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ABSTRACT

Context. ALMA observations show that dusty, distant, massive (M∗ & 1011 M�) galaxies usually have a remarkable star-formation activity,
contributing of the order of 25% of the cosmic star-formation rate density at z ≈ 3–5, and up to 30% at z ∼ 7. Nonetheless, they are elusive in
classical optical surveys, and current near-IR surveys are able to detect them only in very small sky areas. Since these objects have low space
densities, deep and wide surveys are necessary to obtain statistically relevant results about them. Euclid will potentially be capable of delivering
the required information, but, given the lack of spectroscopic features at these distances within its bands, it is still unclear if Euclid will be able to
identify and characterise these objects.
Aims. The goal of this work is to assess the capability of Euclid, together with ancillary optical and near-IR data, to identify these distant, dusty,
and massive galaxies based on broadband photometry.
Methods. We used a gradient-boosting algorithm to predict both the redshift and spectral type of objects at high z. To perform such an analysis,
we made use of simulated photometric observations that mimic the Euclid Deep Survey, derived using the state-of-the-art Spectro-Photometric
Realizations of Infrared-selected Targets at all-z (SPRITZ) software.
Results. The gradient-boosting algorithm was found to be accurate in predicting both the redshift and spectral type of objects within the simulated
Euclid Deep Survey catalogue at z > 2, while drastically decreasing the runtime with respect to spectral-energy-distribution-fitting methods. In
particular, we studied the analogue of HIEROs (i.e. sources selected on the basis of a red H − [4.5] > 2.25), combining Euclid and Spitzer data at
the depth of the Deep Fields. These sources include the bulk of obscured and massive galaxies in a broad redshift range, 3 < z < 7. We find that
the dusty population at 3 . z . 7 is well identified, with a redshift root mean squared error and catastrophic outlier fraction of only 0.55 and 8.5%
(HE ≤ 26), respectively. Our findings suggest that with Euclid we will obtain meaningful insights into the impact of massive and dusty galaxies on
the cosmic star-formation rate over time.
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1. Introduction

In the last few decades, a major effort has been dedicated to
the statistical identification of galaxies over a wide range of

? This paper is published on behalf of the Euclid Consortium.
?? e-mail: giulia.rodighiero@unipd.it
† Deceased.

redshifts. Multi-wavelength observational campaigns (from the
X-ray to the radio spectral regime) in the deepest extragalactic
fields have allowed the reconstruction of the average properties
of various galaxy populations and their evolution. A fundamen-
tal result is the measurement of the star-formation rate density
(SFRD) of the Universe (e.g. Madau & Dickinson 2014). The
SFRD reached a peak at z ≈ 1–3 (so-called ‘cosmic noon’),
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rapidly declining to the current value. Several works have shown
that the fraction of the SFRD obscured by dust, and therefore not
accounted for by optical/UV surveys at z > 2, is likely not neg-
ligible and increases with redshift at least up to z ≈ 5–7 (e.g.
Novak et al. 2017; Gruppioni et al. 2020; Topping et al. 2022;
Barrufet et al. 2023b; Fujimoto et al. 2023; Algera et al. 2023).
A comprehensive study of high-redshift galaxies (well before
cosmic noon) is of fundamental importance for our understand-
ing of the early epochs of galaxy stellar mass assembly.

The classic technique for selecting sources at z > 3 relies
on their broadband colours: the drop in brightness caused by the
Lyman break (at 912 Å in the rest frame) and/or the Lyman for-
est (between 912 and 1216 Å in the rest frame) is measured. The
selected objects are referred to as Lyman-break galaxies (LBGs).
However, while this approach is straightforward to apply, it is
also affected by significant incompleteness and contamination;
in particular, as a consequence of their redder UV slopes and
relative faintness, LBG selection is known to be notably biased
against massive galaxies (M∗ & 1011 M�; van Dokkum et al.
2006;Bian et al.2013). Indeed,variousmassive,non-UV-selected
galaxy populations have been detected and spectroscopically con-
firmed at z & 3 (e.g. Daddi et al. 2009; Huang et al. 2014).
Among these, optically faint sub-millimetre galaxies (SMGs; i.e.
galaxies discovered at sub-millimetre wavelengths) have been
particularly interesting, as they can be undetectable at high
redshifts, even with the deepest optical/near-IR imaging (e.g.
Frayer et al. 2000; Wang et al. 2019; Smail et al. 2021).

These massive and dusty galaxies have low space densi-
ties and a remarkable star-formation activity, contributing up to
≈20–25% of the cosmic star-formation rate density (CSFRD)
at z ≈ 3–5 (Gruppioni et al. 2020; Talia et al. 2021; Enia et al.
2022; Xiao et al. 2023). In particular, the CSFRD estimated for
H-faint galaxies (H & 26.4, < 5σ) in Sun et al. (2021) is ≈8% of
the CSFRD at this epoch (Madau & Dickinson 2014); the values
suggested by Williams et al. (2019) and Gruppioni et al. (2020)
are approximately 2 to 3 times larger. Despite the importance of
these galaxies, given their faintness and non-detection at most
wavelengths, most of their physical properties remain highly
uncertain, except for in a very few cases with spectroscopic
confirmations (e.g. Wang et al. 2019; Caputi et al. 2021). More
recently, some attempts to characterise these galaxy populations
have been performed thanks to the James Webb Space Telescope
(JWST; e.g. Pérez-González et al. 2023; Barrufet et al. 2023a;
Rodighiero et al. 2023; Barro et al. 2024; Bisigello et al. 2023),
but the areas observed remain small. It is thus clear that map-
ping the full cosmic star-formation history and understanding
the early phases of massive galaxy formation require the study
of the star formation in massive galaxy populations to be as com-
prehensive as possible at z > 3.

To this end, several colour-selection methods have been pro-
posed to identify this optically faint massive galaxy population.
In particular, Wang et al. (2016) present a method based on the
H − [4.5]/J − H diagram that enables a rather clean selection
of z > 3 galaxies, which are usually called HIEROs (Extremely
Red Objects with H and IRAC colours). However, the separation
of high-redshift galaxies from low-redshift contaminants remains
difficult. Multi-wavelength observations that sample the spectral
energy distribution (SED) of the sources are also widely used
to measure their photometric redshifts and physical parameters
(such as stellar mass, star-formation rate, stellar age, and extinc-
tion; e.g. Weaver et al. 2022; Laigle et al. 2016; Ilbert et al. 2009).
The most used technique that leverages this kind of information
is template-fitting (e.g. Benitez 2000), which uses a set of theo-
retical or empirical SED templates for the estimations.

In recent years, the large amount of data provided by a
wealth of extragalactic surveys has enabled the use of supervised
machine learning techniques, in which the mappings between
inputs (photometry in different bands) and outputs (redshift or
other physical properties) are learned through a reference, or
training, sample. Their most obvious advantage is the much
higher efficiency in memory usage and computational time with
respect to SED-fitting techniques, for example seconds instead
of days when dealing with millions of objects.

Nonetheless, although these new empirical methods were
found to outperform even the accuracy of template-based meth-
ods (Abdalla et al. 2011) and although their use has become very
common (e.g. Ball et al. 2008; Pasquet et al. 2019; Liu et al.
2019; Euclid Collaboration 2023b), no detailed study has as of
yet focused on distant galaxies (z > 3). In fact, the photometric
redshift accuracy of these objects is not well determined because
of a lack of sufficiently large reference samples with spectro-
scopic redshifts and the paucity of deep near-IR data. Further-
more, massive galaxies are rare, and wide fields are needed to
obtain statistically relevant results.

Taking all these issues into account, the upcoming Euclid
Space Telescope (Laureijs et al. 2011) will open up new pos-
sibilities for the study of these objects by observing a large
area of the sky at near-IR wavelengths. Most of the mission’s
observations will comprise a wide survey, covering approxi-
mately 15 000 deg2 down to a 10σ depth of 24.5 mag in the vis-
ible filter and down to a 5σ depth of 24 mag at near-IR wave-
lengths. A deep survey two magnitudes deeper than the wide
survey will also be conducted over 50 deg2 in the Euclid Deep
Fields (Euclid Collaboration 2022a). The Euclid Deep Fields
are expected to contain millions of z > 3 galaxies and there-
fore enable studies of early galaxy formation and evolution with
unprecedented statistical significance.

Given the limited number of Euclid photometric bands (a
visible band, IE, and three near-IR bands, YE, JE, and HE),
efforts are being made to complement Euclid space-based data
with ground-based data in the UV to visible spectral range
(Laureijs et al. 2011; Ibata et al. 2017). Combined with exist-
ing Spitzer Space Telescope surveys (near-IR light; Capak et al.
2016, Masters et al. 2019, e.g. Euclid Collaboration 2022b),
these data will provide a comprehensive description of the SEDs
of galaxies up to the epoch of reionisation.

It is thus essential to assess the capability of the Euclid
filters (combined with the ancillary data) to identify high-
redshift galaxies, in particular the massive and dusty popula-
tion, through precise photometric redshifts, and to characterise
their spectral types. In this work we propose performing such
a task by using simulated Euclid photometric observations. We
adopted simulated data from Spectro-Photometric Realizations
of Infrared-selected Targets at all-z (SPRITZ; Bisigello et al.
2021). This choice was based on the fact that this phenomeno-
logical simulation, which includes both star-forming galax-
ies and active galactic nuclei (AGN), reproduces the statistics
and the evolution of the far-IR sources well (number counts
and luminosity functions), that is to say, the dusty massive
population.

Since the methodology proposed in this work (i.e. a gradient-
boosting algorithm) returns a photometric redshift for each
source selected within the simulated lightcone, we present the
general performance for the optimised z > 2 range (where the
algorithm is trained). However, in this paper we focus our atten-
tion on a specific class of objects: the HIEROs. They represent an
ideal population for testing the ability of Euclid, combined with
ancillary data, to recover dark galaxies beyond cosmic noon.
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The structure of the paper is as follows. In Sect. 2 the simu-
lated catalogue and the data used are introduced. In Sect. 3 our
main methods are described, and the obtained results are pre-
sented in Sect. 4. Finally, Sect. 5 summarises the main results
and the perspectives for the Euclid mission.

Throughout the paper, we assume a Λ cold dark matter cos-
mology with H0 = 70 km s−1 Mpc−1, Ωm = 0.27, and ΩΛ =
0.73. All magnitudes are in the AB system (Oke & Gunn 1983).

2. Data

2.1. The SPRITZ simulation

SPRITZ (Bisigello et al. 2021) is a state-of-the-art simulation
based on a set of observed galaxy stellar mass functions and
luminosity functions, mainly in the IR, derived for different
galaxy populations. In this work we consider the version 1.13
of the simulation, with updates the dwarf irregular galaxy stel-
lar mass function used in input and includes CO and [C ii]
line luminosities, as presented in Bisigello et al. (2022). Briefly,
each simulated galaxy is assigned a unique SED template,
taken from a set of 35 empirical templates (Polletta et al. 2007;
Rieke et al. 2009; Gruppioni et al. 2010; Bianchi et al. 2018).
These templates are of low-z galaxies, but they represent a good
description of galaxies observed by Herschel up to z = 3.5
(Gruppioni et al. 2013) and by the Atacama Large Millime-
ter/submillimeter Array (ALMA) at z = 6 (Gruppioni et al.
2020). A set of empirical and theoretical relations is then used
to link each source to its physical properties, such as stellar
mass, star-formation rate and AGN contribution. The galaxy
populations included in the simulations are spirals, starbursts
(SBs), ellipticals, dwarf irregulars, AGN, and composite AGN.
The AGN population includes both type-1 and type-2 AGN,
and this classification is based on the optical/UV part of their
spectrum. Composite AGN include objects with an AGN com-
ponent that is not the dominant source of bolometric emission,
because they are intrinsically faint – referred to as star-forming
AGN (SF-AGN) – or because they are extremely obscured by
dust – referred to as starburst AGN (SB-AGN). The choice of
such galaxy populations was motivated by the variety of galax-
ies observed by Herschel up to z = 3.5.

The resulting mock catalogues are found to be consistent
with a large variety of observations, including the stellar mass
versus star-formation rate relation, luminosity functions (LFs)
and number counts from X-ray to radio, demonstrating that this
simulation is suitable for making predictions for a set of future
surveys operating particularly, but not only, at IR wavelengths.
In particular, we highlight that the simulation is in agreement
with the IR LF observed at z ∼ 6 (Gruppioni et al. 2020) as well
as the [C ii] and CO LFs at z = 4–6 (e.g. Riechers et al. 2019;
Loiacono et al. 2021; Boogaard et al. 2023). For more details on
SPRITZ, we refer to Bisigello et al. (2021).

In this work, we made use of this simulation for forecast-
ing high-redshift galaxy identification in the Euclid Deep Fields,
noting that the results obtained in this work are an optimistic
version of the ones that will be obtained from real data.

2.2. The simulated Euclid Deep Fields catalogue

As reported in Sect. 1, the Euclid Deep Survey will observe
an area of at least 40 deg2 in four filters: IE from the visi-
ble instrument (VIS, Cropper et al. 2016) and YE, JE, and HE
from the Near Infrared Spectrometer and Photometer (NISP,

Fig. 1. Redshift distribution (top) and stellar mass as a function of red-
shift (bottom) of the simulated galaxies obtained with SPRITZ for the
Euclid Deep Survey, colour-coded by their SED type (see the legend).
Markers represent the median value in the redshift bin and shaded areas
the corresponding 68% coverage interval. For details about the mass
function distribution at different redshift ranges, we refer the reader to
Bisigello et al. (2021).

Euclid Collaboration 2022d), with 5σ depths between 26 and
27.3 AB magnitudes.

Including galaxies with at least one Euclid filter with signal-
to-noise ratio ≥ 2, this combination of depth and area results in a
simulated catalogue with a total of 33 650 754 objects with red-
shifts from 0 to 10. The redshift distribution and the stellar mass
as a function of redshift are shown in Fig. 1. Irregular galaxies
with stellar masses below M∗ ≈ 1011 M� are expected to dom-
inate the number counts of the survey. At the same time, given
the brightness of AGN1, we expect to observe them down to
M∗ ≈ 108 M� even at the highest redshifts.

In this simulated catalogue, we also included photometry
in additional filters, from Rubin and the Spitzer Infrared Array
Camera (IRAC, Fazio et al. 2004), as these ancillary obser-
vations will be available to complement Euclid space-based
data (Euclid Collaboration 2022a), at least for a fraction of the
observed fields. It should be noted, however, that the IRAC pho-
tometry is affected by source confusion at faint magnitudes.
Specifically, at IRAC/3.6µm > 22, a de-blending based on the
available Euclid data (Euclid Collaboration 2022b) will be nec-
essary when dealing with real observations. The expected 5σ and
2σ depths of the Euclid, Rubin and IRAC bands are reported in
Table 1.

Photometric errors

In the SPRITZ lightcone used in this work, only the Euclid pho-
tometric bands have an associated observational uncertainty (i.e.
the errors on the simulated magnitudes). We perturbed the Rubin
and Spitzer fluxes to mimic realistic observations. In particular,
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Table 1. Depths of the filters considered in this work.

Band 5σ Depth 2σ Depth

IE 28.2 29.2
YE 26.3 27.3
JE 26.5 27.5
HE 26.4 27.4
Rubin/u 26.8 27.8
Rubin/g 28.4 29.4
Rubin/r 28.5 29.5
Rubin/i 28.3 29.3
Rubin/z 28.0 29.0
IRAC/3.6 µm 24.8 25.8
IRAC/4.5 µm 24.7 25.7

Notes. Expected 5 and 2σ depths of four Euclid filters, Rubin ugriz
filters for the Deep Drilling Fields (Foley et al. 2018) and Spitzer IRAC
3.6, 4.5 µm (Euclid Collaboration 2022b) filters, as considered in this
work.

the Rubin total photometric error has both a systematic and a
random contribution and can be written as (Ivezić et al. 2019)

σ2 = σ2
sys + σ2

rand , (1)

where σrand is the random photometric error and σsys is the sys-
tematic one. Given that the Rubin telescope is designed to have
a systematic error below 0.005 mag, we decided to neglect it in
this work. The random photometric uncertainty can be written as
a function of the magnitude (Ivezić et al. 2019):

σ2
rand = (0.04 − γ)x + γx2 (2)

x ≡ 100.4(m−m5) , (3)

where m5 is the 5σ depth (see Table 1) and γ is a parameter
equal to 0.039 for the g, r, i, and z bands and 0.038 for u. The
photometry for each galaxy in each Rubin filter was then derived
by randomly sampling a Gaussian distribution with mean equal
to the true value and standard deviation σrand.

Similarly, for the two Spitzer bands (IRAC/3.6 µm and
IRAC/4.5 µm), we considered errors from Laigle et al. (2016)
and parametrised them using Eqs. (2)–(3) with m5 as in Table 1
and γ = 0.038.

2.3. Photometric selections

The first step in our analysis was to validate the simulated Euclid
Deep Field catalogue’s compatibility with a set of observed pho-
tometric diagnostics available from the literature, with a focus
on high-z galaxies. The main focus in this work is the dusty and
massive galaxy populations at 3 . z . 7. For their selection, we
relied on the evolutionary H − [4.5] tracks of a set of theoreti-
cal galaxy SED templates for z > 3, assuming the colour cut-off
suggested by Wang et al. (2016):

H − [4.5] > 2.25. (4)

This colour was proposed to select old or dusty galaxies at z > 3.
Objects satisfying this criterion are referred to as HIEROs. In
particular, it was found that almost none of the spectroscopically
confirmed LBGs at z > 3 satisfies this criterion. These are exam-
ples of the types of objects missed by conventional UV/optical
surveys that we aim to recover with the future Euclid Deep Sur-
vey. Furthermore, based on the colour tracks of theoretical mod-
els and their photometric redshifts, HIEROs can be separated in

two main classes:

blue HIEROs, H − [4.5] > 2(J − H) + 1.45 ; (5)
red HIEROs, H − [4.5] ≤ 2(J − H) + 1.45 . (6)

According to Wang et al. (2016), blue HIEROs are domi-
nated by normal massive and dusty star forming galaxies at
z & 3. Red HIEROs, instead, include a mix of lower z ∼ 2−3
dusty star forming objects and passive galaxies at z ∼ 3−4. Pas-
sive galaxies are expected to be the most massive systems at any
cosmic epoch, and are thus relevant for our study.

Figure 2 (left panel) shows the HE − [4.5]/JE − HE diagram
for the Euclid Deep Survey simulated catalogue with 2 ≤ z ≤ 8
and fluxes brighter than their 5σ detection limits, coloured by
redshift. To better highlight the different populations, in the top-
right panel we report their redshift distributions: a clear differ-
ence arises between HIEROs and other objects, with 99% of
HIEROs being at z > 3 and 43% of non-HIEROs being above
the same redshift.

The bottom-right panel shows, instead, the extinction prop-
erties for red and blue HIEROs (in terms of AV distributions).
As expected, their red colours are mostly due to the presence of
dust, with the bulk of AV ∼ 4 mag and spanning values up to
5.5 mag. We note that by selection both blue and red HIEROs
include highly extinguished objects (Wang et al. 2016), so it is
natural to observe consistent AV distributions (while keeping in
mind that blue and red HIEROs peak at different cosmic epochs).

Given that in our simulation red HIEROs dominate the num-
ber densities of red sources at z ∼ 4, while blue HIEROs pop-
ulate the higher redshift queue up to z ∼ 7–8, we included in
the following discussion the study of the overall class of Euclid
sources with H − [4.5] > 2.25, focusing on the 3 < z < 7
redshift range (where the bulk of HIEROs lye). To check the
representativeness of our HIERO mock catalogue, we compared
the overall number densities with the observations of Wang et al.
(2016), who selected HIEROs with [4.5]< 24 over an area of
350 arcmin2 and detected a cleaned sample of 285 sources.
Restricting our selection (i.e. requiring at least four detections
at S/N > 2 in the considered bands; see Sect. 3.2.2) to the
same magnitude limit of Wang et al. (2016), we identify 155
objects over the same area. However, if we mimic the Wang et al.
(2016) selection by simply requiring a 5σ detection at 4.5µm,
and [4.5] < 24, the number of predicted HIEROs increases to
425 (over 350 arcmin2). The variance on the predicted space den-
sities, related to the assumed selection function, shows that the
our mock catalogue provides a statistical sampling of the HIERO
population consistent with the real world.

To understand the role of HIEROs in the stellar mass assem-
bly, we report in Fig. 3 (black lines) the overall stellar mass func-
tion for galaxies in the redshift range 4 < z < 6 from SPRITZ,
split in two z bins. The mass function limited to HIEROs is also
reported (red lines), showing the dominant contribution of this
population to the massive end of the stellar mass function at
z > 4. Both at z = 4.5 and 5.5, HIEROs constitute approxi-
mately 93% of the galaxies with M∗ > 1011.5 M� and 32% of the
galaxies with M∗ > 1010.5 M�. The figure includes the observed
mass function of HIEROs at z ∼ 4−5 from Wang et al. (2016),
confirming the consistency of our model with the observations,
within the uncertainties.

Finally, in Fig. 4 we show the most representative SED tem-
plates in SPRITZ for this population of galaxies, specifically the
four most numerous templates used to generate red and blue
HIEROs.
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Fig. 2. HIEROs selection, redshift and extinction in the Simulated Euclid Deep Survey Catalogue. Left: HE − [4.5] versus JE −HE diagram for the
simulated Euclid Deep survey catalogue (5σ depth) colour-coded by redshift. Top right: Redshift distribution of red HIEROs (red), blue HIEROs
(blue), and galaxies with HE − [4.5] < 2.25 (grey). Bottom right: Optical extinction distribution of red HIEROs (red) and blue HIEROs (blue). We
normalised each histogram to obtain an area equal to unity.

Fig. 3. Contribution of HIEROs to the galaxy stellar mass function in
SPRITZ at z > 4 (red line). The grey and red shaded areas include the
errors of the initial luminosity functions used to derive simulated galax-
ies and the uncertainties due to the high-z extrapolation (z > 3). The
observed stellar mass function for HIEROs measured by Wang et al.
(2016) at 4.5 < z < 5.5 is reported in both panels as filled orange
squares.

3. Methods

In this section, we introduce the methods and the metrics that
we used to estimate the capability of the future Euclid Space
Telescope to identify high-redshift galaxies.

3.1. Gradient-boosted trees

We considered a gradient-boosting approach to independently
predict both the redshifts and the SED types, based on the
observed fluxes in different bands. This corresponds to a regres-
sion and a classification problem, respectively. Other meth-
ods have been proposed in the literature to classify differ-

Fig. 4. The four most numerous SED templates used in SPRITZ for the
generation of red HIEROs (red and orange) as considered at z = 4, and
blue HIEROs (blue and light blue) at z = 5.5. The flux is in arbitrary
units. We also show the wavelength coverage of the photometric bands
considered in this work.

ent galaxy populations in Euclid (e.g. Bisigello et al. 2020,
Euclid Collaboration 2023a) or to derive photometric redshifts
(e.g. Euclid Collaboration 2020, Bisigello et al. in prep.), but
none of these is focused on high-z galaxies.

The method proposed in this paper is a type of ensemble
algorithm, in which the relationships between the features x and
the target variables y = f (x) are learned by sequentially fitting
new models: new decision trees (a representation of the decision
tree model is shown in Fig. 5) are constructed to be maximally
correlated with the negative gradient of the loss function associ-
ated with the ensemble. The loss function is chosen according to
the task, while structural and learning parameters (referred to as
hyperparameters) have to be tuned in a data-driven fashion.

The algorithm used in this work is implemented in the
software package XGBoost (Chen & Guestrin 2016). Here we
briefly summarise its main features while for more details we
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Fig. 5. Decision tree model. Grey nodes are called internal nodes and
the orange ones, which represent the tree predictions, leaf nodes. Fea-
tures are indicated with x1, x2, x3, or x4 and predictions with ỹ. Every
internal node is labelled with an input feature. The arcs coming from
a node labelled with an input feature (for example x4) to a leaf node
(orange) are labelled with each of the possible values of the target fea-
ture (for example ỹ = 2.5 or ỹ = 5.4); otherwise the arc leads to a
subordinate decision node on a different input feature. For example the
arcs starting from the node labelled x2 lead to decisions based on the
value of x4 and x1.

refer to the paper in which the library is presented or the online
documentation1.

There are four main reasons to use gradient-boosted trees,
and in particular XGBoost, in this work:

1. Execution speed: Generally, XGBoost is faster than back-
propagation-based models (e.g. neural networks), and even than
some other gradient-boosting implementations (Pafka 2015).
In addition, and of particular interest for galaxy identification,
its support for hardware acceleration makes the speed differ-
ence with any SED-fitting algorithm very advantageous (see
Sect. 3.5).

2. Model performance: Gradient-boosting dominates struc-
tured and tabular datasets on both regression and classification
predictive modelling problems. It is the go-to algorithm for com-
petition winners on Kaggle2.

3. Decision-based splits: In the decision tree model, the split-
ting occurs at certain thresholds for every feature (see Fig. 5).
This makes the model more robust to outliers and to the pres-
ence of only upper or lower limits in certain attributes, because
it does not make any difference how far a point is from such
thresholds.

4. Missing values handling: The dataset used in this work
includes missing data (NaNs) in one or more of the features.
Traditionally, to handle NaNs one can specify a fixed value to
replace missing numbers, or impute them with either the mean or
the median of that feature. It is obvious that this approach might
not always be the best choice. XGBoost enhances the function
class to learn the best way to handle missing values: the idea is
to learn a ‘default direction’ for each node and guide the sample
with missing values along the default directions. This approach
can be seen as an implicit way of imputing missing numbers.

1 https://xgboost.readthedocs.io
2 Kaggle (https://www.kaggle.com/) is a community of data sci-
entists and a place to find and publish datasets, explore and build mod-
els in a web environment, and participate in data science and machine
learning competitions (with prizes).

We might also have considered other recent gradient-boosting
implementations, for example CatBoost (Prokhorenkova et al.
2017) or LightGBM (Ke et al. 2017), which should perform very
similarly to XGBoost. However, a systematic comparison of dif-
ferent gradient-boosting libraries is beyond the scope of this
work. We opted for XGBoost due to its longer presence in the
field, which has allowed for a more mature development of fea-
tures and a wider user community.

XGBoost hyperparameters

A hyperparameter is a parameter whose value is used to con-
trol the learning process, which, as a consequence, cannot be
learned, but has to be set by the user by evaluating the machine
performance while varying its value.

The most impactful XGBoost hyperparameters are as fol-
lows:

– The number of estimators refers to the number of gradient-
boosted trees fitted during the learning process. Larger values
lead to more complex models, which, however, are more prone
to overfitting3.

– The learning rate is the rate at which new trees are added
to the ensemble. Lower values lead to a slower addition of new
trees, thus preventing (or at least slowing down) overfitting.

– The maximum depth refers to that of a tree. Increasing this
value will make the model more complex and more likely to
overfit.

– γ is defined as the minimum loss reduction required to
make a further partition on a leaf node of the tree. The larger
γ is, the more conservative the algorithm will be.

– λ is the L2 (squared norm) regularisation term on the
weights. Increasing this value will make the model more con-
servative.

– The column sample by tree is the subsample ratio of
columns when constructing each tree. Subsampling occurs once
for every tree constructed.

The values used in this work and the optimisation method
used to derive them are reported in Sect. 3.5.

3.2. Data preprocessing and feature engineering

Data preprocessing is a fundamental step in machine learning,
since the quality of data greatly impacts the capability of a model
to learn. Therefore, before feeding the data to the machine learn-
ing model and tuning its hyperparameters, we preprocessed it by
performing feature engineering and data cleaning. To begin, the
magnitude cut applied to the simulated Euclid lightcone was set
to a depth of 2σ, and we defined magnitudes larger than their 2σ
limit (see Table 1) as missing numbers.

In the following analysis, we considered only objects at
2 ≤ z ≤ 8. This selection yields a dataset with 6 304 179 galax-
ies. We did not consider galaxies at z < 2 since the official photo-
z pipelines are very well optimised for identifying low-redshift
galaxies (see e.g. Euclid Collaboration 2023b, 2020). By utilis-
ing them, we assumed that we would have a clean selection of
high-redshift objects.

To test the validity of this assumption, an analysis address-
ing potential contamination from low-redshift sources in the
selection of HIEROs candidates is presented in Appendix D. In
the same appendix we also assess the contamination by brown
dwarfs.

3 Overfitting is the production of an analysis corresponding too closely
to a particular dataset, and might thus fail to predict new observations
reliably.
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3.2.1. Features engineering

In this work, each element in the data refers to the simulated
photometry of a particular galaxy. To provide more information
for the objects, some derived features are also included: the more
that is known about the SED of a galaxy, the better the inference
will be. The number of features provided in the dataset is limited
to 11 (four Euclid, five Rubin, and two IRAC bands; see Table 1);
therefore, we decided to include some additional features to add
more information for the training. In particular, we included the
following features.

– Differences: Pairwise (without permutation) differences of
the magnitudes.

– Ratios: Pairwise ratios between magnitudes without per-
mutation. Even though they have no physical meaning, they are
used because we empirically found that they help the training,
increasing (albeit slightly) the performance.

– Errors: Parametric photometric errors associated with each
band, as given by Eq. (2) (applied to the perturbed magnitudes).
This parametrisation is also applied for the Euclid magnitudes
even tough their uncertainties are provided in the catalogue, as
these are computed analytically starting from the true flux, unaf-
fected by photometric errors.

This process generates a total of 132 features, whose impor-
tance is reported and discussed in Appendix C.

3.2.2. Data cleaning

To have a more reliable set of measurements, only objects
detected (i.e. S/N > 2) in at least four bands are used for esti-
mating photometric redshifts; their counts for different z ranges
are reported in Table 2 and the fraction of detections per band
(computed after the cleaning procedure) in Table 3. The choice
of going to such a low S/N is explained in Sect. 3.4. We remind
the reader that the starting catalogue contains galaxies with at
least one detection in a Euclid filter.

This cleaning procedure removes roughly 18% of the initial
data, yielding a total of 5 174 988 galaxies. To show how the
redshift distribution is not strongly affected by the cleaning per-
formed, the percentage reduction of objects in different redshift
ranges is also reported in Table 2.

In the following photometric redshift estimation procedure,
for bands with missing numbers (which replaced magnitudes
fainter than their 2σ detection limits), 2σ magnitude lower lim-
its are used (see Table 1). Missing colours and ratios of magni-
tudes are also replaced with the 2σ magnitudes lower limits of
the missing band (if only one) instead of their upper or lower
limit, or left missing (if both magnitudes are missing).

These choices were taken in order to avoid the contamina-
tion of detected colours and ratios with other lower or upper
bounded ones; they furthermore provided slightly better perfor-
mance. Some clarifying examples are shown in Table A.1.

3.3. Performance metrics

Three metrics were used to evaluate the redshift prediction per-
formance (m indicates the number of objects in the sample, z
the true redshift, and z̃ the model-predicted redshift), the root
mean squared error (RMSE), the bias (〈∆z〉), and the normalised
median absolute deviation (NMAD), and the and the catas-
trophic outlier fraction (OLF):

RMSE =

√√
1
m

m∑
i=1

(zi − z̃i)2 ;

〈∆z〉 =
1
m

m∑
i=1

(z̃i − zi) ;

NMAD = 1.48 median
(
|z − z̃|/(1 + z)

)
;

OLF =
1
m

∣∣∣{z̃ : |z − z̃|/(1 + z) > 0.15}
∣∣∣ .

For spectral type classification, to evaluate the model we used a
simple accuracy metric:

Accuracy =
Number of correct predictions
Total number of predictions

·

3.4. The training set

To train and evaluate the model, the dataset must be divided into
two subsets. The first one, of size Ntrain, is used to fit the model
and is referred to as the training set. The second, of size Ntest,
is not used to train the model; instead, its input elements are
provided to the model to make predictions. This second subset
is referred to as the test set. The objective of such a division was
to estimate the performance of the machine learning model on
new data. This procedure is called a train-test split and depends
on the percentage size of the training and test sets with respect
to the initial dataset.

To ensure the model is trained effectively, in real-world
observations a training set must be built with the most robust
measurements and accurate redshift estimations available. The
redshifts in a training set are thus required to be estimated spec-
troscopically or with very reliable photometry derived from a
larger number of bands than those that will be available with
Euclid + ancillary data. Consequently, as detailed in Sect. 3.2.2,
we decided to extend our analyses to objects with S/N > 2, as in
real observations these objects will be supplemented with addi-
tional information that compensates for such a low S/N.

While in practical applications one typically has limited con-
trol over the size of the training set Ntrain, when forecasting future
surveys observations it is useful to assess what dimension of
the training set is required to obtain a given prediction perfor-
mance. In this first part, the minimum training set size required
to obtain good test performance is found by performing a base-
line XGBoost regression on different numbers of training points
Ntrain and then comparing the results obtained.

Figure 6 shows the RMSE, OLF, and NMAD improvement
(evaluated on a test set of 1 000 000 galaxies subdivided into dif-
ferent redshift ranges) for different training set sizes4, as a func-
tion of Ntrain/(Ntrain + Ntest). By analysing such curves, we came
to the following conclusions:

– All three performance metrics reported increase as Ntrain
increases, as expected, but they begin to flatten for large Ntrain
values. In general, the size of the training set required to obtain a
certain precision depends on the diversity built into the dataset:
for photometric redshifts it depends on the redshift range, mean-
ing that the narrower the redshift range, the smaller the Ntrain
required;

– The performance gain is in every case larger for higher
redshift objects with respect to lower redshift ones; for example,
the RMSE improvement for objects at 6 < z ≤ 7 becomes more
than five times larger than the one for z ≤ 3 galaxies.

4 The improvement of a metric for a training set of size Ntrain, with
respect to the initial training set size one, M0, is defined as M0 −

M(Ntrain), where M(Ntrain) is the metric evaluated after training with
Ntrain data points.
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Table 2. Counts per squared degree for objects detected in at least four bands.

z Total Spiral SB SF-AGN SB-AGN AGN1 AGN2 Elliptical Irregular HIEROs

2 ≤ z < 3 73 906 508 4612 784 3498 1267 480 598 62 159 152
(17.08%) (9.47%) (18.32%) (6.08%) (20.19%) (5.22%) (18.22%) (22.92%) (17.13%) (27.17%)

3 ≤ z < 4 30 205 111 2447 205 2195 568 165 10 24 504 1107
(17.38%) (11.1%) (14.97%) (7.05%) (18.11%) (6.0%) (10.94%) (67.0%) (17.87%) (7.81%)

4 ≤ z < 5 14 027 62 1179 125 1092 258 57 0 11 253 1979
(19.31%) (7.54%) (12.41%) (5.9%) (17.03%) (8.89%) (9.88%) (100%) (20.61%) (4.55%)

5 ≤ z < 6 6554 34 595 78 526 120 20 0 5182 1443
(22.45%) (6.36%) (12.66%) (6.66%) (16.26%) (10.72%) (9.46%) (0%) (24.54%) (3.57%)

6 ≤ z < 7 3144 18 311 49 255 60 7 0 2444 801
(21.49%) (7.55%) (13.79%) (5.92%) (10.58%) (10.7%) (10.48%) (0%) (23.91%) (3.94%)

7 ≤ z < 8 1540 11 175 31 125 30 3 0 1166 356
(25.85%) (10.13%) (16.18%) (8.7%) (19.66%) (9.79%) (16.67%) (0%) (28.5%) (17.88%)

Notes. Counts per squared degree for different redshift intervals and spectral types for objects detected at least in four bands. In parentheses we
indicate the percentage of objects lost during data cleaning, which does not show a strong dependence on redshift. We lose 100% of elliptical
galaxies at 4 ≤ z < 5, but the starting catalogue contained only eight of them in this redshift range. We also present the counts for HIEROs, which
are also only marginally affected by our data cleaning process.

Table 3. Fraction of detections, i.e. S/N > 2, per considered band for objects detected in at least four bands.

Rubin/u Rubin/g Rubin/r Rubin/i Rubin/z IE YE JE HE IRAC/3.6 µm IRAC/4.5 µm
16.4% 75.8% 94.6% 96.2% 93.2% 94.5% 46.3% 71.6% 87.2% 60.1% 61.6%

The number of detected galaxies at z < 4 is about four times
the number of higher-z galaxies (see Table 2). This means that
larger training sets are important to constraint the redshifts of
rare objects: the majority of galaxies in the dataset (and, con-
sequently, in the training set) are at low redshifts, so the train-
ing process gives more weight to the predictions for galaxies
at low redshifts with respect to the other galaxies. Furthermore,
for machine learning models, high-z objects are more difficult
to identify than lower-z ones, given their larger photometric
uncertainties.

To conclude, all the curves reported in Fig. 6 show an onset
of a plateau at an Ntrain corresponding to roughly 10% of the
data size. This 10%–90% train–test split will then be used in the
following analyses.

3.5. Hyperparameter tuning and time performance

A Bayesian hyperparameters optimisation with cross-validation
is then run on a training set large 10% of the total data size.
The hyperparameters delivering the lowest RMSE thus found are
reported in Table 4.

Timed on a workstation with a 2.20 GHz Intel Xeon CPU
and a 16 GB Tesla P100-PCIE GPU, an XGBoost regressor with
these hyperparameters takes 70 s to train on a dataset with
517 498 samples and 132 features, and 40 s to estimate the red-
shift for the 4.6 million galaxies in the test set. To demonstrate
the difference in speed with SED-fitting methods, performing
this operation with LePHARE (Arnouts & Ilbert 2011) on similar
hardware requires approximately 0.23 s per object (considering
463 680 different combinations of SED template, redshift, age
and dust extinction). Estimating the photometric redshift for all
the galaxies in the test set would then need approximately 12
days.

4. Results

During the testing phase, we set a higher significance threshold
by considering only observations with at least one band hav-
ing S/N > 5. This additional criterion, in conjunction with
the requirement of at least four detections at S/N > 2 (see
Sect. 3.2.2), aimed to minimise inclusions of spurious objects
such as noise spikes, halos, and artefacts that would result from
real observations. This removes roughly 21.728% of the initial
test data Ntest, yielding a total of 3 645 481 galaxies. The results
reported hereafter are thus relative to this dataset.

4.1. Photometric redshifts

The photo-z performance for the test set is summarised in
Table B.1 and shown in Fig. 7.

This figure clearly illustrates the trend of the performance
metrics:

1. Top-left panel: The errors increase with redshift, as
expected and noted in Sect. 3.4.

2. Bottom panels: The precision of the predicted redshift
decreases for fainter objects, as these are usually found at higher
z and they come with detections in fewer bands; this practically
means the input features vectors contain less information to learn
and infer from.

3. Top-right panel: The lowest errors (RMSE = 0.22) are
obtained for elliptical galaxies, and the largest for AGN1, SF-
AGN, and SBs (RMSE > 0.5). This behaviour may be related
to their variability5 and (for SBs) their number density evolu-
tion with redshift: while ellipticals quickly drop from z = 2 to
disappear at z ' 3.5, SBs are observed at any redshift.

Furthermore, by removing the IRAC bands from the input
features, we note (Fig. 7, top-left panel) how mid-IR data
improves redshift estimation especially for z & 4 galaxies.
5 Data variability refers to how spread out a set of data is.
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Fig. 6. Photometric redshift prediction performance improvement (as defined in Footnote 4) with respect to the metrics with the initial training set
size (0.5% of the total number of galaxies), as a function of the training set size, evaluated on a sample of 1 000 000 test galaxies. From left to right
we plot: the RMSE, OLF, and NMAD for different redshift intervals, as indicated in the legend.

Table 4. Best XGBoost hyperparameters.

Number of estimators 530
Learning rate 0.01
Max depth 12
γ 0
λ 7.7 × 10−5

Column sample by tree 0.6

Comparison with previous results

To give context to the results obtained, we compared them to
previous photometric redshift performance, in a similar red-
shift range, as reported in Weaver et al. (2022, hereafter W22).
There, the precision of the photometric redshifts obtained with
LePHARE using 39 bands, and included in the COSMOS2020
catalogue, is assessed against spectroscopic ones over the Cos-
mic Evolution Survey (COSMOS, Scoville et al. 2007) field (0 <
z < 6).

The photometric catalogues created in COSMOS, with their
rich multi-wavelength coverage, have for years constituted the
state of the art reference to predict the quality of photo-zs.
Within the Euclid Collaboration (Euclid Collaboration 2020),
this assessment has been done using the COSMOS2015 cata-
logue (Laigle et al. 2016). Improving on previous releases, the
COSMOS2020 catalogue features significantly deeper optical,
IR, and near-IR data and thus gains almost one order of magni-
tude in photometric redshift precision compared to its predeces-
sor COSMOS2015.

Comparing the results reported in W22 and those obtained in
this work using a gradient-boosting approach on the simulated
Euclid Deep Survey catalogue, we find that even in the faintest
25 < i < 27 bin, gradient-boosting provides a lower NMAD
(0.019 versus 0.044), and also a lower OLF (0.005 versus 0.204).
Overall, the performance of the XGBoost method presented in
this work is comparable to the performance of previous SED-
fitting at each magnitude range, but our process is based on a
notably smaller number of filters as inputs (i.e. 11 instead of 39).

It is important to remind the reader that our results are
derived from simulated data, which is a simplified representation
of reality, and therefore may not reflect actual performance accu-
rately and could potentially overestimate it. The aim of this com-
parison is therefore to show that our performance is in line with

previous studies without stressing much the one-to-one direct
comparison.

To conclude this photo-z section, we estimate that in the
range z > 6 the fraction of contaminants is relatively low,
at 12%, while the completeness is around 72%. For compari-
son, Euclid Collaboration (2022c), using the same set of pho-
tometric bands (Euclid+ Rubin + Spitzer) and estimating with
LePHARE the photometric redshifts of mock galaxies created
from the Ultra Deep Survey with the VISTA telescope (UltraV-
ISTA, McCracken et al. 2012), obtained at z > 6 a contamination
fraction of 12% for bright UltraVISTA-like galaxies, with a z > 6
completeness of 95%. For fainter sources (25.3 ≤ HE < 27.0),
contamination is more prevalent at 35%, with a z > 6 complete-
ness of 88%. Our smaller completeness and contaminant frac-
tions are mostly due to the unbalanced redshift distribution in
the dataset (and consequently in the training set), as pointed out
in Sect. 3.4. In fact, objects at z > 6 are systematically placed at
lower redshifts, as their average offset z̃−z is ≈−0.483, while for
objects at z < 6 it is ≈0.001. However, this paper focuses mainly
at 3 < z < 7 , where the XGBoost performance is better, with a
completeness of 89.3% and a contaminant fraction of 7.73%.

4.2. SED type classification

We also performed an independent experiment, applying the
same methodology with the aim of recovering the classification
of the spectral class of each source. The prior knowledge on the
redshift derived as in the previous sections is ignored here.

When used as a classifier, when a feature vector is fed to
it, the XGBoost output is a vector of probabilities, in this case
with eight entries, each one corresponding to an SED type. The
predicted class is thus the one corresponding to the maximum
value. Each simulated galaxy is assigned an SED template taken
from a set of 35 templates, divided into eight spectral types, as
reported in Sect. 2.1.

Since the XGBoost input data and the train-test split used are
the same as in the photometric redshift estimation, we used the
same hyperparameters (Table 4). The accuracy obtained on the
test set is 96.8%, meaning that 3 529 289 galaxies out of 3 645 481
are correctly classified. Some significant misclassifications (see
the confusion matrix in Fig. 8) are explained by considering the
nature of the SEDs and the photometry available. For example,
it is reasonable that AGN2 and SB-AGN, both obscured in the
optical, are misclassified as SBs, since it would be necessary to
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Fig. 7. XGBoost test set RMSE, OLF, and NMAD (starting from the upper-left panel and going clockwise) for different redshift intervals, SED
types, numbers of missing bands, and i-band magnitudes. The grey curve shows the RMSE obtained by removing the two IRAC bands from the
XGBoost input. The vertical pink bands indicate the fraction of objects belonging to the group with respect to the test set size. For details, refer to
Table B.1.

have spectroscopic data or photometric observations in the mid-
IR (rest-frame) and X-ray, to identify their AGN nature.

The distribution of the maximum probability per object for
correct and wrong classifications is shown in Fig. 9. While for
the mistakenly classified samples it is a rather flat distribution,
for correct predictions it is strongly peaked at values of maxi-
mum probability larger than ≈0.95. This means it is possible to
improve the spectral type prediction accuracy even more, by sim-
ply considering objects with large maximum probability, while
losing a negligible number of correct predictions. For example,
by keeping only objects with maximum probability >0.8, the
number of misclassified objects goes down by 61%, while drop-
ping only 3.7% of the correctly classified ones. The resulting
accuracy is 98.7%.

4.3. Identifying HIEROs

Having determined the general framework for the estimations
of photometric redshifts and spectral types, in this section we
present the results of the approach applied to the most relevant
population in our study, namely red and massive galaxies at dis-
tances greater than z ≈ 3. We selected them as HIEROs (Eq. (4)
and Fig. 2).

As these massive galaxies are challenging to spectroscop-
ically confirm, to obtain a more realistic estimate of the
identification performance of this population, we trained the
gradient-boosting algorithm with a more realistic spectroscopic
completeness: we utilised the training set as described in the pre-
vious sections but retaining only 500 HIEROs, which accounts for

approximately 1/46 of the total number of HIEROs that would be
available. We consider this to be conservative approach since:

– We assume that a robust sample of HIERO that we could
use as training set will be available in the COSMOS field,
thanks to the very precise and accurate photometric red-
shifts derived from the already available and future multi-
wavelength observations (W22; Casey et al. 2023).

– We assume that in the next few years we will have access to
spectroscopic redshifts for HIEROs thanks to JWST, as there
are already photometric candidates suitable for follow-up
(i.e. 138 objects similar to HIEROs in an area of 38.8 arcmin2

Pérez-González et al. 2023).
As there is clearly some stochasticity in the sampling of the
HIEROs in the training set, the results reported are the average
across multiple runs.

In Table 5 their identification performance is shown in terms
of photo-z and SED type classification. The regression perfor-
mance is compared to that reported in Wang et al. (2016), where
the NMAD is approximately 0.1. Even for this population, the
performance obtained in this work (HIEROs NMAD = 0.068) is
encouraging, especially for the brightest galaxies (HE ≤ 26), as
shown in Figs. 10 and 11. Clearly, the advantage of the Euclid
Deep Fields survey will be the HIEROs’ much larger statistical
relevance compared to previous surveys.

We also report in Table 6 the completeness and fraction
of contaminants in different redshift ranges. The redshift range
where we expect to find the vast majority of these objects (i.e.
3 ≤ z < 7) is complete at 99.4%, with a contaminant fraction of
only 5%, mostly coming from higher-redshift galaxies.
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Fig. 8. Test set confusion matrix for SED type classification. Each row
of the matrix represents the fraction of samples in an actual SED type,
while each column represents the fraction of samples in a predicted SED
type. The superimposed numbers indicate the fraction of objects of a
class in that particular position. For example, considering the second
row (SBs): 96% of SBs are correctly classified as such, 3% as SB-AGN,
and 1% as Irregular.

Fig. 9. Maximum probability distribution for correct (blue) and wrong
(orange) classifications. The sum of the heights of each histogram is
one.

Lastly, the spectral type classification, although less accurate
than for non-HIEROs (86.20% versus 97.20%), shows (Fig. 12)
a similar confusion between classes to the classifications for all
the objects in the catalogue (Fig. 8).

5. Summary and discussion

5.1. A new approach to identifying the most elusive and
massive systems with Euclid at high z

In this work we have taken a photometric approach to predicting
whether Euclid will provide enough information to resolve one
of the key scientific unknowns in galaxy formation and evolution
studies: the role of distant obscured galaxies in the buildup of
today’s large-scale structures.

Such sources have proven to be elusive in optical surveys,
and current near-IR surveys are deep enough to detect them only
in very small sky areas. Since these optically faint objects are
rare, large-area surveys that go to sufficient depths are neces-
sary to provide a statistical census of such a population. Euclid
will potentially provide all the ingredients to recover these miss-
ing galaxies at high redshifts (e.g. z > 3). However, it has been
unclear if the photometric information it will deliver will be suf-
ficient to identify and characterise them, given the lack of bright
spectroscopic features observable by Euclid at these distances
(i.e. λrest−frame < 0.5 µm).

Our goal was therefore to assess the capability of Euclid
in combination with ancillary data to identify these distant
obscured objects. We carried out the following analysis:

– We adopted the simulated Euclid Deep Fields catalogue
from the SPRITZ simulation as a basis for our analysis and show
that it includes a massive and dusty population, as selected by the
criterion HE − [4.5] > 2.25. A total of 98% of these simulated
objects (the HIEROs) are indeed at 3 < z < 7 and contribute sig-
nificantly (≈93%) to the massive end of the stellar mass function
at z > 4.

– We implemented a general, fast, and accurate machine
learning technique optimised for z ≥ 2 galaxy identification,
based on photometric data from Euclid, Rubin, and Spitzer, find-
ing that only a ≈ 10% subset of the total observed galaxies
with spectroscopic redshifts (or reliable photometric redshifts)
is required to obtain a good performance (RMSE = 0.363,
OLF = 0.061, 〈∆z〉 = −0.017, and NMAD = 0.039 over 2 ≤
z < 8). This photo-z precision is comparable to that of the COS-
MOS2020 catalogue, obtained with state-of-the-art traditional
SED-fitting methods with almost four times the number of pho-
tometric bands.

– We applied the same methods for spectral type classifica-
tion, distinguishing between eight different spectral types (i.e.
spiral, SB, star-forming AGN, SB-AGN, type-1 AGN, type-2
AGN, elliptical, and irregular), obtaining an accuracy of 96.8%.

– We evaluated the identification performance for objects
within the HIEROs selection and found a photo-z OLF = 0.123
and NMAD = 0.068; the SED classification accuracy is 86.2%.
Evaluating only the brightest HIEROs (HE < 26), we obtained
an OLF = 0.085, an NMAD = 0.055, and a 92.68% SED classi-
fication accuracy.

– We determined the completeness and the fraction of con-
taminants for the HIERO photo z. In the range 3 ≤ z < 7, we
estimated a completeness of 99.4% and a contaminant fraction
of 5%. The majority of the HIEROs are at z > 7.

All these results suggest that by leveraging Euclid, Rubin,
and Spitzer photometric data, and by taking the approach
described in this paper, it will be possible to constrain the contri-
bution of the dusty and massive galaxies at z ≈ 3− 7 to the mass
functions and, hopefully, to the SFRD.

5.2. Future perspectives

Under suitable conditions, gradient-boosting (like many other
supervised machine learning techniques) is a very competitive
tool for photometric redshift and spectral type estimation. How-
ever, its successful application depends on the availability of a
large enough training set that is representative of the populations
under consideration. It is therefore most effective when applied
to large photometric surveys, some of which include spectro-
scopic data for subsets of the photometric catalogues. One con-
siderable problem for these methods is the difficulty in extrap-
olating to regions of the feature space not properly represented
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Table 5. Redshift and spectral type prediction performance for HIEROs.

N Photo-z SED classification
RMSE 〈∆z〉 OLF NMAD Accuracy

HIEROs 184 441 0.654 −0.084 0.123 0.068 86.20%
Red HIEROs 51 092 0.668 −0.059 0.143 0.073 86.28%
Blue HIEROs 89 996 0.690 −0.119 0.126 0.061 86.28%
Other 3 461 040 0.341 −0.013 0.057 0.038 97.20%
HE ≤ 26 HIEROs 30 632 0.545 −0.131 0.085 0.055 92.68%
HE ≤ 26 Red HIEROs 24 645 0.477 −0.097 0.07 0.052 94.44%
HE ≤ 26 Blue HIEROs 5987 0.766 −0.275 0.149 0.076 85.44%

Notes. N indicates the number of objects in the selection. ‘Other’ indicates the classes of objects with HE − [4.5] < 2.25.

Fig. 10. Contour plot of XGBoost predictions (z̃) versus catalogue redshifts (z) coloured by density in the (z, z̃) space for HIEROs (left panel), red
HIEROs (middle panel), and blue HIEROs (right panel), all of which have HE ≤ 26. Lighter contour colours indicate higher densities. The dashed
red lines show z̃ = z ± 0.15(1 + z). The percentage of objects with respect to Ntest is indicated in the bottom-right corner of each panel.

Fig. 11. RMSE, OLF, and NMAD values for HIEROs of different
HE-band magnitudes. The vertical pink bands indicate the fraction of
objects belonging to the group with respect to the total number of
HIEROs.

in the training data; the distribution of magnitudes and colours
of the training set has to be as close as possible to those in the
target set.

Lastly, the good performance demonstrated here relies
heavily on the representativeness of the SPRITZ simulation
with respect to the Euclid observations. It has been shown
(Bisigello et al. 2021, 2022) that SPRITZ results are in agreement

Table 6. Confusion matrix for photometric redshift ranges for HIEROs.

z < 3 3 ≤ z < 7 7 ≤ z

z̃ < 3 37.2% (1537) 22.1% (438) 0% (9)
3 ≤ z̃ < 7 1.4% (2590) 99.4% (169 707) 3.6% (6442)
7 ≤ z̃ 0% (2) 15.2% (566) 32.8% (3150)

Notes. z and z̃ indicate true and predicted redshifts, respectively. The
diagonal entries represent the completeness of the samples, while the
off-diagonal terms their contaminants. The sum along rows of the off-
diagonal terms equals 1-purity. In parenthesis we report the numbers of
objects

with a large set of observations at different wavelengths. How-
ever, the simulation also has some limitations. For example, the
number of SED templates included in the simulation is limited,
and results at number densities z > 3 are, though widely tested,
mainly based on extrapolation. Therefore, the results shown here
may be prone to biases or may be slightly optimistic compared
to those that will be obtained once real data become available.
To mitigate this limitation and enable a more robust forecast,
future work could apply the methods of this paper to differ-
ent simulated datasets, for example MAMBo (Mocks with Abun-
dance Matching in Bologna; Girelli et al. 2020), and compare
the results obtained with those of the official Euclid pipelines.
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Fig. 12. SED type classification confusion matrix for HIEROs, red HIEROs, and blue HIEROs. The high confusion for ellipticals is explained by
noting that there are only 20 of them in the HIERO selection (six in the red HIEROs and 14 in the blue HIEROs), none of them correctly identified.

Furthermore, some additional strategies can be used to
improve the predictions. The gradient-boosting algorithm can
easily be extended to provide a probability distribution even on
redshifts.

After applying the most effective photometric pipeline to
real data, a promising selection of candidate galaxies will be
obtained. To confirm their nature, spectroscopic follow-up will
be necessary, for example via the Extremely Large Telescope,
ALMA, or JWST.
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Appendix A: Missing detection handling

We show some clarifying examples of the handling of missing
detections used in this work in Table A.1.

Table A.1. Handling of missing detections.

M1 M2 M1 − M2 M1/M2

NaN 27.17 NaN NaN
25.72 NaN NaN NaN
NaN NaN NaN NaN

⇓

M1 M2 M1 − M2 M1/M2

M(2σ)
1 27.17 M(2σ)

1 M(2σ)
1

25.72 M(2σ)
2 −M(2σ)

2 1/M(2σ)
2

M(2σ)
1 M(2σ)

2 NaN NaN

Notes. Three examples of data points (rows) with non-detections to clar-
ify the missing numbers handling adopted in this work. The upper table
indicates the original values of magnitudes, colours and ratios, while the
lower table give the corresponding values after the missing detection
handling. M1 and M2 indicate two different bands magnitudes, while
M(2σ)

1 and M(2σ)
2 are their 2σ detection limits, as reported in Table 1.

Appendix B: Photo-z performance

Here we report the detailed XGBoost results for photometric red-
shifts (evaluated on the test set), for different redshift bins, SED
types, i-band AB magnitudes, and numbers of missing detections
(shown graphically in Fig. 7).

Table B.1. XGBoost prediction performance.

z N RMSE OLF NMAD 〈∆z〉

2 ≤ z < 8 3645481 0.363 0.060 0.039 −0.017
2 ≤ z < 3 2047751 0.254 0.047 0.037 0.057
3 ≤ z < 4 860381 0.365 0.078 0.046 −0.049
4 ≤ z < 5 407092 0.368 0.049 0.040 −0.067
5 ≤ z < 6 195186 0.532 0.089 0.044 −0.230
6 ≤ z < 7 91505 0.749 0.124 0.037 −0.372
7 ≤ z < 8 43566 1.289 0.207 0.044 −0.718

SED Type N RMSE OLF NMAD 〈∆z〉

Spiral 24719 0.461 0.057 0.030 −0.045
SB 293497 0.665 0.144 0.044 0.007

SF-AGN 42778 0.567 0.085 0.026 −0.109
SB-AGN 243550 0.430 0.051 0.030 −0.044

AGN1 72714 0.558 0.137 0.044 −0.062
AGN2 23009 0.480 0.102 0.041 −0.006

Ell 21535 0.219 0.027 0.038 0.052
Irr 2923679 0.297 0.050 0.040 −0.015

i-band N RMSE OLF NMAD 〈∆z〉

16 < i ≤ 25 209415 0.045 0.000 0.008 −0.010
25 < i ≤ 26 352218 0.086 0.001 0.013 −0.013
26 < i ≤ 27 683341 0.185 0.008 0.023 −0.018
27 < i ≤ 28 1245136 0.332 0.043 0.050 −0.016

28 < i ≤ 29.3 1080295 0.516 0.141 0.088 −0.019
29.3 < i 75076 0.631 0.119 0.072 −0.040

Missing Bands N RMSE OLF NMAD 〈∆z〉

0 741823 0.082 0.001 0.014 −0.009
1 930708 0.201 0.011 0.027 −0.018
2 608234 0.391 0.059 0.051 −0.020
3 420111 0.436 0.082 0.065 −0.020
4 389306 0.431 0.095 0.079 −0.016
5 271637 0.512 0.156 0.096 −0.018
6 165679 0.632 0.209 0.109 −0.019
7 117983 0.688 0.215 0.112 −0.032

Notes. XGBoost Test set RMSE, bias, OLF, and NMAD for different
redshift intervals, SED types, number of missing bands and i-band mag-
nitudes. The redshift range 2 ≤ z < 8 comprises all the galaxies in the
test set. Objects with i > 29.3 are not detected in the i-band.
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Appendix C: Photo-z feature importance

Figure C.1 shows the most important features for redshift esti-
mation (evaluated on the test set) for HIEROs and other objects,
in terms of Shapley values (Lundberg et al. 2020). These can be
both positive and negative, and indicate the contribution of every
feature to the model output, as for every data point the sum of
its Shapley values is the predicted redshift. Here the sum of the
modulus of these values is normalised to one.

While the redshift prediction is mostly based on colours
and magnitude ratios, the feature importance order of the two
populations is quite different, with the HIEROs redshift esti-
mates being more strongly reliant on the near-IR magnitudes.
The colours and ratios of the same magnitude pairs are ranked
closely. We note, however, the number of missing detections per
band (Table 3) and the consequent reduced variability of the
magnitudes, which clearly influences the importance.

Fig. C.1. Feature rankings from the XGBoost model for HIEROs (red)
and other objects (blue). We used the average of the absolute value of
the normalised (by predicted redshift) Shapley values. This corresponds
to the average percentage impact on model outputs. For example, on
average, 8% of the model output for HIEROs is based on the HE − [4.5]
colour, while for other objects the impact of this feature is only around
2%.

Appendix D: Contaminants analysis

Throughout the paper, we considered only objects at z > 2, under
the assumption that the selection of high-redshift objects from
official photo-z pipelines would yield a clean dataset. In this
appendix we analyse potential contamination issues from low-
redshift (z < 2) sources, as well as brown dwarfs, in the selection
of 3 < z < 7 HIEROs candidates.

To address the first concern, we applied a dedicated binary
classifier using the same XGBoost algorithm and input features
as described in the main body of the paper (see Sect. 4.2), with
the goal of differentiating between objects at z < 2 and z > 2.
This classifier is trained on a dataset comprehending objects
down to z = 0 and 500 HIEROs (see Sect. 4.3). This training
set consisted of 2 815 072 galaxies, the vast majority of which
are at z < 2 (see, for example, Fig. 1, top panel).

The objective was to estimate the degree of contamination
from low-z sources in the HIEROs selection (Eq. 4), essentially
quantifying the number of galaxies with z < 2 that both fit within
the colour-colour selection and that are predicted by the classi-
fier at z > 2. We report the completeness and fraction of con-
taminants obtained from this analysis in Table D.1, reminding
the reader that in the testing phase we consider only observa-
tions with at least four bands with S/N > 2 and at least one band
with S/N > 5. These results underscore the classifier’s effective-
ness in distinguishing between HE − [4.5] > 2.25 sources with
redshifts above and below 2, showcasing high completeness at
z > 2 (98.9%) and high purity, thereby minimising the risk of
contamination (kept at only 1.1%).

Table D.1. Confusion matrix for photometric redshift ranges for
HIEROs.

z < 2 z ≥ 2

z̃ < 2 59.7% (2882) 39.9% (1914)
z̃ ≥ 2 1.1% (1948) 98.9% (182 527)

Notes. z and z̃ indicate true and predicted redshift class, respectively.
The diagonal entries represent the completeness of the samples, while
the off-diagonal terms their contaminants. In parenthesis we report the
numbers of objects.

To assess the contamination by brown dwarfs, we simu-
lated Euclid magnitudes based on the models of L and T dwarf
from Burrows et al. (2006). These templates have effective tem-
peratures ranging from 700 K to 2300 K, metallicities from
[Fe/H]=−0.5 to 0.5, and gravities from 104.5 to 105.5 cm s−2. We
did not simulate their spatial distribution, as this goes beyond
the scope of this paper, but we derived magnitudes assuming
they are located from 1 to 288 pc away from us, with steps of
1 pc. At larger distances, all brown dwarfs models correspond to
S/N < 3 in all Euclid filter. We kept all mocks that results in a
S/N > 3 in at least one Euclid filter, for a total of 33 866 simu-
lated brown dwarfs. We then scattered their magnitudes using the
same procedure reported in Sec. 2.2. We find that fewer than 1%
of these brown dwarfs fall into the selection HE − [4.5] > 2.25
and thus the contamination from these sources in the HIEROs
selection (applied to all objects in our catalogue with z > 2) is
below 0.01%.

Consequently, we argue that the conclusions drawn in the
main body of the paper remain largely unaffected even with the
possible inclusion of z < 2 galaxies and brown dwarfs in the
analysis.
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Appendix E: Identifying HIEROs with shallower
Rubin depths

The analysis presented in this work assumes Rubin depths after
10 years of observations. To evaluate the efficacy of our search
for the reddest high-redshift galaxies before that time, we run the
same tests described above with shallower depths (Table E.1),
corresponding to one and four years of Rubin observations
(Brandt et al. 2018). In all our runs, we considered 500 HIEROs
in the training set.

As expected, the photo-z performance improves with each
passing year, while also benefiting from a larger sample of
HIEROs in the test set. The decrease in RMSE and 〈∆z〉 from
year one to year 10 is a clear indication that the accuracy of
the predictions has improved significantly over time. However,
the most notable improvement is in the catastrophic OLF metric,
which decreased from 0.254 in year one to 0.141 in year 10. This
is a significant improvement, and it suggests that deeper observa-
tions are particularly important in reducing exceptionally wrong
predictions.

Table E.1. Expected 5σ Rubin depths after one and four years of obser-
vations.

Rubin year Rubin/u Rubin/g Rubin/r Rubin/i Rubin/z

1 24.5 25.7 25.8 25.1 24.4
4 25.2 26.4 26.5 25.8 25.1

Notes. To be compared with the ones after 10 years, reported in Table 1.

Table E.2. Redshift prediction performance for HIEROs obtained con-
sidering Rubin depths after one and four years of observations.

Rubin year N RMSE OLF NMAD 〈∆z〉

1 115 303 0.864 0.301 0.112 −0.064
4 115 371 0.858 0.229 0.110 −0.031

10 184 441 0.654 0.123 0.068 −0.084

Notes. N indicates the number of objects in the selection. For ease of
comparison, we report again the results after 10 years of Rubin obser-
vations, already presented in Table 5.

Appendix F: Rubin/y

We did not include in our analysis the Rubin/y band (2σ depth
of 27.2 mag), as it was determined to have negligible impact on
our results. We address this point by showing in Table F.1 the
improvement in performance between the dataset with and with-
out the Rubin/y band. This results demonstrate that the inclusion
of this band yields little improvement on our results across most
redshifts and magnitude intervals.

Table F.1. XGBoost improvement in RMSE, OLF, and NMAD with the
inclusion of the Rubin/y band.

z RMSE OLF NMAD 〈∆z〉

2 ≤ z < 8 0.011 0.005 0 −0.003
2 ≤ z < 3 0 0.001 0.001 0.001
3 ≤ z < 4 0.010 0.006 0.001 0
4 ≤ z < 5 0.007 0.004 0 0
5 ≤ z < 6 0.026 0.012 0.001 −0.028
6 ≤ z < 7 0.069 0.029 0.001 −0.051
7 ≤ z < 8 0.140 0.037 0.004 −0.106

i-band RMSE OLF NMAD 〈∆z〉
16 < i ≤ 25 −0.002 −0.001 0 −0.001
25 < i ≤ 26 −0.001 0 0 0
26 < i ≤ 27 0.015 0.002 0 −0.001
27 < i ≤ 28 0.019 0.005 0.001 −0.002

28 < i ≤ 29.3 0.020 0.014 0.004 −0.003
29.3 < i −0.008 −0.009 0.005 −0.014

Notes. XGBoost Improvement in test set RMSE, OLF, and NMAD, bias
for different redshift intervals i-band magnitudes, as obtained with the
inclusion of the Rubin/y band. Objects with i > 29.3 are not detected in
the i-band.
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