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UNRESTRICTED VIRTUAL BRAIDS AND CRYSTALLOGRAPHIC BRAID

GROUPS

PAOLO BELLINGERI, JOHN GUASCHI, AND STAVROULA MAKRI

Abstract. We show that the crystallographic braid group Bn/[Pn, Pn] embeds naturally in the group
of unrestricted virtual braids UV Bn, we give new proofs of known results about the torsion elements
of Bn/[Pn, Pn], and we characterise the torsion elements of UV Bn.

1. Introduction

Let n ≥ 1. The group of unrestricted virtual braids, denoted throughout this paper by UV Bn,
was introduced by Kauffman and Lambropoulou in [22] as the analogue of fused links in the setting
of braids. The classification of fused links is now well known. Such links are distinguished by their
virtual linking number, see for instance [25], where they are considered as the closure of unrestricted
virtual braids, as well as [1] for their classification in terms of Gauss diagrams. Unrestricted virtual
braid groups occur as natural quotients of virtual and welded braid groups. They appear for instance
in [20] in the study of local representations of welded braid groups, where they are called symmetric
loop braid groups, and they may be decomposed as a semi-direct product of a right-angled Artin group,
which is in fact the pure subgroup UV Pn of UV Bn, by the symmetric group Sn [3]. The main aim of
this paper is to characterise the torsion elements of UV Bn using this decomposition, namely to show
that any element of finite order is a conjugate of an element of Sn by an element of UV Pn.

The structure of this paper is as follows. In Section 2, we give presentations of the virtual braid
groups V Bn, of the welded braid groups W Bn, and of UV Bn. In this way, UV Bn may be viewed
as a quotient of both V Bn and W Bn. We also recall two important results of [3] that describe the
structure of the pure unrestricted virtual braid group UV Pn as a direct sum of copies of the free
group F2 on two generators, which as mentioned above, allows us to decompose UV Bn as a semi-direct
product of UV Pn and Sn in a natural way. A similar decomposition holds for V Bn and W Bn, but
the canonical homomorphism η : Bn −→ UV Bn, where Bn is the Artin braid group, is not injective,
which is in contrast with the nature of the corresponding homomorphisms for V Bn and W Bn. In
Section 3, we study the image of η, and in Proposition 3.1, we prove that it is isomorphic to the
quotient Bn/[Pn, Pn], where Pn is the pure Artin braid group, and [Pn, Pn] is its commutator subgroup.
This quotient has been the subject of recent study, one of the reasons being that it is a crystallographic
group [16–18]. The results of [16] have been generalised to quasi-Abelianised quotients of complex
reflection groups [4, 24], and to surface braid groups [19]. This enables us to give an alternative proof
in Proposition 3.5 and Remark 3.6 of the fact that Bn/[Pn, Pn] embeds in the semi-direct product
Pn/[Pn, Pn] ⋊ Sn. In the final section of the paper, Section 4, we study the torsion elements of UV Bn.
We apply the embedding of Proposition 3.1 to give a new combinatorial proof in Theorem 4.1 of the
fact that there are no elements of even order in Bn/[Pn, Pn], and in Theorem 4.3, we characterise the
torsion elements of UV Bn by showing that every such element is conjugate to an element of Sn by an
element of UV Pn. To our knowledge, it is not known whether a analogous result holds for V Bn and
W Bn.
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2. Unrestricted virtual braids

In order to define unrestricted virtual braid groups, in this section we recall first the notions of
virtual and welded braid groups by exhibiting their usual group presentations.

Definition 2.1. The virtual braid group V Bn is the group defined by the group presentation:
Generators: {σ1 , . . . , σn−1, ρ1, . . . , ρn−1}
Relations:

σi σi+1σi = σi+1σi σi+1 for i = 1, . . . , n − 2 (BR1)

σi σj = σj σi for |i − j| ≥ 2 (BR2)

ρi ρi+1ρi = ρi+1ρi ρi+1 for i = 1, . . . , n − 2 (SR1)

ρi ρj = ρj ρi for |i − j| ≥ 2 (SR2)

ρ2
i = 1 for i = 1, . . . , n − 1 (SR3)

σi ρj = ρj σi for |i − j| ≥ 2 (MR1)

ρi ρi+1σi = σi+1ρi ρi+1 for i = 1, . . . , n − 2. (MR2)

A diagrammatic description of generators and relations of V Bn may be found for instance in [2,5,21].
For a topological interpretation, we refer the reader to [10], and for an algebraic one (in terms of actions
on root systems) to [6]. Note that the relations (BR1)–(BR2) (resp. (SR1)–(SR3)) correspond to the
usual relations of the Artin braid group Bn (resp. the symmetric group Sn) for the set {σ1 , . . . , σn−1}

(resp. for the set {ρ1, . . . , ρn−1}), and the remaining relations (MR1)–(MR2) are ‘mixed’ in the sense
that they involve generators of both of these sets.

Recall that the pure braid group Pn is the kernel of the homomorphism π : Bn −→ Sn defined on
the generators σ1 , . . . , σn−1 of Bn by π(σi) = si for all i = 1, . . . n − 1, where si is the transposition
(i, i + 1). Analogously, we define the virtual pure braid group, denoted by V Pn, to be the kernel of the
homomorphism πV P : V Bn −→ Sn that for all i = 1, 2, . . . , n − 1, maps the generators σi and ρi to
si. A group presentation for V Pn is given in [2]. Let ι : Sn −→ V Bn be the homomorphism defined
by ι(si) = ρi for i = 1, . . . , n − 1. Since ι is a section for πV P , it follows that ι is injective and that
V Bn is a semi-direct product of V Pn by Sn. The canonical homomorphism η : Bn −→ V Bn defined
by η(σi) = σi for i = 1, . . . , n − 1 is injective [5, 15,21].

The welded braid group W Bn may be defined as a quotient of V Bn by adding the following family
of relations to the presentation given in Definition 2.1:

ρi σi+1σi = σi+1σi ρi+1, for i = 1, . . . , n − 2, (OC)

where OC stands for ‘Over Commuting’. Welded braid groups have several different equivalent defini-
tions [11]. In particular, they may be defined as basis conjugating automorphisms of free groups [14],
from which it follows that the homomorphism η : Bn −→ W Bn defined by η(σi) = σi for i = 1, . . . , n−1
is injective [21]. As in the case of virtual braid groups, the welded pure braid group, denoted by W Pn,
is defined to be the kernel of the homomorphism πW P : W Bn −→ Sn given by sending the generators
σi and ρi of W Bn to si for all i = 1, 2, . . . , n − 1. A group presentation for W Pn may be found
in [8, 11, 26]. Abusing notation, we define ι : Sn −→ W Bn to be also the homomorphism defined by
ι(si) = ρi for i = 1, . . . , n − 1. As in the virtual case, ι is a section for πW P , and therefore ι is injective
and W Bn is a semi-direct product of W Pn by Sn. Note that the symmetrical relations:

ρi+1σi σi+1 = σi σi+1ρi , for i = 1, . . . , n − 2, (UC)

where UC stands for ‘Under Commuting’, do not hold in W Bn (see for instance [7,21]). Consequently,
the following group, which was first defined by Kauffman and Lambropoulou in [22], is a proper quotient
of W Bn.

Definition 2.2. The unrestricted virtual braid group UV Bn is the group defined by the following
group presentation:
Generators: {σ1 , . . . , σn−1, ρ1, . . . , ρn−1}
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Relations: the seven relations (BR1)–(BR2), (SR1)–(SR3) and (MR1)–(MR2) of Definition 2.1, plus
the relations of types (OC) and (UC).

As in the case of V Bn, let πUV P : UV Bn −→ Sn be the homomorphism defined by πUV P (σi) =
πUV P (ρi) = si for i = 1, . . . , n − 1. The kernel of πUV P is the unrestricted virtual pure braid group,
denoted by UV Pn. For 1 ≤ i, j ≤ n, i 6= j, we define the elements λi,j of UV Pn as follows:





λi,i+1 = ρiσ
−1
i for i = 1, . . . , n − 1

λi+1,i = σ−1
i ρi for i = 1, . . . , n − 1

λi,j = ρj−1ρj−2 · · · ρi+1λi,i+1ρi+1 · · · ρj−2ρj−1 for 1 ≤ i < j − 1 ≤ n − 1

λj,i = ρj−1ρj−2 · · · ρi+1λi+1,iρi+1 · · · ρj−2ρj−1 for 1 ≤ i < j − 1 ≤ n − 1.

(1)

Theorem 2.3 (Bardakov–Bellingeri–Damiani [3]). The group UV Pn admits the following presentation:
Generators: λi,j, where 1 ≤ i, j ≤ n, i 6= j.
Relations: The generators commute pairwise except for the pairs λi,j and λj,i for all 1 ≤ i, j ≤ n, i 6= j.

It follows from Theorem 2.3 that the group UV Pn is a right-angled Artin group that is isomorphic
to the direct product of the n(n − 1)/2 free groups Fi,j of rank 2, where 1 ≤ i < j ≤ n, and where
{λi,j , λj,i} is a basis of Fi,j . By convention, if 1 ≤ i, j ≤ n then we set Fj,i = Fi,j. As for V Bn, let
ι : Sn −→ UV Bn be the homomorphism defined by ι(si) = ρi for i = 1, . . . , n − 1. Then ι is injective,
and is a section for πUV P . This leads to the following natural decomposition of UV Bn.

Theorem 2.4 (Bardakov–Bellingeri–Damiani [3]). The group UV Bn is isomorphic to the semi-direct
product UV Pn⋊Sn, where Sn acts on UV Pn by permuting the indices of the elements of the generating
set of UV Pn given in Theorem 2.3. More precisely, for all λi,j ∈ UV Pn, where 1 ≤ i, j ≤ n, i 6= j, and
for all s ∈ Sn we have:

ι(s) λi,j ι(s)−1 = λs(i),s(j). (2)

3. Crystallographic groups

As we mentioned in Section 2, the Artin braid group Bn embeds naturally in V Bn and W Bn via the
injective homomorphism η defined in each of these two cases. However this is no longer the case for the
canonical homomorphism η : Bn −→ UV Bn defined by η(σi) = σi for i = 1, . . . , n − 1. In this section,
we show that the image of Bn under the homomorphism η is isomorphic to the quotient of Bn by the
commutator subgroup [Pn, Pn]. This quotient was introduced by Tits in [27] as groupes de Coxeter
étendus, and has been studied more recently by various authors (see for example [4, 13,16–18,24]).

Proposition 3.1. Let η : Bn −→ UV Bn be the canonical homomorphism defined by η(σi) = σi for
1 ≤ i ≤ n − 1. Then η(Bn) is isomorphic to the group Bn/[Pn, Pn].

Proof. Consider the homomorphism η : Bn −→ UV Bn. Since Pn = Ker(π) (resp. UV Pn = Ker(πUV P )),
where π : Bn −→ Sn (resp. πUV P : UV Bn −→ Sn) is defined by π(σi) = si (resp. πUV P (σi) =
πUV P (ρi) = si) for all 1 ≤ i ≤ n−1, it follows from the definition of η : Bn −→ UV Bn that π = πUV P ◦η,

and thus π = πUV P

∣∣∣η(Bn) ◦ η. Since π is surjective, the homomorphism πUV P

∣∣∣η(Bn) : η(Bn) −→ Sn

is too. From the equality π = πUV P ◦ η, we obtain the following commutative diagram of short exact
sequences:

1 Pn Bn Sn 1

1 UV Pn UV Bn Sn 1.

η|Pn

π

η

πUV P

(3)

We claim that η(Pn) = Ker(πUV P

∣∣∣η(Bn) ). To prove the claim, the exactness of (3) implies that

η(Pn) ⊂ Ker(πUV P

∣∣∣η(Bn) ). Conversely, let x ∈ Ker(πUV P

∣∣∣η(Bn) ). Then x ∈ η(Bn), and there exists

y ∈ Bn such that η(y) = x. The commutativity of (3) implies that y ∈ Pn, and so x ∈ η(Pn), so

Ker(πUV P

∣∣∣η(Bn) ) ⊂ η(Pn), and the claim follows.
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Considering η and its restriction to Pn, we obtain the following commutative diagram of short exact
sequences:

1 1

1 Ker(η |Pn ) Pn η(Pn) 1

1 Ker(η) Bn η(Bn) 1.

Sn Sn

1 1

η|Pn

π

η

πUV P |η(Bn)

(4)

Note that the exactness of the rightmost column of (4) follows from the claim of the previous paragraph.
By a standard diagram-chasing argument, we conclude from (4) that Ker(η) = Ker(η |Pn ). Applying the
isomorphism UV Bn

∼= UV Pn ⋊Sn of Theorem 2.4 and using equation (1), we see that η(σi) = λ−1
i,i+1ρi.

Recall that the pure braid group Pn is generated by the set {aij | 1 ≤ i < j ≤ n}, where:

ai,i+1 = σ2
i ,

ai,j = σj−1σj−2 · · · σi+1σ2
i σ−1

i+1 · · · σ−1
j−2σ−1

j−1, for i + 1 < j ≤ n.

In [3, Corollary 2.8] it was shown that η(ai,j) = λ−1
i,j λ−1

j,i for 1 ≤ i + 1 < j ≤ n. From the

construction, we deduce that [Pn, Pn] is contained in Ker(η |Pn ). Further, η(Pn) is isomorphic to

Pn/[Pn, Pn] = Z
n(n−1)/2 (see [3, Corollary 2.8]). It follows that [Pn, Pn] coincides with Ker(η |Pn ). The

statement follows by combining this with the fact that Ker(η) = Ker(η |Pn ) and using the exactness
of (4). �

Remark 3.2. We can rephrase Proposition 3.1 by saying that the canonical homomorphism η : Bn −→
UV Bn factors through an embedding of Bn/[Pn, Pn] into UV Bn. On the other hand, by [9, The-
orem 2.5], the canonical homomorphism from Bn to V Bn induces an embedding of Bn/[Pn, Pn] in
V Bn/[V Pn, V Pn]. Since V Bn/[V Pn, V Pn] is isomorphic to UV Bn/[UV Pn, UV Pn] [9, Theorem 4.1],
the canonical homomorphism Bn to UV Bn gives rise to an embedding of the quotient Bn/[Pn, Pn] in
UV Bn/[UV Pn, UV Pn]. We therefore conclude that the composition of the embedding of Bn/[Pn, Pn] in
UV Bn defined in the proof of Proposition 3.1 and the canonical projection qn : UV Bn −→ UV Bn/[UV Pn, UV Pn]
is also injective.

We recall that an abstract group Γ is said to be crystallographic if it can be realised as an extension of
a free Abelian subgroup of Γ of maximal rank by a finite group [12, Theorem 2.1.4]. Using the following
result, in [16], Gonçalves–Guaschi–Ocampo proved that the group Bn/[Pn, Pn] is a crystallographic
group.

Proposition 3.3 (Gonçalves–Guaschi–Ocampo [16]). Let n ≥ 2. Then the following sequence:

1 Z
n(n−1)/2 Bn/[Pn, Pn] Sn 1,π̂ (5)

is short exact, where π̂ is the homomorphism induced by π : Bn −→ Sn.

Note that the sequence (5) does not split [13, 16]. It follows from Propositions 3.1 and 3.3 that
the group η(Bn) is a crystallographic subgroup of UV Bn. We remark also that Im(η) is not normal
in UV Bn, and that the normal closure of Im(η) is of index 2 in UV Bn. This follows from the fact
that in the quotient of UV Bn by Im(η), the generators ρi are identified to a single element due to
relations (OC) and (UC) of Definition 2.2. The group UV Bn contains other crystallographic groups
of rank n(n − 1)/2 that are not isomorphic to η(Bn). One such example is given in the following
proposition that is a straightforward consequence of Theorems 2.3 and 2.4
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Proposition 3.4. Let Cn be the subgroup of UV Bn generated by {λi,jλ−1
j,i } for 1 ≤ i < j ≤ n and by

ρi for i = 1, . . . , n, and let Hn be the subgroup of Cn generated by {λi,jλ−1
j,i } for 1 ≤ i < j ≤ n. The

restriction of πUV P to Cn defines the following split exact sequence:

1 Hn Cn Sn 1,
πUV P

∣∣
Cn

In particular Cn is crystallographic.

Proposition 3.5. Let Hn be the subgroup of UV Bn defined in the statement of Proposition 3.4, let
〈〈Hn〉〉 its normal closure in UV Bn, and let {xi,j}1≤i<j≤n be a set of generators of Zn(n−1)/2.

(a) The quotient UV Bn/〈〈Hn〉〉 is isomorphic to the semi-direct product Zn(n−1)/2
⋊Sn, where for any

s ∈ Sn, s · xi,j = xs(i),s(j), where we take xi,j = xj,i.
(b) Let θ : Bn −→ UV Bn/〈〈Hn〉〉 be the composition of η : Bn −→ UV Bn and the projection πH : UV Bn −→
UV Bn/〈〈Hn〉〉. The group θ(Bn) is isomorphic to Bn/[Pn, Pn].

Proof. Part (a) follows from Theorems 2.3 and 2.4 that imply that UV Bn/〈〈Hn〉〉 = UV Pn/〈〈Hn〉〉⋊Sn.

The identification λi,j = λj,i for i 6= j implies that UV Pn/Hn = Z
n(n−1)/2, and it also defines the

induced action of Sn on this quotient. The proof of Proposition 3.1 can be adapted to prove part (b) (the
image of Pn by θ is a free Abelian group of rank n(n−1)/2, and is thus isomorphic to Pn/[Pn, Pn]). �

Remark 3.6. The quotient UV Bn/〈〈Hn〉〉 coincides with the semi-direct product considered in [27,
Section 2.7] and in the Remark following [23, Proposition 5.12]. Thus Proposition 3.5 yields a new
proof of the fact that the crystallographic braid group Bn/[Pn, Pn] embeds in the semi-direct product

Z
n(n−1)/2

⋊ Sn.

4. Torsion elements of UV Bn

Let n ≥ 3. In [16], it was shown that Bn/[Pn, Pn] has torsion, but that it possesses no elements of
even order. Viewing Bn/[Pn, Pn] as the subgroup Im(η) of UV Bn via Proposition 3.1, we may give an
alternative proof of this latter fact. We do this by first characterising the elements of UV Bn of order
2, and then showing that these elements do not belong to Im(η).

Theorem 4.1. Let n ≥ 3.

(a) An element v ∈ UV Bn is of order 2 if and only if there exist ρ ∈ Im(ι) of order 2 and g ∈ UV Pn

such that v = gρg−1.
(b) The elements of order 2 of UV Bn do not belong to Im(η). In particular, Bn/[Pn, Pn] has no
elements of even order.

Proof. Let n ≥ 3.

(a) First observe that the given condition is clearly sufficient. Conversely, suppose that v ∈ UV Bn is
of order 2. Identifying UV Bn with the internal semi-direct product UV Pn ⋊ Im(ι) using Theorem 2.4,
there exist unique elements w ∈ UV Pn and ρ ∈ Im(ι) such that v = wρ, and the pair (w, ρ) is non
trivial. Further, the fact that UV Pn is torsion free implies that ρ 6= 1. Since v is of order 2, we have
1 = v2 = (wρ)2 = w. ρwρ−1. ρ2, where w. ρwρ−1 ∈ UV Pn and ρ2 ∈ Im(ι), from which we deduce using
Theorem 2.4 that ρ is also of order 2. Hence πUV P (ρ) ∈ Sn is also of order 2, and thus may be written as
a non-trivial product of disjoint transpositions. So there exists τ ∈ Im(ι) such that πUV P (τρτ−1) = σ,
where σ = (1, 2)(3, 4) · · · (m, m + 1), and 1 ≤ m ≤ n − 1 is odd. Setting ṽ = τvτ−1, w̃ = τwτ−1

and ρ̃ = τρτ−1, it follows that ṽ = w̃ρ̃, where ṽ ∈ UV Bn is of order 2, w̃ ∈ UV Pn, ρ̃ ∈ Im(ι) is
of order 2, πUV P (ρ̃) = σ, and w̃. ρ̃w̃ρ̃−1 = 1. For 1 ≤ i < j ≤ n, let πi,j : UV Pn −→ Fi,j denote
the projection of UV Pn onto Fi,j (see Theorem 2.3 and the comments that follow it). Applying (2),
we observe that conjugation by an element of UV Bn permutes the {Fi,j}1≤i<j≤n. Let T denote the
subset of n(n − 1)/2 transpositions of Sn, and let Tσ = {(i, i + 1) ∈ T | i ∈ {1, 3, . . . , m}}. Then
the subgroup 〈σ〉 of Sn of order 2 acts on T by conjugation, and if 1 ≤ i < j ≤ n, the orbit O(i, j)
of (i, j) is equal to {(i, j), (σ(i), σ(j))}, which is equal to {(i, j)} if and only if either (i, j) ∈ Tσ or if
m + 2 ≤ i < j ≤ n, and contains two elements otherwise. Further, for all 1 ≤ i < j ≤ n, σ(i) < σ(j)
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if and only if (i, j) /∈ Tσ. Let T be a transversal for this action of 〈σ〉 on T . Using Theorem 2.3, we
obtain:

w̃ =
∏

(i,j)∈T

∏

(k,l)∈O(i,j)

wk,l(λk,l, λl,k), (6)

where wk,l = wk,l(λk,l, λl,k) ∈ Fk,l, and this decomposition is unique up to permutation of the factors.
So:

1 = w̃. ρ̃w̃ρ̃ −1 =




∏

(i,j)∈T

∏

(k,l)∈O(i,j)

wk,l(λk,l, λl,k)


 ρ̃




∏

(i,j)∈T

∏

(k,l)∈O(i,j)

wk,l(λk,l, λl,k)


 ρ̃ −1

=




∏

(i,j)∈T

∏

(k,l)∈O(i,j)

wk,l(λk,l, λl,k)






∏

(i,j)∈T

∏

(k,l)∈O(i,j)

wk,l(λσ(k),σ(l), λσ(l),σ(k))




=
∏

(i,j)∈T

∏

(k,l)∈O(i,j)

wk,l(λk,l, λl,k). wσ(k),σ(l)(λk,l, λl,k), (7)

where we have used the fact that σ2 = 1. Note also that if (i, j) ∈ Tσ then j = σ(i) > σ(j) = i,
and in this case, any term of the form wσ(i),σ(j)(λi,j, λj,i) in (7) should be interpreted as wi,j(λj,i, λi,j).
The expression (7) is written with respect to the direct product structure of UV Pn. It follows from
Theorem 2.3 that wi,j(λi,j , λj,i). wσ(i),σ(j)(λi,j, λj,i) = 1 for all 1 ≤ i < j ≤ n, and hence:

wσ(i),σ(j)(λσ(i),σ(j), λσ(j),σ(i)) = w−1
i,j (λσ(i),σ(j), λσ(j),σ(i)). (8)

Suppose that (i, j) ∈ Tσ. Then wi,j(λi,j , λj,i). wi,j(λj,i, λi,j) = 1. Writing a = λi,j, b = λj,i and

wi,j(a, b) = ak1bl1 · · · akmblm, where m ≥ 0, k1, l1, . . . , km, lm ∈ Z and l1, . . . , km 6= 0, it follows from
the relation wi,j(a, b). wi,j(b, a) = 1 that jq = −km+1−q for all q = 1, . . . , m. Taking yi,j(a, b) =

ak1b−km · · · akm/2b−k(m+2)/2 (resp. yi,j(a, b) = ak1b−km · · · ak(m−1)/2b−k(m+3)/2ak(m+1)/2) if m is even (resp.

odd), we see that wi,j(a, b) = yi,j(a, b). y−1
i,j (b, a). Thus wi,j(λi,j, λj,i) = yi,j(λi,j , λj,i). y−1

i,j (λj,i, λi,j).

Setting zi,j = wi,j if (i, j) /∈ Tσ and zi,j = yi,j if (i, j) ∈ Tσ, it follows from (6) and (8) that:

ṽ = w̃ρ̃ =


 ∏

(i,j)∈T

zi,j(λi,j , λj,i)z
−1
i,j (λj,i, λi,j)


 ρ̃. (9)

Now the terms zi,j(λi,j, λj,i) (resp. z−1
i,j (λj,i, λi,j)) appearing in (9) commute pairwise, and setting

g̃ =
∏

(i,j)∈T zi,j(λi,j , λj,i) ∈ UV Pn, we obtain:

ṽ =


 ∏

(i,j)∈T

zi,j(λi,j, λj,i)




 ∏

(i,j)∈T

z−1
i,j (λj,i, λi,j)


 ρ̃ = g̃ρ̃ g̃−1.

Hence v = τ−1ṽτ = gρg−1, where ρ ∈ Im(ι) is of order 2 and g = τ−1g̃τ ∈ UV Pn, which proves that
the condition of part (a) is also necessary.
(b) We start by characterising the elements of Im(η). Let v ∈ UV Bn. Then πUV P (v) ∈ Sn, and so
πUV P (v) = si1 · · · sir , where r ≥ 0, and for all j = 1, . . . , r, sij ∈ {(k, k + 1) | k = 1, . . . , n − 1}. Hence
v = wρ, where w ∈ UV Pn and ρ = ι(πUV P (v)) = ρi1 · · · ρir . Let β = σi1 · · · σir ∈ Bn. Then by (1),
we have η(β) = σi1 · · · σir = λ−1

i1,i1+1ρi1 · · · λ−1
ir,ir+1ρir = yρi1 · · · ρir = yρ ∈ Im(η), where y ∈ UV Pn. It

follows that:
v ∈ Im(η) ⇐⇒ (η(β))−1v ∈ Im(η) ⇐⇒ ρ−1y−1wρ ∈ Im(η).

Now y−1w ∈ UV Pn, so ρ−1y−1wρ ∈ UV Pn, and it follows that v ∈ Im(η) if and only if ρ−1y−1wρ ∈
η(Pn). From Section 3, Pn is generated by the set {aij | 1 ≤ i < j ≤ n}, and since η(aij) = λ−1

i,j λ−1
j,i

for all 1 ≤ i < j ≤ n, we see that v ∈ Im(η) if and only if ρ−1y−1wρ belongs to the free Abelian
subgroup Γ of UV Pn of rank n(n − 1)/2 generated by the set {λ−1

i,j λ−1
j,i | 1 ≤ i < j ≤ n}. In particular,

if 1 ≤ i < j ≤ n and εi,j : UV Pn −→ Z denotes the evaluation homomorphism defined by εi,j(λk,l) = 1
if {k, l} = {i, j} and εi,j(λk,l) = 0 otherwise, where 1 ≤ k, l ≤ n, k 6= l, then εi,j(Γ) = 2Z for all
1 ≤ i < j ≤ n.
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Now suppose on the contrary that Im(η) possesses an element v of order 2. From part (a), there exist
g ∈ UV Pn and ρ ∈ Im(ι) of order 2 such that v = gρg−1. Then πUV P (ρ) is also of order 2, and so may
be written as a non-trivial product of transpositions whose supports are pairwise disjoint. So there
exist 1 ≤ r ≤ n/2 and distinct elements i1, j1, . . . , ir, jr of {1, . . . , n} such that ik < jk for all 1 ≤ k ≤ r
and ρ = ι((i1, j1) · · · (ir, jr)). Let τ ∈ Im(ι) be such that πUV P (τρτ−1) = (1, 2) · · · (2r − 1, 2r), let

ρ̃ = τρτ−1 ∈ Im(ι), let τ̂ ∈ Bn be such that π(τ̂) = πUV P (τ), let β = σ1σ3 · · · σ2r−1, and let β̂ = τ̂−1βτ̂ .
Then ρ̃ = ρ1ρ3 · · · ρ2r−1 and η(β) = σ1σ3 · · · σ2r−1 = λ−1

1,2λ−1
3,4 · · · λ−1

2r−1,2rρ̃ by (1) and Theorem 2.3.

Since v ∈ Im(η), it follows that (η(β̂))−1. v ∈ Im(η). Hence:

(η(β̂))−1. v = η(τ̂−1)ρ̃ −1η(τ̂ ). η(τ̂−1)λ2r−1,2r · · · λ3,4λ1,2η(τ̂). gρg−1. (10)

Now using (3), we have πUV P (η(τ̂ )) = π(τ̂ ) = πUV P (τ), so:

η(τ̂−1)λ2r−1,2r · · · λ3,4λ1,2η(τ̂) = λir ,jr · · · λi2,j2λi1,j1. (11)

It follows from (10) and (11) that:

(η(β̂))−1. v = η(τ̂−1)ρ̃ −1η(τ̂ )ρ. ρ−1λir ,jr · · · λi2,j2λi1,j1ρ. ρ−1gρg−1

= η(τ̂−1)ρ̃ −1η(τ̂ )ρλjr,ir · · · λj2,i2λj1,i1ρ−1gρ. g−1 (12)

Since πUV P (η(τ̂ )) = π(τ̂) = πUV P (τ), there exists z ∈ UV Pn such that η(τ̂ ) = τz, and hence:

(η(β̂))−1. v = z−1τ−1ρ̃ −1τzρ. λjr ,ir · · · λj2,i2λj1,i1. ρ−1gρ. g−1

= z−1. ρ−1zρ. λjr ,ir · · · λj2,i2λj1,i1. ρ−1gρ. g−1. (13)

The expression on the right-hand side of (13) is written as a product of elements of UV Pn, which we
will now project onto Fi1,j1. Let α(λi1,j1, λj1,i1) = πi1,j1(z) et β(λi1,j1, λj1,i1) = πi1,j1(g). Using (2) and
the fact that πUV P (ρ) = (i1, j1) · · · (ir, jr), by (13), we have:

πi1,j1((η(β̂))−1. v) = (α(λi1,j1, λj1,i1))−1. α(λj1,i1, λj1,i1). λj1,i1. β(λj1,i1 , λi1,j1). (β(λi1,j1, λj1,i1))−1,

from which it follows that εi1,j1(η(β̂))−1. v) = 1. We conclude from the previous paragraph that

η(β̂))−1. v /∈ Γ, and thus v /∈ Im(η), which yields a contradiction. Therefore Im(η) contains no elements
of order 2, and we deduce from Proposition 3.1 that Bn/[Pn, Pn] has no elements of even order. �

Proposition 4.2. If n ≥ 3 then any torsion element of UV Bn belongs to the normal closure of Im(ι)
in UV Bn.

Proof. From Definition 2.2, one may check that the quotient of UV Bn by the normal closure of Im(ι)
in UV Bn is isomorphic to Z. If g is a torsion element of UV Bn, its image in this quotient is thus
trivial, in other words g belongs to the normal closure of Im(ι) in UV Bn. �

One may show in the same manner that the statement of Proposition 4.2 also holds for V Bn and
W Bn. In the case of UV Bn, we may strengthen the results of Theorem 4.1(a) and Proposition 4.2.

Theorem 4.3. Let n ≥ 2, and let w be a torsion element of UV Bn of order r. Then there exists
sw ∈ Sn of order r such that w is conjugate to ι(sw) by an element of UV Pn.

Before proving Theorem 4.3, we define some notation, and we make study the action of the symmetric
group Sn on the group UV Pn that will used in the proof. If τ ∈ Sn, let Supp(τ) denote its support.
Let s ∈ Sn, let o(s) denote the order of s and let Gs denote the cyclic subgroup of Sn of order o(s)
generated by the element s. By Theorem 2.4, the permutation s acts on UV Pn = 〈λi,j | 1 ≤ i 6= j ≤ n〉
by permuting the indices of the elements λi,j. To simplify the notation, if g ∈ UV Pn and s ∈ Sn, we
set s(g) = ι(s)gι(s)−1, and we shall identify s with its image ι(s) in UV Bn. Let s = s1 · · · sm(s) be
the cycle decomposition of s, where 1 ≤ m(s) ≤ n, and the subsets Supp(s1), . . . , Supp(sm(s)) form
a partition of the set {1, . . . , n} (in particular, some of the Supp(sj), where 1 ≤ j ≤ m(s), may be
singletons).

Let I = {(i, j) | 1 ≤ i 6= j ≤ n}. The action of Gs on I gives rise to a partition of I in n(s) disjoint
orbits, where n(s) ∈ N, and the cardinality of each such orbit is either the order of one cycle or is the
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least common multiple of the orders of two cycles of s. If (i, j) ∈ I, let O(i, j) denote its orbit, and
let |O(i, j)| denote the cardinality of O(i, j). Clearly, |O(j, i)| = |O(i, j)| for all (i, j) ∈ I. Further, if
O(j, i) = O(i, j) then there exist 1 ≤ q ≤ m(s) and p ∈ N such that i, j ∈ Supp(sq), sp

q(i) = j and
sp

q(j) = i, from which it follows that |O(i, j)| = o(sq) is even, and if (k, l) ∈ I then (k, l) ∈ O(i, j) if and

only if (l, k) ∈ O(i, j). This gives rise to a partition ⊔
n(s)
k=1Ok of I, where n(s) ∈ N, that dominates the

partition given by the action of Gs on I, and for k = 1, . . . , n(s), Ok is defined by the property that if
(i, j) ∈ I, then (i, j) ∈ Ok if and only if Ok = O(i, j) ∪ O(j, i). Note that n(s) is the number of orbits
of the action of Gs on the set {{i, j} | 1 ≤ i 6= j ≤ n} of unordered pairs of elements of {1, . . . , n}.
Since |O(j, i)| = |O(i, j)|, and O(i, j) is even if O(j, i) = O(i, j), it follows that for all 1 ≤ k ≤ n(s),
the cardinality |Ok| of Ok is even, so |Ok| = 2nk for some nk ∈ N. Let FOk

=
⊕

(i,j)∈Ok
Fi,j , where as

in Section 2, we identify Fi,j with Fj,i. Then:

UV Pn =
⊕

1≤k≤n(s)

FOk
. (14)

The following lemma is folklore.

Lemma 4.4. Let F2 = F2(x, y) be the free group of rank 2 freely generated by {x, y}, and let α : F2 −→
F2 be the involutive automorphism defined by α(x) = y and α(y) = x. Let w ∈ F2 be such that
wα(w) = 1. Then there exists u ∈ F2 such that w = uα(u−1).

Proof. Let w ∈ F2 be such that wα(w) = 1. If w = 1 then we may take u = 1. So suppose that
w 6= 1. Since wα(w) = 1, w cannot be written in reduced form as a word starting and ending with a
non-zero power of the same generator. By replacing w by α(w) if necessary, we may thus suppose that
w = xε1yε2 · · · yε2t−1yε2t 6= 1, where ε1, ε2, . . . , ε2t ∈ Z \ {0}, and thus:

1 = wα(w) =
(
xε1yε2 · · · xε2t−1yε2t

)
︸ ︷︷ ︸

6=1

·
(
yε1xε2 · · · yε2t−1xε2t

)
︸ ︷︷ ︸

6=1

∈ F2.

It follows that ε2t−j = −εj+1 for j = 0, . . . , 2t − 1, from which we conclude that w = uα(u−1), where
u = xε1yε2 · · · yεt . �

In what follows, we shall identify Sn with its image in UV Bn by ι. In particular, if s ∈ Sn, then ι(s)
shall be denoted simply by s.

Lemma 4.5. Let n ≥ 2, let s ∈ Sn, let γ1 ∈ FOl
, where 1 ≤ l ≤ n(s), and let w1 = γ1s ∈ UV Bn. If

w1 is of finite order then it is conjugate to s by an element of FOl
.

Proof. Let s ∈ Sn, γ1 ∈ FOl
, where 1 ≤ l ≤ n(s), and w1 ∈ UV Bn be as in the statement. By

reordering the orbits O1, . . . , On(s) if necessary, we may suppose that l = 1, so γ1 ∈ FO1 . The result is

clear if o(w1) = 1. If o(w1) = 2, then by Theorem 4.1(a), there exists g ∈ UV Pn such that w1 = gsg−1.
With respect to the decomposition (14), let g = δ1 · · · δn(s), where for k = 1, . . . , n(s), δk ∈ FOk

. Since

gsg−1 = γ1s, we have:

γ1 = δ1 · · · δn(s). s (δ1 · · · δn(s))
−1s−1 = δ1 · · · δn(s). sδ−1

n(s)s
−1 · · · sδ−1

1 s−1 ∈ FO1 . (15)

Now for all k = 1, . . . , n(s), FOk
is invariant under conjugation by s, and identifying the components

of (15) with respect to (14), we see that δk. sδ−1
k s−1 = 1 for all 2 ≤ k ≤ n(s), or in other words, δk and

s commute. It follows from (15) that γ1 = δ1. sδ−1
1 s−1, and thus w1 = γ1s = δ1sδ−1

1 , where δ1 ∈ FO1 ,
as required.

So suppose that o(w1) ≥ 3. For all m ∈ N, we have:

wm
1 = (γ1s)m = γ1sγ1s−1s2γ1s−2 · · · sm−1γ1s−(m−1)sm = γ1s(γ1) · · · sm−1(γ1)sm. (16)

Since UV Pn is torsion free, it follows from (16) that o(w1) = o(s). As we mentioned above, FO1 is
invariant under conjugation by s, so for all j = 0, 1, . . . , m−1, the term sj(γ1) = sjγ1s−j of (16) belongs
to FO1 . Let (i0, j0) ∈ O1, where 1 ≤ i0 < j0 ≤ n. If O(i0, j0) 6= O(j0, i0) (resp. O(i0, j0) = O(j0, i0)), let

ε = 1 (resp. ε = 2). Then |O(i0, j0)| = εn1, and |O1| = 2n1, FO1 =
⊕

(i,j)∈O1
Fi,j =

⊕n1−1
q=0 Fsq(i0),sq(j0),
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and for j = 0, . . . , n1 −1, there exists uj ∈ Fsj(i0),sj(j0) such that γ1 = u0 · · · un1−1. Hence u0, . . . , un1−1

belong to distinct free factors of UV Pn, so commute pairwise. Further:

sk(uj) ∈ Fsj+k(i0),sj+k(j0) for all k ∈ Z and j = 0, . . . , n1 − 1, (17)

where the superscript j + k is taken modulo n1. In particular, if v ∈ Fsq(i0),sq(j0) for some q =
0, . . . , n1 − 1, then sn1(v) = v (resp. sn1(v) = α(v), where α : Fsq(i0),sq(j0) −→ Fsq(i0),sq(j0) is the
automorphism that exchanges λsq(i0),sq(j0) and λsq(j0),sq(i0), as in Lemma 4.4), and thus sεn1(v) = v. It
follows from this, the fact that o(w1) = o(s) and (16) that:

1 = w
εn1o(s)
1 = (wεn1

1 )o(s) = (γ1s(γ1) · · · sεn1−1(γ1)sεn1)o(s) = (γ1s(γ1) · · · sεn1−1(γ1))o(s)sεn1o(s)

= (γ1s(γ1) · · · sεn1−1(γ1))o(s).

Since UV Pn is torsion free, we conclude that γ1s(γ1) · · · sεn1−1(γ1) = 1. Hence:

u0 · · · un1−1s
(
u0 · · · un1−1

)
· · · sεn1−1(u0 · · · un1−1

)
= 1. (18)

Applying (17), and projecting (18) into F1,2, we see that:

1 =
ε−1∏

i=0

sin1(u0)sin1+1(un1−1
)

· · · s(i+1)n1−1(u1
)

=
ε−1∏

i=0

sin1
(
u0s

(
un1−1

)
· · · sn1−1(u1

))
. (19)

We deduce from (19) (resp. from (19) and Lemma 4.4) that u0 =
∏n1−1

j=1 sn1−j
(
u−1

j

)
(resp. that there

exists ũ ∈ F1,2 such that u0 = ũsn1(ũ−1)
(∏n1−1

j=1 sn1−j
(
u−1

j

))
). Using the fact that u1, . . . , un1−1

commute pairwise, it follows that:

γ1 = u0u1 · · · un1−1 = βsn1−1(u−1
1

)
· · · s

(
u−1

n1−1

)
· un1−1 · · · u1, (20)

where β = 1 (resp. β = ũsn1(ũ−1)). In what follows, if a, b ∈ UV Bn, we shall write a ∼ b if a and b
are conjugate by an element of UV Pn. Let us show by induction that:

γ1 · s ∼ βsn1−1(u−1
1

)
· · · st+1(u−1

n1−(t+1)

)
st(u−1

n1−t

)
· un1−t · · · u1 · s (21)

for all t = 1, . . . , n1. If t = 1 then the result follows directly from (20). So suppose that (21) holds for

some 1 ≤ t ≤ n1 − 1. Let M0 =
∏n1−1

c=1 sc(ũ), and for 1 ≤ t ≤ n1 − 1, let Mt =
∏t−1

c=1 st−c
(
un1−t

)
.

Note that M1 = 1, and that M0 = 1 if O(i0, j0) 6= O(j0, i0). By (17), for c = 1, . . . , t − 1,
st−c

(
un1−t

)
∈ Fsn1−c(i0),sn1−c(j0), so for 1 ≤ t ≤ n1 − 1, the factors of Mt commute pairwise, and

Mt ∈
⊕n1−1

c=n1−t+1 Fsc(i0),sc(j0). Thus:

M−1
t st(u−1

n1−t

)
=

(
t−1∏

c=1

st−c(un1−t
)
)−1

st(u−1
n1−t

)
=

(
t−1∏

c=1

sc(u−1
n1−t

)
)

st(u−1
n1−t

)
=

t∏

c=1

sc(u−1
n1−t

)
. (22)

and since st
(
u−1

n1−t

)
∈ Fi0,j0 and un1−t · · · u1 ∈

⊕n1−t
i=1 Fsi(i0),si(j0), we see that M−1

t st
(
u−1

n1−t

)
commutes

with un1−t · · · u1. So by (21) and (22), we have:

γ1 · s ∼ βsn1−1(u−1
1

)
· · · st+1(u−1

n1−(t+1)

)
MtM

−1
t st(u−1

n1−t

)
· un1−t · · · u1 · s

= βsn1−1(u−1
1

)
· · · st+1(u−1

n1−(t+1)

)
Mt · un1−t · · · u1

(
t∏

c=1

sc(u−1
n1−t

)
)

· s

= βsn1−1(u−1
1

)
· · · st+1(u−1

n1−(t+1)

)
(

t∏

c=1

st−c(un1−t

)
)

un1−(t+1) · · · u1 · s ·
t−1∏

c=0

sc(u−1
n1−t

)
, (23)

where we have used the fact that Mt · un1−t =
∏t

c=1 st−c
(
un1−t

)
. Now by (17),

∏t
c=1 st−c

(
un1−t

)
∈⊕n1−1

c=n1−t Fsc(i0),sc(j0), and since βsn1−1
(
u−1

1

)
· · · st+1

(
u−1

n1−(t+1)

)
∈ Fi0,j0, we see that these two terms

commute, and it follows from (23) that:

γ1 · s ∼

(
t∏

c=1

st−c(un1−t
)
)

βsn1−1(u−1
1

)
· · · st+1(u−1

n1−(t+1)

)
un1−(t+1) · · · u1 · s ·

t−1∏

c=0

sc(u−1
n1−t

)
. (24)
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One may check that
∏t

c=1 st−c
(
un1−t

)
is the inverse of

∏t−1
c=0 sc

(
u−1

n1−t

)
, and using (24), we conclude

that (21) holds for t + 1. Taking t = n1 in (21), we obtain γ1 · s ∼ β · s. If O(i0, j0) 6= O(j0, i0) then
β = 1, and the statement of the lemma holds in this case. So suppose that O(i0, j0) = O(j0, i0). Then

ũ ∈ Fi0,j0, and for c = 1, . . . , n1 − 1, sc(ũ) ∈ Fsc(i0),sc(j0). Thus the factors of ũM0 =
∏n1−1

c=0 sc(ũ)

commute pairwise, and hence M−1
0 sn1(ũ−1) =

∏n1
c=1 sc(ũ−1). It follows that:

γ1 · s ∼ β · s = ũsn1(ũ−1) · s = ũM0M−1
0 sn1(ũ−1) · s =

(
n1−1∏

c=0

sc(ũ)

)(
n1∏

c=1

sc(ũ−1)

)
· s

=

(
n1−1∏

c=0

sc(ũ)

)
· s ·

(
n1−1∏

c=0

sc(ũ−1)

)
.

Now
∏n1−1

c=0 sc(ũ) may be seen to be the inverse of
∏n1−1

c=0 sc(ũ−1), and therefore γ1 · s ∼ s also in this
case, which completes the proof of the lemma. �

This enables us to prove Theorem 4.3.

Proof of Theorem 4.3. Let w ∈ UV Bn be a torsion element of order r. By Theorems 2.3 and 2.4 there
exist (unique) u ∈ UV Pn and s ∈ Sn such that w = us. As in (16), we see that u · s(u) · · · sr−1(u) = 1
in UV Pn and sr = 1. Further, from (14), u = γ1 · · · γn(s), where for l = 1, . . . , n(s), γl ∈ FOl

.
Let l ∈ {1, . . . , n(s)}. Since FOl

is invariant under conjugation by s, it follows from (14) that
γls(γl) · · · sr−1(γl) = 1 in FOl

. Since γls(γl) · · · sr−1(γl) may also be written as (γls)r using (16), we
conclude from Lemma 4.5 that γls is conjugate to s by an element of FOl

, or in other words, there exists

Λl ∈ FOl
such that γls = Λl · s · Λ−1

l . Let us prove by reverse induction that for all m = 1, . . . , n(s) + 1:

w = Λn(s)Λn(s)−1 · · · Λmγ1 · · · γm−1 · s · Λ−1
m · · · Λ−1

n(s)−1Λ−1
n(s). (25)

If m = n(s)+1 then (25) follows directly from the fact that w = us = γ1 · · · γn(s)·s. So suppose that (25)

holds for some m ∈ {2, . . . , n(s) + 1}. Then using (14) and the facts that γ1 · · · γm−2 ∈
⊕m−2

i=1 FOi and
γm−1 ∈ FOm−1, we obtain:

w = Λn(s)Λn(s)−1 · · · Λmγ1 · · · γm−2(γm−1 · s) · Λ−1
m · · · Λ−1

n(s)−1Λ−1
n(s)

= Λn(s)Λn(s)−1 · · · Λmγ1 · · · γm−2Λm−1 · s · Λ−1
m−1Λ−1

m · · · Λ−1
n(s)−1Λ−1

n(s)

= Λn(s)Λn(s)−1 · · · ΛmΛm−1γ1 · · · γm−2 · s · Λ−1
m−1Λ−1

m · · · Λ−1
n(s)−1Λ−1

n(s),

which proves (25) for m−1. Taking m = 1, we see that w = Λ ·s ·Λ−1, where Λ = Λn(s) · · · Λ1 ∈ UV Pn,
and this completes the proof of the theorem. �

Remark 4.6. It is an open question whether a result similar to that of Theorem 4.3 holds for V Bn and
for W Bn.
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