the case of labeled finite automata and its fault pattern
diagnosis. In order to solve the problem of fault pattern
detection, we propose two verifiers. The former is based on
state isolation, which captures the ability to determinate,
following a sequence of observations, whether a state falls
within a given set of states of interest, thereby achieving
failure diagnosis. Also, in the foregoing verifier, one pos-
sibility is that there may exist some non-reachable states
beginning from the initial state. With slight differences,
we establish another verifier inspired by the concept of
synchronous product, which can concisely analyze the sys-
tem information. Comparing these two verifiers, we found
that the two structures are equivalent from the perspective
of pattern diagnosis. By synthesizing diagnosers of the
two verifiers, we develop the algorithms for fault pattern
diagnosability.

2. PRELIMINARIES

In this paper, we use N and N0 to denote the set of strictly
positive integers and the set of non-negative integers
respectively.

2.1 Finite state automaton

In the following, we review the model of finite automaton
and its related notions.

Definition 1. A deterministic finite automaton (DFA) is a
four-tuple G0 = (L,Σ, e, l0), where L is the set of states, Σ
is the set of events, l0 is the initial state, and e : L×Σ → L
is the transition function: l′ = e(l, σ) means that there is
a transition labeled with event σ from the state l to l′.

For a finite automaton, the set Σ can be partitioned into
two disjoint subsets Σ = Σo ∪ Σuo, where Σo and Σuo

represent the sets of observable events and unobservable
events, respectively. The set of all strings defined on Σ is
denoted by Σ∗, including the empty string λ. A string
w = σ0σ1 . . . σn over Σ is a sequence of events, where
σi ∈ Σ for i = 0, 1, . . . , n. The concatenation of two strings
w′,w′′ ∈ Σ∗ is a new string w = w′w′′ ∈ Σ∗, where w′ is
followed by w′′. To model unobservable events, we use a
special label, namely the empty label, denoted by ε. We
also use the symbol λ to denote a special string, called
the empty string, that contains no symbol. In order to be
more general, we introduce the notion of output labels.
Let Qε = Q ∪ {ε} be the set of output labels, where Q
is the set of observable labels. The labeling function is
defined as Lab : Σ → Qε, where Lab(σ) ∈ Q if σ ∈ Σo

and Lab(σ) = ε if σ ∈ Σuo. A labeled finite automaton is
defined as follows.

Definition 2. A labeled finite automaton (LFA) is a three-
tuple G = (G0, Qε, Lab), where G0 = (L,Σ, e, l0) is a DFA,
Qε is a set of output labels, and Lab : Σ → Qε is a labeling
function.

Given a state l ∈ L, the set of active events at l is defined
as Λ(l) = {σ ∈ Σ|∃l′ ∈ L : l′ = e(l, σ)}. The transition
function e is extended to a string w ∈ Σ∗ in the usual
way. We use |w| to denote the length of w. We use w′ ≤ w
to denote that the string w′ is a prefix of w, i.e., there
exists w′′ such that w = w′w′′. The language generated by
LFA G is denoted by L(G). For each string w ∈ L(G),
we use L(G)/w to denote the post-language of L(G) after
w, defined as L(G)/w = {w′ ∈ Σ∗ | ww′ ∈ L(G)}. A run
beginning from the initial state l0 has the form

ρ = l0
σ0−→ l1

σ1−→ · · · ln
σn−−→ ln+1,

where li, li+1 ∈ L, σi ∈ Σ, li+1 = e(li, σi), i = 0, 1, . . . , n.
The run ρ is associated to the string w = σ0 . . . σn. A
cycle is a run such that ln+1 = l0. Given an LFA G, a
projection function P : Σ∗ → Q∗ can be defined as follows.
For w ∈ Σ∗ and σ ∈ Σ,

P(wσ) =

{
P(w)q if Lab(σ) = q

P(w) if Lab(σ) = ε,

and P(λ) = λ. In simple words, labeling function Lab
replaces the events by their corresponding labels, including
unobservable events, while projection function P removes
all the unobservable events and tracks only the observable
events.

We use LQ(G) to denote the observable language, defined
by LQ(G) = {wq ∈ Q∗|P(w) = wq,w ∈ L(G)}. Given a
sequence of observations wq, the inverse projection P−1 :
Q∗ → Σ∗ is defined by P−1(wq) = {w ∈ L(G)|P(w) =
wq}. Given an LFA G, we use RG(l,wq) to denote the set
of states reached from l by the execution of the strings w
such that P(w) = wq, which is defined by

RG(l,wq) = {l′ ∈ L|∃w ∈ L(G) : l′ = e(l,w),P(w) = wq}.

2.2 Fault patterns

Definition 3. A fault pattern is a five-tuple DFA Ω =
(S,Σ, eΩ, s0, sΩ), with the set of states S, the single final
state sΩ ∈ S, the initial state s0, and the transition
function eΩ : S × Σ → S. The fault pattern Ω satisfies a
complete condition, i.e., for all s ∈ S, Λ(s) = Σ holds and
the final state is stable, i.e., for all σ ∈ Σ, eΩ(sΩ, σ) = sΩ.

Based on the complete condition of Ω, we know that
L(Ω) = Σ∗. We use LΩ(Ω) to denote the accepted
language of Ω, defined as LΩ(Ω) = {w ∈ Σ∗|eΩ(s0,w) =
sΩ}, and introduce LΩ(G) = L(G) ∩LΩ(Ω).

Example 1. A fault pattern Ω is shown in Fig. 1 with the
occurrence of events f1 and f2, where F is the final state.
The accepted language of Ω is LΩ(Ω) = Σ∗f1Σ

∗∪Σ∗f2Σ
∗.

\{f , f }
f

f

FN

Fig. 1. An example of fault pattern Ω.

3. FAULT PATTERN DIAGNOSIS OF AUTOMATA

In this section, we introduce related notions of fault pat-
tern diagnosis, including fault pattern detection and fault
pattern diagnosability.

Definition 4. The detection function DetectΩ: LQ(G) →
{Y es,No,Ambiguous} is defined as

• DetectΩ(wq) = Y es if P−1(wq) ⊆ LΩ(G),
• DetectΩ(wq) = No if P−1(wq) ∩LΩ(G) = ∅,
• DetectΩ(wq) = Ambiguous, otherwise.

Definition 5. Given an LFA G and a pattern Ω, G is
diagnosable with regard to pattern Ω if

(∃k ∈ N) (∀w ∈ LΩ(G)) (∀w′ ∈ L(G)/w)
[|w′| ≥ k] ⇒ [P−1(P(ww′)) ⊆ LΩ(G)].

We make the following assumption for diagnosability:

(H) Given an LFA G, the observable language LQ(G) is
live, i.e., for all observations wq ∈ LQ(G), there always
exists a label q ∈ Q such that wqq ∈ LQ(G).

3.1 Fault pattern detection based on verifiers

Two verifier structures are proposed in the following for
fault pattern detection, one based on state isolation and
the other inspired by synchronous product.

Definition 6. Given an LFA G = (G0, Qε, Lab) with G0 =
(L,Σ, e, l0) and a pattern Ω = (S,Σ, eΩ, s0, sΩ), the verifier
of G with respect to Ω is defined as an LFA

VG(Ω) = (LV ,Σ, eV , l
V
0 , LsΩ , Qε, Lab),

with s ∈ S are |S| copies of L, LV ⊆ ∪s∈SLs is the set of
states, n = |L|, Ls = {ls0, ls1, . . . , lsn}, lsi = (li, s), li ∈ L,

s ∈ S, i = 0, ..., n, Σ is the set of system events, eV
is the transition function defined for s, s′ ∈ S, lsi ∈ Ls

and ls
′

j ∈ Ls′ by eV (l
s
i ,w) = ls

′

j if e(li,w) = lj and

eΩ(s,w) = s′, lV0 = ls00 = (l0, s0) is the initial state,
LsΩ = {lsΩ0 , lsΩ1 , . . . , lsΩn } is the set of final states, Qε is
the set of output labels, and Lab : Σ → Qε is the labeling
function.

Proposition 1 below shows that the verifier VG(Ω) can be
used to provide the answer of detection function.

Proposition 1. Given an LFA G, a pattern Ω, its corre-
sponding verifier VG(Ω), and a sequence of observations
wq ∈ LQ(G), the detection function satisfies

(a) DetectΩ(wq) = Y es iff RVG(Ω)(l
V
0 ,wq) ⊆ LsΩ ,

(b) DetectΩ(wq) = No iff RVG(Ω)(l
V
0 ,wq) ∩ LsΩ = ∅,

(c) DetecΩ(wq) = Ambiguous, otherwise.

Proof. Consider wq ∈ LQ(G) and a sequence w =
σ0σ1 . . . σn ∈ P−1(wq). Runs in Ω and VG(Ω) that begin
respectively from the initial states s0 and lV0 are associated
to w:

ρΩ : s(0)
σ0−→ s(1)

σ1−→ · · · s(n) σn−−→ s(n+ 1),

ρV : lV (0)
σ0−→ lV (1)

σ1−→ · · · lV (n)
σn−−→ lV (n+ 1).

To prove (a, ⇒), assume that DetectΩ(wq) = Y es. Then,
we have w ∈ LΩ(G) and eΩ(s(0),w) = sΩ. By considering
the run ρΩ, there exists one or more indices n1, ..., nk such
that s(0) = ... = s(n1) = s0, s(nh + 1) = ... = s(nh+1),
h = 1, ..., k − 1, and s(nk + 1) = ... = s(n + 1) = sΩ.
Considering now the run ρV and according to Definition 6,
lV (0), ..., lV (n1) ∈ Ls0 , lV (nh+1), ..., lV (nh+1) ∈ Ls(nh+1),
h = 1, ..., k − 1, and lV (nk + 1), ..., lV (n + 1) ∈ LsΩ . In
particular, the last state of the run ρV belongs to LsΩ .
Thus RVG(Ω)(l

V
0 ,wq) ⊆ LsΩ holds.

To prove (a, ⇐), assume that RVG(Ω)(l
V
0 ,wq) ⊆ LsΩ .

For each w such that P(w) = wq there exists one or
more indices n1, ..., nk and k − 1 states s(nh+1) ∈ S,
h = 1, ..., k − 1, such that lV (0), ..., lV (n1) ∈ Ls0 , lV (nh +
1), ..., lV (nh+1) ∈ Ls(nh+1), h = 1, ..., k − 1, lV (nk +
1), ..., lV (n + 1) ∈ LsΩ . By Definition 6, we have s(0) =
... = s(n1) = s0, s(nh + 1) = ... = s(nh+1), h = 1, ..., k− 1
and s(nk+1) = ... = s(n+1) = sΩ. Consequently, the run
ρΩ ends in sΩ and w = σ0σ1...σn ∈ LΩ(G). According to
Definition 4, we have DetectΩ(wq) = Y es.

To prove (b, ⇒), assume that DetectΩ(wq) = No. Then,
for each w ∈ P−1(wq), w /∈ LΩ(G) and consequently,
eΩ(s(0),w) 
= sΩ. Considering the run ρΩ, we have s(n +
1) 
= sΩ and considering the run ρV , we have also lV (n +
1) /∈ LsΩ . Thus RVG(Ω)(l

V
0 ,wq) ∩ LsΩ = ∅.

To prove (b, ⇐), assume that RVG(Ω)(l
V
0 ,wq) ∩ LsΩ = ∅.

For each w such that P(w) = wq, we have lV (n+1) /∈ LsΩ
in run ρV . Consequently, s(n + 1) /∈ sΩ in run ρΩ. As
far as sΩ is stable by eΩ, all states s(k), k = 1, ..., n + 1
satisfy s(k) 
= sΩ and according to Definition 4, we have
DetectΩ(wq) = No.

The proof of (c) results implicitly from (a) and (b). �
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Given an LFA G and a pattern Ω with |L| = n, |S| = m.
The number of reachable states of verifier VG(Ω) is n×m
at most. We conclude that the complexity of fault pattern
detection with the verifier VG(Ω) is O(n×m).

Example 2. Consider the fault pattern Ω in Fig. 1,
and an LFA G in Fig. 2(a) with the set of unobservable
events Σuo = {f1, f2}, and the single observable label
Q = {q}. According to Definition 6, the verifier VG(Ω)
of G and Ω is obtained in Fig. 2(b), where the set of
states is LV = {0N, 5N, 6N, 0F, 1F, 2F, 3F, 4F, 5F, 6F},
and the transition function is defined as eV (0N, a) =
5N since e(0, a) = 5 and eΩ(N, a) = N , and so on.
Given, for example, an output label sequence qq, the
diagnosis answer is Ambiguous, since RVG(Ω)(0N, qq) =
{6N, 0F, 2F}, where 0F, 2F ∈ LsΩ and 6N /∈ LsΩ . Note
that there are some non-reachable states in VG(Ω) from
the initial state 0N with dashed lines in Fig. 2(b).

1 2

5 6

a (q)

b (q)

f  ( )

f  ( )
0

(a)
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b (q)

a (q)
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0N

(b)

a (q)
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3N 4Na (q)
a (q)

a (q)

a (q)

5N 6N
b (q)

a (q)

1F
a (q)
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3F 4F

5F 6F
b (q)

a (q)
a (q)

0F f  ( )

a (q)

a (q)
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Fig. 2. (a) LFA G and (b) verifier VG(Ω).

Definition 7 introduces a synchronous product-based ver-
ifier, whose resulting structure allows us to acquire the
system information concisely.

Definition 7. Given an LFA G = (G0, Qε, Lab), with
G0 = (L,Σ, e, l0) and a pattern Ω = (S,Σ, eΩ, s0, sΩ), the
synchronous product of G and Ω is an LFA

GΩ = (LGΩ
,Σ, eGΩ

, lGΩ
0 , LGΩ

F , Qε, Lab),

where LGΩ ⊆ L × S is the set of states, Σ is the set of

events, lGΩ
0 = (l0, s0) is the initial state, LGΩ

F = L× sΩ is
the set of final states, and eGΩ : (L× S)×Σ → (L× S) is
the transition function, satisfying (l2, s2) = eGΩ((l

1, s1), σ)
if there exists σ ∈ Σ such that l2 = e(l1, σ) and s2 =
eΩ(s

1, σ).

According to Ogheneovo (2018), two automata are equiv-
alent if and only if they generate and accept the same
languages. Proposition 2 below compares verifiers VG(Ω)
and GΩ.

Proposition 2. Given an LFA G and a pattern Ω, the
verifiers GΩ and VG(Ω) are equivalent, i.e., L(GΩ) =
L(VG(Ω)) and LΩ(GΩ) = LΩ(VG(Ω)).

Proof. Consider a string w = σ0 . . . σn ∈ Σ∗. Runs in G,
Ω, GΩ and VG(Ω), associated to w, that begin respectively

from the initial states l0, s0, l
GΩ
0 = (l0, s0), and lV0 = ls00

are referred to as (when such runs exist):

ρG : l(0)
σ0−→ l(1)

σ1−→ · · · l(n) σn−−→ l(n+ 1), (1)

ρΩ : s(0)
σ0−→ s(1)

σ1−→ · · · s(n) σn−−→ s(n+ 1), (2)

ρGΩ : (l(0), s(0))
σ0−→ · · · σn−−→ (l(n+ 1), s(n+ 1)), (3)

ρV : lV (0)
σ0−→ lV (1)

σ1−→ · · · lV (n)
σn−−→ lV (n+ 1). (4)

Let us first prove L(GΩ) ⊆ L(VG(Ω)). Assume w =
σ0σ1 . . . σn ∈ L(GΩ). There exists a run ρGΩ

of the form

(3) in GΩ such that (l(0), s(0)) = lGΩ
0 . We know that

w ∈ L(G) and w ∈ L(Ω). According to Definition 7, there
exists also a run ρG of the form (1) with l(0) = l0 in G and
a run ρΩ of the form (2) with s(0) = s0 in Ω and zeros or
more indices n1, . . . , nk such that s(0) = ... = s(n1) = s0,
s(nh +1) = ... = s(nh+1), h = 1, ..., k. By Definition 6, we
can find a run ρV in VG(Ω) of the form (4) with lV (0) = ls00 ,
lV (0), ..., lV (n1) ∈ Ls0 , lV (nh+1), ..., lV (nh+1) ∈ Ls(nh+1),
h = 1, ..., k. Thus w ∈ L(VG(Ω)).

In addition, if w ∈ LΩ(GΩ), then eGΩ
(lGΩ
0 ,w) ∈ LGΩ

F .
Then s(nk + 1) = ... = s(n + 1) = sΩ and lV (nk +
1), ..., lV (n+ 1) ∈ LsΩ . Thus, w ∈ LΩ(VG(Ω)) is true.

Let us now prove L(GΩ) ⊇ L(VG(Ω)). Assume w =
σ0σ1 . . . σn ∈ L(VG(Ω)). There exists a run ρV of the
form (4) in VG(Ω) such that lV (0) = lV0 = ls00 . We
know that w ∈ L(G) and w ∈ L(Ω). By Definition 6,
there exists also a run ρG of the form (1) with l(0) = l0
in G and a run ρΩ of the form (2) with s(0) = s0
in Ω and zeros or more indices n1, . . . , nk such that
s(0) = ... = s(n1) = s0, s(nh + 1) = ... = s(nh+1),
h = 1, ..., k. According to Definition 7, we can find a run
ρGΩ of the form (2) with (l(0), s0), ..., (l(n1), s0) ∈ L× s0,
(l(nh + 1), s(nh+1)), ..., (l(nh+1), s(nh+1)) ∈ L × s(nh+1),
h = 1, ..., k. Thus w ∈ L(GΩ).

If w ∈ LΩ(VG(Ω)), then eV (l
s0
0 ,w) ∈ LsΩ . We have s(nk +

1) = ... = s(n + 1) = sΩ and (l(nk + 1), sΩ), ..., (l(n +
1), sΩ) ∈ L× sΩ. Thus, w ∈ LΩ(GΩ). �

Example 3. Consider the fault pattern Ω in Fig. 1, and
G in Fig. 2(a). The synchronous product GΩ is obtained
in Fig. 3. By removing the non-reachable states of VG(Ω)
and according to Proposition 2, we know that the two
structures GΩ and VG(Ω) are identical.
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a (q)

a (q) a (q)
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1F
a (q)

2F
f  ( )

0F
b (q)

f  ( )

a (q)
5F 6F

b (q)

f  ( )

Fig. 3. Verifier GΩ based on synchronous product.

For the seek of brevity, results will be discussed for VG(Ω)
only, and the analysis with GΩ will not be detailed here.
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Given an LFA G and a pattern Ω with |L| = n, |S| = m.
The number of reachable states of verifier VG(Ω) is n×m
at most. We conclude that the complexity of fault pattern
detection with the verifier VG(Ω) is O(n×m).

Example 2. Consider the fault pattern Ω in Fig. 1,
and an LFA G in Fig. 2(a) with the set of unobservable
events Σuo = {f1, f2}, and the single observable label
Q = {q}. According to Definition 6, the verifier VG(Ω)
of G and Ω is obtained in Fig. 2(b), where the set of
states is LV = {0N, 5N, 6N, 0F, 1F, 2F, 3F, 4F, 5F, 6F},
and the transition function is defined as eV (0N, a) =
5N since e(0, a) = 5 and eΩ(N, a) = N , and so on.
Given, for example, an output label sequence qq, the
diagnosis answer is Ambiguous, since RVG(Ω)(0N, qq) =
{6N, 0F, 2F}, where 0F, 2F ∈ LsΩ and 6N /∈ LsΩ . Note
that there are some non-reachable states in VG(Ω) from
the initial state 0N with dashed lines in Fig. 2(b).
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Fig. 2. (a) LFA G and (b) verifier VG(Ω).

Definition 7 introduces a synchronous product-based ver-
ifier, whose resulting structure allows us to acquire the
system information concisely.

Definition 7. Given an LFA G = (G0, Qε, Lab), with
G0 = (L,Σ, e, l0) and a pattern Ω = (S,Σ, eΩ, s0, sΩ), the
synchronous product of G and Ω is an LFA

GΩ = (LGΩ
,Σ, eGΩ

, lGΩ
0 , LGΩ

F , Qε, Lab),

where LGΩ ⊆ L × S is the set of states, Σ is the set of

events, lGΩ
0 = (l0, s0) is the initial state, LGΩ

F = L× sΩ is
the set of final states, and eGΩ : (L× S)×Σ → (L× S) is
the transition function, satisfying (l2, s2) = eGΩ((l

1, s1), σ)
if there exists σ ∈ Σ such that l2 = e(l1, σ) and s2 =
eΩ(s

1, σ).

According to Ogheneovo (2018), two automata are equiv-
alent if and only if they generate and accept the same
languages. Proposition 2 below compares verifiers VG(Ω)
and GΩ.

Proposition 2. Given an LFA G and a pattern Ω, the
verifiers GΩ and VG(Ω) are equivalent, i.e., L(GΩ) =
L(VG(Ω)) and LΩ(GΩ) = LΩ(VG(Ω)).

Proof. Consider a string w = σ0 . . . σn ∈ Σ∗. Runs in G,
Ω, GΩ and VG(Ω), associated to w, that begin respectively

from the initial states l0, s0, l
GΩ
0 = (l0, s0), and lV0 = ls00

are referred to as (when such runs exist):

ρG : l(0)
σ0−→ l(1)

σ1−→ · · · l(n) σn−−→ l(n+ 1), (1)

ρΩ : s(0)
σ0−→ s(1)

σ1−→ · · · s(n) σn−−→ s(n+ 1), (2)

ρGΩ : (l(0), s(0))
σ0−→ · · · σn−−→ (l(n+ 1), s(n+ 1)), (3)

ρV : lV (0)
σ0−→ lV (1)

σ1−→ · · · lV (n)
σn−−→ lV (n+ 1). (4)

Let us first prove L(GΩ) ⊆ L(VG(Ω)). Assume w =
σ0σ1 . . . σn ∈ L(GΩ). There exists a run ρGΩ

of the form

(3) in GΩ such that (l(0), s(0)) = lGΩ
0 . We know that

w ∈ L(G) and w ∈ L(Ω). According to Definition 7, there
exists also a run ρG of the form (1) with l(0) = l0 in G and
a run ρΩ of the form (2) with s(0) = s0 in Ω and zeros or
more indices n1, . . . , nk such that s(0) = ... = s(n1) = s0,
s(nh +1) = ... = s(nh+1), h = 1, ..., k. By Definition 6, we
can find a run ρV in VG(Ω) of the form (4) with lV (0) = ls00 ,
lV (0), ..., lV (n1) ∈ Ls0 , lV (nh+1), ..., lV (nh+1) ∈ Ls(nh+1),
h = 1, ..., k. Thus w ∈ L(VG(Ω)).

In addition, if w ∈ LΩ(GΩ), then eGΩ
(lGΩ
0 ,w) ∈ LGΩ

F .
Then s(nk + 1) = ... = s(n + 1) = sΩ and lV (nk +
1), ..., lV (n+ 1) ∈ LsΩ . Thus, w ∈ LΩ(VG(Ω)) is true.

Let us now prove L(GΩ) ⊇ L(VG(Ω)). Assume w =
σ0σ1 . . . σn ∈ L(VG(Ω)). There exists a run ρV of the
form (4) in VG(Ω) such that lV (0) = lV0 = ls00 . We
know that w ∈ L(G) and w ∈ L(Ω). By Definition 6,
there exists also a run ρG of the form (1) with l(0) = l0
in G and a run ρΩ of the form (2) with s(0) = s0
in Ω and zeros or more indices n1, . . . , nk such that
s(0) = ... = s(n1) = s0, s(nh + 1) = ... = s(nh+1),
h = 1, ..., k. According to Definition 7, we can find a run
ρGΩ of the form (2) with (l(0), s0), ..., (l(n1), s0) ∈ L× s0,
(l(nh + 1), s(nh+1)), ..., (l(nh+1), s(nh+1)) ∈ L × s(nh+1),
h = 1, ..., k. Thus w ∈ L(GΩ).

If w ∈ LΩ(VG(Ω)), then eV (l
s0
0 ,w) ∈ LsΩ . We have s(nk +

1) = ... = s(n + 1) = sΩ and (l(nk + 1), sΩ), ..., (l(n +
1), sΩ) ∈ L× sΩ. Thus, w ∈ LΩ(GΩ). �

Example 3. Consider the fault pattern Ω in Fig. 1, and
G in Fig. 2(a). The synchronous product GΩ is obtained
in Fig. 3. By removing the non-reachable states of VG(Ω)
and according to Proposition 2, we know that the two
structures GΩ and VG(Ω) are identical.
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Fig. 3. Verifier GΩ based on synchronous product.

For the seek of brevity, results will be discussed for VG(Ω)
only, and the analysis with GΩ will not be detailed here.

3.2 Diagnosability of fault patterns based on diagnosers

In this section, a diagnoser structure is introduced for fault
pattern diagnosability checking based on state isolation.

Definition 8. Given a verifier VG(Ω) = (LV , Σ, eV , lV0 ,
LV
F , Qε, Lab), the diagnoser DG(Ω) of G with respect to

Ω is the determinisation of VG(Ω)

DG(Ω) = (LD, eD, lD0 , Q, Lab),

where LD ⊆ 2LV is the set of states, the initial state is lD0 =
RVG(Ω)(l

V
0 , λ), and eD is the transition function defined for

all lD, l′D ∈ LD and q ∈ Q, by l′D = eD(lD, q) with l′D =⋃
lV ∈lD

RVG(Ω)(lV , q).

Observe that it is also possible to define a diagnoser dG(Ω)
as the determinisation of GΩ, which is the same construc-
tion as DG(Ω). For the seek of brevity, the construction
detail and the results will be discussed for DG(Ω) only,
and the analysis of dG(Ω) will not be pursued here.

Definition 9. Given a system G, pattern Ω, and its diag-
noser DG(Ω), a state lD ∈ LD (recall that LD ⊆ 2LV and
LV = ∪s∈SLs) is said to be indeterminate if lD ∩ LsΩ �= ∅
and lD ∩ (LV \ LsΩ) �= ∅. A cyclic run, for short a cycle,
in DG(Ω) is called an indeterminate cycle if each state of
the cycle is indeterminate.

Lemmas 1 to 3 provide preliminary results for diagnosabil-
ity property. Lemma 1 states a monotonicity property of
LV with respect to the subset LsΩ : if a given state belongs
to LsΩ , all its possible successors also belong to LsΩ .

Lemma 1. Given a verifier VG(Ω) = (LV , Σ, eV , l
V
0 , Qε,

Lab) with LV = ∪s∈SLs, for all lV ∈ LsΩ , for all w ∈ Σ∗,
if eV (lV ,w) is defined, then eV (lV ,w) ∈ LsΩ .

Proof. Consider a state lV ∈ LsΩ and a string w
= σ0σ1 . . . σk−1, such that eV (l

V
0 ,w) = lV . Consider

also a string w′ = σk . . . σn, the concatenation ww′

= σ0σ1 . . . σk−1σk . . . σn and the state l′V such that
eV (l

V
0 ,ww′) = eV (lV ,w

′) = l′V . The runs in Ω and VG(Ω),
associated to ww′, that begin respectively from the initial
states s0, and ls00 are referred to as:

ρΩ : s(0)
σ0−→ s(1) · · · σk−1−−−→ s(k)

σk−→ · · · σn−−→ s(n+ 1),

ρV : lV (0)
σ0−→ lV (1) · · ·

σk−1−−−→ lV (k)
σk−→ · · · σn−−→ lV (n+ 1).

Since lV ∈ LsΩ and lV (k) = lV , we have lV (k) ∈ LsΩ and
s(k) = sΩ. Then, according to Definition 3, sΩ is a stable
state and s(k + 1) = · · · = s(n + 1) = sΩ. According to
Definition 7, for the run ρV of the verifier VG(Ω), we have
lV (k), . . . , lV (n + 1) ∈ LsΩ . In particular, l′V = lV (n + 1)
satisfies l′V ∈ LsΩ . �

Lemma 2 states that for any indeterminate cycle, there
necessarily exist two cycles in the verifier VG(Ω): one
composed only of final states and the second composed
only of states that are not final states, both of which lead
to the same sequence of observations as DG(Ω).

Lemma 2. Given an indeterminate cycle cD = lD(1) . . .
lD(n), there exist two cycles cV = lV (1) . . . lV (m) with
lV (1), . . . , lV (m) ∈ LV \ LsΩ and c′V = l′V (1) . . . l

′
V (m

′)
with l′V (1), . . . , l

′
V (m

′) ∈ LsΩ in the verifier VG(Ω) that
lead to the same sequence of observations.

Proof. Each state lD(h), h = 1, ..., n, is indeterminate
and contains two or more states of VG(Ω) (one being in
LsΩ and the other being not).

Consider, in particular, lV (1) ∈ lD(1) ∩ LsΩ . Then, all
successors of lV (1) also belong to LsΩ (Lemma 1). There
exist m1 ≥ 0 successors of lV (1) that belong to lD(1)∩LsΩ
and lV (m1 + 1) ∈ lD(2) ∩ LsΩ . The same reasoning is
repeated for lD(2), . . . lD(n). As far as cD = lD(1) . . . lD(n)
defines a cyclic run in DG(Ω), i.e., lD(n) = lD(1), cV =
lV (1) . . . lV (m1)lV (m1 + 1) . . . lV (mn + 1) defines also a
cyclic run in VG(Ω), i.e., lV (1) = lV (mn+1), and all states
of this run belong to LsΩ .

Consider now l′V (m
′) ∈ lD(n) and l′V (m

′) /∈ LsΩ . Then, all
predecessors of l′V (m

′) also belong to LV \LsΩ . Then, by a
reasoning similar to the previous one, it becomes possible
to design a cyclic run c′V = l′V (1) . . . l

′
V (m

′
1)l

′
V (m

′
1 +

1) . . . l′V (m
′
n +1) in VG(Ω), such that all states of this run

belong to LV \ LsΩ .

The observations resulting from the execution of this cyclic
runs cV and c′V are identical because both coincide with
cycle cD from the perspective of an external observer. �

Lemma 3 states that all strings consistent with a given
sequence of observations, driving the diagnoser state to
a subset of the set of final states, are necessary in the
accepted language of the verifier.

Lemma 3. Given a diagnoser DG(Ω) and a sequence of
observations wq, let lD = eD(lD0 ,wq). If lD ⊆ 2LsΩ , then
P−1(wq) ⊆ LΩ(G).

Proof. Consider a string w with P(w) = P(wq). Let
eD(lD0 ,wq) = lD and lD = {lsΩj1 , . . . , l

sΩ
jk
} ⊆ 2LsΩ . Since

lD0 = RVG(Ω)(l
V
0 , λ) and lD = eD(lD0 ,wq) = {lsΩ1 , . . . , lsΩk },

for each m = 1, . . . , k, there exists the string wm in the
verifier VG(Ω) generating the run ρm from initial state lV0

ρm : lV (0)
σ0−→ lV (1)

σ1−→ · · · σm−1−−−→ lV (m)

such that lV (m) = lsΩjm . According to Definition 8, we

have P(wm) = wq. Since for all m = 1, . . . , k, lsΩjm ∈ LsΩ ,

according to Definition 6, we have wm ∈ LΩ(G) and for
the state lD = {lsΩj1 , . . . , l

sΩ
jk
}, P−1(wq) ⊆ LΩ(G). �

Proposition 3 provides sufficient condition to check diag-
nosability with a given fault pattern.

Proposition 3. Let G be an LFA that satisfies assumption
H. G is diagnosable with regard to Ω if there is no
indeterminate cycle in its corresponding diagnoser DG(Ω).

Proof. Let w ∈ LΩ(G) of length k0 and w′ ∈ L(G)/w
of arbitrarily large length k. Then, consider wq = P(ww′)
with wq = q0 . . . qn in DG(Ω), w

′′ ∈ P−1(wq) with w′′ =
σ′′
0 . . . σ′′

m and the runs respectively associated to wq in
DG(Ω) and to ww′ and w′′ in VG(Ω)

ρD : lD(0)
q0−→ lD(1)

q1−→ · · · qn−→ lD(n+ 1),

ρV : lV (0)
σ0−→ · · · lV (k0 + 1)

σ′
1−→ · · ·

σ′
k−→ lV (k0 + k + 1),

ρ′′V : l′′V (0)
σ′′
0−−→ l′′V (1)

σ′′
1−−→ · · · σ′′

m−−→ l′′V (m+ 1).
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Thanks to Assumption H, L(G) is live, and the length
k of w′ can be as large as necessary. In addition, silent
cycles do not exist in G. Increasing the length of w′ will
necessarily result (sooner or later) in an observable jump
where the state of the observer will change. Thus, the
length n of wq will also increase. For a similar reason the
lengths m of all strings consistent with w′′ also increase.
Consequently, one can find k large enough such that (i)
there exists n′ < n + 1 such that lD(n + 1) = lD(n′) (the
last part of ρD is cyclic since GD(Ω) has a finite number
of states), (ii) lD(n+1) is determinate since DG(Ω) has no
indeterminate cycle and thanks to Lemma 3. Observe that
lV (k0+k+1) ∈ LsΩ∩lD(n+1). Then, for all lV ∈ lD(n+1),
we have lV ∈ LsΩ and in particular, l′′V (m+ 1) ∈ LsΩ .

Then, we conclude that there exists k ∈ N0 such that for all
w′ ∈ L(G)/w, |w′| ≥ k ⇒ P−1(P(ww′)) ⊆ LΩ(G). Thus,
system G is diagnosable with regard to fault pattern Ω. �

Example 4. Consider an LFA G in Fig. 2(a), and its
verifier VG(Ω) in Fig. 2(b). According to Definition 8, we
obtain the diagnoser DG(Ω) shown in Fig. 4. According to
Proposition 3, we know that system G is not diagnosable
with regard to pattern Ω since there exists an indetermi-
nate cycle lD4 lD5 lD6 in DG(Ω).
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Fig. 4. Diagnoser DG(Ω).

4. CONCLUSION

This paper deals with fault pattern diagnosis of discrete
event systems. We propose a verifier based on state iso-
lation properties. The detection of fault patterns can be
obtained by analyzing the structure of the verifier. On the
basis of synchronous product, we introduce the other ver-
ifier for fault pattern detection. We prove that the verifier
is equivalent to the one that can be obtained from the
synchronous product. Then, the diagnosers are provided
for fault pattern diagnosability. Since the diagnoser is of
exponential complexity, in the future work, we will improve
the structures to reduce the complexity. Furthermore, we
will consider diagnosis issues for timed fault patterns.
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