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Abstract: Temporal aspects of multilevel flow modelling (MFM) are important for reasoning
about causes and consequences. In particular real time reasoning about sensor data are
dependent on proper temporal ordering of events in order to cope with plant dynamics. The
purpose of the present paper is to contribute to the further development of the temporal aspects
of MFM by explaining how time stamps associated to the measured signals can be used to
enhance the causality analysis and infer the possible causes of a sequence of alarms.
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1. INTRODUCTION

Multilevel flow modelling (MFM) provides concepts and
tools for acquisition and reasoning about causality in com-
plex systems that helps the operators to identify possible
root causes in SCADA systems including a large number
of alarms. There exists a large literature that presents the
main principles of MFM. The reader is invited to refer to
Lind (2011a,b) for an introduction to MFM models and to
Kirchhubel et al. (2017) for causality inference and alarms
processing with MFM models. Current MFM techniques
have a limitation, namely the timing aspects of the propa-
gation of deviations are not considered in the MFM-based
reasoning. In addition, during consequence reasoning, the
occurrence of a specific event that will possibly occur can
be inferred, but when the event will happen cannot be
inferred. However, in many cases, time-related data such as
the order of the event occurrence or the interleaving times
between event occurrences would be helpful to enhance
cause and consequence reasoning.

To treat the dynamic features of a system by MFM, only a
few works have introduced timing aspects in such models.
Rosen (1998) made the first proposal of how to introduce
temporal information in MFM, and Lind (2016) presented
a more recent overview of its temporal aspects. In this
paper, time is introduced by adding a constant delay to
the relations between functions and goals. Lind (2011b)
presented overall principles for cause and consequence
reasoning including MFM-patterns. Kim and Seong (2018)
proposed extensions to MFM for reasoning about dynamic
situations including time-to-detect and time-to-effect con-
cepts. More precisely, a time-to-detect is associated to each
function of the MFM model where a variable is measured
and monitored and a time-to-effect is associated to each
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relation between functions. For a given path between a
cause and an alarm, the detection delay is obtained from
the sum of the successive times-to-effect and the final
time-to-detect. The previous approach suffers from two
limitations: (i) time values are essentially associated with
relations rather than functions, that is in a certain sense
counter intuitive and inconsistent with MFM principles
because only functions support how variables change dur-
ing operation; (ii) a single time value is assigned between
two given variables and uncertainties are not considered.
The authors in Guo et al. (2010) have proposed another
formalism based on temporal logic to infer the decision
from time information. However, this approach was not
directly applied to MFM. Observe that a large literature
exists about the use of temporal logic for fault detection
and diagnosis applications. In particular, in the framework
of discrete event systems, temporal logic has been imple-
mented with stochastic automata Capacho et al. (2017)
or other formalisms Reinhardt et al. (2020). In addition,
recent works have explored several research directions. In
Dorgo et al. (2021), the authors discuss the definition of
alarms and propose to make the alarms more informative
by enhancing the alarm messages. Another approach re-
lies on data-based methods, in particular, Monte Carlo
simulations Nielsen et al. (2020). This approach has been
introduced for validation purpose but it can be also used
to estimate the distribution of time delays in a given MFM
model.

The ultimate goal of our research is to extend the modeling
capability of MFM with timing aspects. In such cases, two
important issues should be considered: how to insert the
timing aspects in MFM and how to use such aspects for
cause and consequence inferences. In this contribution we
assume that the timing aspects have been already inserted
in the model and we focus on the use of these aspects to
improve the cause and consequence inferences. The rest of
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the paper is organized as follows. Section 2 describes the
basis of MFM, causality analysis and other related notions.
Section 3 presents the main contribution: the use of time
stamps in the causality analysis. Section 4 is an illustrative
example and Section 5 concludes the paper.

2. PRELIMINARIES

2.1 Multilevel flow modelling and fault analysis

MFM represents the goals and functions of a system by
decomposing the mass, energy and information streams
in the operations as a set of means-end relationships.
Each stream component along the means-end dimension
is described by basic flow functions. By combining the
means-end decomposition of the overall operation and
part-whole perspective of individual flows the function
of the system is analyzed and can be represented as a
graphical model. The process of establishing the MFM
model starts from available engineering knowledge about
the system Wu et al. (2020). The represented causality
can be refined to match the dominant physical effects and
the model can be completed by representing the imposed
control strategies. Heussen and Lind (2012)

Based on the MFM modelling primitives, the propagation
of faults through the system can be analyzed. In particular
propagation trees can be extracted systematically from
MFM. Since faults are considered as root causes that
may explain the unexpected behaviours in the system,
one can use a causal analysis to identify the functions
in the system that are affected by a given fault. From
a phenomenological perspective, i.e., by considering the
measurement x̂ of the variable x, if an observation is
made somewhere down in the tree, propagation must have
passed through the previous sensors for the possible cause
to be valid. It would therefore be premature to include
these sensors in the likelihood evaluation of the possible
cause. Repeating this for all possible causal trees may help
differentiate their likelihood sufficiently to provide useful
ranking without formal quantification.

Such a reasoning is no longer fully correct if one consider
the alarms A(x̂) instead of the variation of the measure-
ments x̂. In such a case, the system and sensors are consid-
ered as a whole and the conclusions of the timed causality
analysis will depend also on the location and tuning of the
sensors. As far as the propagation times from causes to
alarms are assumed to be known, one can infer a decision
but if one changes the sensors, the propagation times and
decision should be updated. In other words, if we consider
the consequence of an initiating cause as the propagation
of an event horizon, it is not only the speed of propagation
that will determine the timing of alarms, it will also be the
alarm set-points versus the initial state before the cause
appeared Kim and Seong (2018).

2.2 Sequences of alarms and related notations

The considered systems are assumed to be monitored with
a set of sensors and the proposed analysis studies the
system plus its sensors as a whole. Each sensor measures
the variation x̂ of a given physical variable x and an alarm

Fig. 1. Computation of the range between alarms: A nec-
essarily occurs before A′ (top), the time constraints
on A and A′ intersect (middle), the time constraints
on A are included in the ones of A′ (bottom).

A(x̂) is triggered when some unexpected variations of x
occur, i.e., when the measurement x̂ exceeds some limit
thresholds The timed/causal analysis proposed in this
paper concerns the sequences of alarms that is different
from the order in which the characteristic variables are
influenced by a given fault. After the occurrence of a given
fault (i.e., a root cause) a sequence of n successive alarms
with their time stamps is captured. Such a sequence σ is
formalized as

σ = (A1, τ1)...(An, τn), (1)

where Ai, i = 1, ..., n, are the successive alarms associated
to the measurements x̂(Ai) of the physical variables x(Ai),
and τi, i = 1, ..., n, are the corresponding time stamps that
satisfy τ1 ≤ ... ≤ τn. The following notations are also
introduced to manage such sequences of alarms.

• Paths(C,A) refers to the set of causal paths between
a cause C and a function where a measured variable
h may trigger an alarm A,

• path = Cx(1)...x(k)A refers to a particular path in
Paths(C,A) that passes trough k successive functions
with variables x(1), ..., x(k),

• [δC(path),∆C(path)] : refers to the time interval
to propagate a given cause C along a given path,
δC(path) and ∆C(path) denoting respectively the left
and right bounds of this interval,

• TC(A) = [δC(A),∆C(A)] refers to the time interval
for a given cause C to trigger a given alarm A, δC(A)
and ∆C(A) denoting respectively the left and right
bounds of this interval,

• wC(A) = ∆C(A) − δC(A) refers to the time uncer-
tainties for a given cause C to trigger A,

• DC(A,A′) = [δC(A,A′),∆C(A,A′)] refers to the time
range between alarms A and A′, conditioned by the
cause C (δC(A,A′) and ∆C(A,A′) denoting respec-
tively the left and right bounds of this interval), i.e.,
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the paper is organized as follows. Section 2 describes the
basis of MFM, causality analysis and other related notions.
Section 3 presents the main contribution: the use of time
stamps in the causality analysis. Section 4 is an illustrative
example and Section 5 concludes the paper.
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these sensors in the likelihood evaluation of the possible
cause. Repeating this for all possible causal trees may help
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ranking without formal quantification.
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ments x̂. In such a case, the system and sensors are consid-
ered as a whole and the conclusions of the timed causality
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sensors. As far as the propagation times from causes to
alarms are assumed to be known, one can infer a decision
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the consequence of an initiating cause as the propagation
of an event horizon, it is not only the speed of propagation
that will determine the timing of alarms, it will also be the
alarm set-points versus the initial state before the cause
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a set of sensors and the proposed analysis studies the
system plus its sensors as a whole. Each sensor measures
the variation x̂ of a given physical variable x and an alarm
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A(x̂) is triggered when some unexpected variations of x
occur, i.e., when the measurement x̂ exceeds some limit
thresholds The timed/causal analysis proposed in this
paper concerns the sequences of alarms that is different
from the order in which the characteristic variables are
influenced by a given fault. After the occurrence of a given
fault (i.e., a root cause) a sequence of n successive alarms
with their time stamps is captured. Such a sequence σ is
formalized as

σ = (A1, τ1)...(An, τn), (1)

where Ai, i = 1, ..., n, are the successive alarms associated
to the measurements x̂(Ai) of the physical variables x(Ai),
and τi, i = 1, ..., n, are the corresponding time stamps that
satisfy τ1 ≤ ... ≤ τn. The following notations are also
introduced to manage such sequences of alarms.

• Paths(C,A) refers to the set of causal paths between
a cause C and a function where a measured variable
h may trigger an alarm A,

• path = Cx(1)...x(k)A refers to a particular path in
Paths(C,A) that passes trough k successive functions
with variables x(1), ..., x(k),

• [δC(path),∆C(path)] : refers to the time interval
to propagate a given cause C along a given path,
δC(path) and ∆C(path) denoting respectively the left
and right bounds of this interval,

• TC(A) = [δC(A),∆C(A)] refers to the time interval
for a given cause C to trigger a given alarm A, δC(A)
and ∆C(A) denoting respectively the left and right
bounds of this interval,

• wC(A) = ∆C(A) − δC(A) refers to the time uncer-
tainties for a given cause C to trigger A,

• DC(A,A′) = [δC(A,A′),∆C(A,A′)] refers to the time
range between alarms A and A′, conditioned by the
cause C (δC(A,A′) and ∆C(A,A′) denoting respec-
tively the left and right bounds of this interval), i.e.,

the time interval when a given cause C propagates
between two alarms A and A′.

2.3 Manipulation of intervals

Time intervals are manipulated according to the IEEE
1788 standard for interval arithmetic IEEE (2015). In
particular:

−[a, b] = [−b,−a],
([a, b])−1 = [1/b, 1/a] if 0 /∈ [a, b],
[a, b] + [c, d] = [a+ c, b+ d] ,
[a, b]− [c, d] = [[a, b] + [−d,−c] = [a− d, b− c] ,
[a, b]× [c, d] = [min (ac, bc, ad, bd),max (ac, bc, ad, bd)] ,
[a, b]÷ [c, d] = [a, b]× ([c, d])−1,√
[a, b] = [

√
a,
√
b] if a ≥ 0.

3. CAUSALITY ANALYSIS WITH TIME

The association of temporal aspects to MFM functions
introduces an interesting possibility for consistency check-
ing of an MFM model. In this section, the time delays
or advances between occurring events are manipulated as
time intervals in order to eliminate some possible root
causes when a timed sequence of successive alarms, i.e., a
sequence of pairs formed by alarms and their time samples,
is measured.

Basically, for a cause C that is a possible cause for alarms
A and A′, the rangeDC(A,A′) = [δC(A,A′),∆C(A,A

′)] of
possible interleaving times between A and A′, conditioned
by the cause C is computed. In such a case, there is a causal
relation from C to the variable h associated to A and
another causal relation from C to the variable h′ associated
to A′. When δC(A,A

′) ≥ 0, this range is interpreted as
the delay required to trigger the alarm A′ after having
triggered the alarm A. More generally, a time interval can
be interpreted as a delay or an advance depending on the
signs of δC(A,A

′) and ∆C(A,A′):

• an interval with positive values only (i.e., δC(A,A′) ≥
0) means that the time between A and A′ is a delay
and that A′ should be triggered after A when C is
the cause for A and A′,

• an interval with negative values only (i.e., ∆C(A,A′) ≤
0) means that the time between A and A′ is an
advance and that A′ should be triggered before A
when C is the cause for A and A′,

• an interval with δC(A,A′) < 0 and ∆C(A,A′) > 0
may be a delay or an advance and one cannot infer
the order in which A′ and A are triggered when C is
the cause for A and A′.

Consequently in some cases, the order in which alarms A
and A′ are triggered is enough to eliminate some possible
root causes. Otherwise, the measured interleaving time
between A and A′ should be compared with DC(A,A′)
to infer whether C is a t-possible root cause.

3.1 Computation of the time intervals between alarms

The main principle to compute the time interval on prop-
agation paths in MFM models is to give preference to the
shortest path (with respect to the time). This principle
is motivated by the fact that the first occurrence of a

given alarm is used to infer causality in the time context.
Replications of a given alarm are not considered at this
point. For the set of paths Paths(C,A) that exist from C
to A, TC(A) = [δC(A),∆C(A)] is defined by:

δC(A) = min
path∈Paths(C,A)

{δC(path)},

∆C(A) = min
path∈Paths(C,A)

{∆C(path)}. (2)

where the time interval [δC(path),∆C(path)] of a given
path from a cause C to the variable h associated to alarm A
is assumed to be estimated according to data collected in
the considered systems, simulations, or even digital twins.

The time range DC(A,A′) = [δC(A,A′),∆C(A,A
′)] be-

tween two alarms A and A′ is then computed according
to equation (3). Such an equation is valid for a large
variety of scenarios: (a) when A necessarily occurs before
A′ (Figure 1-top), (b) when the time constraints on A
and A′ intersect (Figure 1-middle), (c) when the time
constraints on A are included in the ones of A′ (Figure 1-
bottom).

δC(A,A′) = δC(A
′)−∆C(A),

∆C(A,A′) = ∆C(A
′)− δC(A).

(3)

Observe that, in some particular cases it is possible to
improve the approximation of the range between A to A′

by studying the intersection of the causality paths from
C to A and C to A′. For simplicity this discussion is not
pursued in this paper.

Property 1. Let A1, A2 and A3 be 3 alarms, we have:

DC(A1, A2) +DC(A2, A3)
= DC(A1, A3) + [−wC(A2),+wC(A2)] .

Proof : The proof results from the property of the the sum
of two intervals:

DC(A1, A2) +DC(A2, A3)
= [δC(A2)−∆C(A1) + δC(A3)−∆C(A2) ,

∆C(A2)− δC(A1) + ∆C(A3)− δC(A2)] ,
= [δC(A3)−∆C(A1),∆C(A3)− δC(A1)] +

[δC(A2)−∆C(A2),∆C(A2)− δC(A2)] ,
= DC(A1, A3) + [−wC(A2),+wC(A2)] .

3.2 Elimination of possible root causes

In this section we assume that timing aspects have been
included in MFM models according to some physical-
based or data-based approaches and that the time intervals
DC(A,A′), C ∈ C, A,A′ ∈ A have been computed in
a systematic way. Now consider a set of k possible root
causes C = {C1, ..., Ck} and a sequence σ of n successive
alarms with their time stamps collected by the SCADA
system within the time interval [0, τ ]. σ is of the form of
equation (1). There is no difficulty to extend Property 1
to series of n2 − n1 alarms in the sequence σ:∑

i=n1...n2−1

DC(Ai, Ai+1)

= DC(An1
, An2

) +
∑

i=n1+1...n2−1

[−wC(Ai),+wC(Ai)] .

(4)
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Single root cause Let us first study the simple situation
where a given cause C can explain all alarms of a given
sequence. Assumption H1 is considered for this purpose

(H1): a single fault occurs within [0, τ ].

Assumption H1 means that a single root cause explains
the n alarms of σ.

Property 2. Let σ = (A1, τ1)...(An, τn), be a sequence of
alarms collected under assumption H1, and C ∈ C. If
there exist n1, n2 with n ≥ n2 > n1 such that τn2 −
τn1 /∈, DC(An1 , An2), then, C is not a possible cause for
both (An1 , τn1) and (An2 , τn2). Consequently, C cannot
explain σ.

Proof : By contradiction, if C can explain σ then the in-
terleaving time τn2

−τn1
between An1

and An2
necessarily

belongs to DC(An1
, An2

).

Observe that the previous property can be simplified in
some particular situations. C is not a possible cause for
both (An1

, τn1
) and (An2

, τn2
), if n2 > n1 and either (1)

or (2) is satisfied.

(1) ∆C(An1
, An2

) < 0,

(2) δC(An2
, An1

) > 0.

Property 3. Let σ = (A1, τ1)...(An, τn), be a timed se-
quence of alarms collected under assumption H1. The set
C′ ⊆ C of possible causes that can explain σ is obtained
by:

C′ = {C ∈ C : ∀n1, n2, with n ≥ n2 > n1 ≥ 1,
τn2

− τn1
∈ DC(An1

, An2
).

(5)

Proof : The set of possible causes that can explain σ is
obtained by elimitating from C each cause C that satisfies
Property 2. Equation (5) holds as a consequence.

Observe that, in general, several root causes may equally
explain a given sequence of alarms. In such a case one
could be interested in deciding which cause is the most
probable or likely. Discussing about probability of the
causes need to introduce probabilistic distributions in the
model whereas discussing about likelihood required only to
quantify a certain belief in the decision e.g., by counting
the number of occurrences of each root cause. Both aspects
have been studied in the framework of temporal logic. The
authors in Chen et al. (2021) consider switches systems
and find a temporal logic formula to detect the faulty
behaviours with a probability guarantee. In Kim and
Seong (2018), the authors also develop a probabilistic
reasoning consistent with the timing aspects added into
the model. In Nielsen et al. (2020), the authors study
the causal influence of an actuator on a process variable
as the probability of a qualitative and discrete causal
state. By testing an MFM model, and interpreting the
propagation paths produced by MFM, the results from
MFM are compared to the stochastic causality analysis
to determine the model accuracy. The authors in Chen
and Kumar (2015) use input-output stochastic hybrid
automaton and estimate the probability distribution over
the discrete locations of system. This results is then used to

compute the likelihood of faults, a sistic that they employ
for the purpose of fault detection.

Our perspective is to discuss belief rather than probability
and to define such a belief with respect to the history about
fault occurrence. In detail, each root cause C is assumed
to be characterized by a frequency of occurrence f(C), i.e.,
the number of occurrences of C by time period. Then if
the subset of root causes C′ ⊆ C can explain the sequence
of alarms σ, the belief of each cause C ∈ C′ is computed
as:

Belief(C) =
f(C)∑

C′∈C′ f(C ′)
.

In simple words, the most frequent faults obtain a highest
score and will be preferred.

Multiple root causes In this section assumption H1 is
relaxed and we consider the more general case where one
or more causes are necessary to explain a given sequence
of alarms. Let us first extend the notion of time range
to a set of causes. For a set of k possible root causes
C = {C1, ..., Ck}, and for any subset G ⊆ C, the time range
DG(A,A′) = [δG(A,A′),∆G(A,A′)] between two alarms
A and A′ with respect to G is computed according to
equation (6):

δG(A,A′) = min
C∈G

δC(A,A′),

∆G(A,A′) = max
C∈G

∆C(A,A′)
(6)

The problems are (i) to check if a given subset G ⊆
C of possible root causes can explain the sequence of
alarms σ = (A1, τ1)...(An, τn); (ii) to search about minimal
subsets G ⊆ C of possible root causes that may explain
σ. The notion of ”minimality” should be understood in
the perspective of set manipulation: substracting any root
cause from a minimal subset G will lead to a subset G′ that
cannot explain σ any longer.

The belief of the minimal subset of causes G within a list
E of several possible minimal subsets is computed as

Belief(G) =
∑

C∈G f(C)∑
G∈E

∑
C′∈G f(C ′)

where f(C) is the frequency of occurrence of C.

4. EXAMPLE

In this section we consider the example of an injection
system in Fig. 1. This system is based on an industrial
study prepared by Kairos Technology and details and
parameters values are omitted for privacy purpose. The
system is composed of a deareator and a set of fine filters
to clean the water before injection. The sea water is lifted
by pumps, enters the system and passes first through four
fine filters, which filter the water. Each filter works during
3 periods of time, then it is cleaned during 1 period of time
and so on. The cleaning operations are planed in order
to stop only 1 filter at each time. For simplicity, the fine
filters are abstracted by a fictive valve V 1 controlled by
a pressure difference between the inlet and outlet of the
filter. The filtered water then passes to the V 2 valve which
regulates the flow rate into the deaerator DA, represented
by a tank which water level h can be indirectly regulated.
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Single root cause Let us first study the simple situation
where a given cause C can explain all alarms of a given
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(H1): a single fault occurs within [0, τ ].

Assumption H1 means that a single root cause explains
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Property 2. Let σ = (A1, τ1)...(An, τn), be a sequence of
alarms collected under assumption H1, and C ∈ C. If
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), if n2 > n1 and either (1)

or (2) is satisfied.
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) < 0,
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) > 0.

Property 3. Let σ = (A1, τ1)...(An, τn), be a timed se-
quence of alarms collected under assumption H1. The set
C′ ⊆ C of possible causes that can explain σ is obtained
by:

C′ = {C ∈ C : ∀n1, n2, with n ≥ n2 > n1 ≥ 1,
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Proof : The set of possible causes that can explain σ is
obtained by elimitating from C each cause C that satisfies
Property 2. Equation (5) holds as a consequence.

Observe that, in general, several root causes may equally
explain a given sequence of alarms. In such a case one
could be interested in deciding which cause is the most
probable or likely. Discussing about probability of the
causes need to introduce probabilistic distributions in the
model whereas discussing about likelihood required only to
quantify a certain belief in the decision e.g., by counting
the number of occurrences of each root cause. Both aspects
have been studied in the framework of temporal logic. The
authors in Chen et al. (2021) consider switches systems
and find a temporal logic formula to detect the faulty
behaviours with a probability guarantee. In Kim and
Seong (2018), the authors also develop a probabilistic
reasoning consistent with the timing aspects added into
the model. In Nielsen et al. (2020), the authors study
the causal influence of an actuator on a process variable
as the probability of a qualitative and discrete causal
state. By testing an MFM model, and interpreting the
propagation paths produced by MFM, the results from
MFM are compared to the stochastic causality analysis
to determine the model accuracy. The authors in Chen
and Kumar (2015) use input-output stochastic hybrid
automaton and estimate the probability distribution over
the discrete locations of system. This results is then used to

compute the likelihood of faults, a sistic that they employ
for the purpose of fault detection.

Our perspective is to discuss belief rather than probability
and to define such a belief with respect to the history about
fault occurrence. In detail, each root cause C is assumed
to be characterized by a frequency of occurrence f(C), i.e.,
the number of occurrences of C by time period. Then if
the subset of root causes C′ ⊆ C can explain the sequence
of alarms σ, the belief of each cause C ∈ C′ is computed
as:

Belief(C) =
f(C)∑

C′∈C′ f(C ′)
.

In simple words, the most frequent faults obtain a highest
score and will be preferred.

Multiple root causes In this section assumption H1 is
relaxed and we consider the more general case where one
or more causes are necessary to explain a given sequence
of alarms. Let us first extend the notion of time range
to a set of causes. For a set of k possible root causes
C = {C1, ..., Ck}, and for any subset G ⊆ C, the time range
DG(A,A′) = [δG(A,A′),∆G(A,A′)] between two alarms
A and A′ with respect to G is computed according to
equation (6):

δG(A,A′) = min
C∈G

δC(A,A′),

∆G(A,A′) = max
C∈G

∆C(A,A
′)

(6)

The problems are (i) to check if a given subset G ⊆
C of possible root causes can explain the sequence of
alarms σ = (A1, τ1)...(An, τn); (ii) to search about minimal
subsets G ⊆ C of possible root causes that may explain
σ. The notion of ”minimality” should be understood in
the perspective of set manipulation: substracting any root
cause from a minimal subset G will lead to a subset G′ that
cannot explain σ any longer.

The belief of the minimal subset of causes G within a list
E of several possible minimal subsets is computed as

Belief(G) =
∑

C∈G f(C)∑
G∈E

∑
C′∈G f(C ′)

where f(C) is the frequency of occurrence of C.

4. EXAMPLE

In this section we consider the example of an injection
system in Fig. 1. This system is based on an industrial
study prepared by Kairos Technology and details and
parameters values are omitted for privacy purpose. The
system is composed of a deareator and a set of fine filters
to clean the water before injection. The sea water is lifted
by pumps, enters the system and passes first through four
fine filters, which filter the water. Each filter works during
3 periods of time, then it is cleaned during 1 period of time
and so on. The cleaning operations are planed in order
to stop only 1 filter at each time. For simplicity, the fine
filters are abstracted by a fictive valve V 1 controlled by
a pressure difference between the inlet and outlet of the
filter. The filtered water then passes to the V 2 valve which
regulates the flow rate into the deaerator DA, represented
by a tank which water level h can be indirectly regulated.

Fig. 2. Water injection system

Then the water exits the deaerator (Q3) towards the outlet
of the system. When the outlet flow Q4 exceeds a certain
reference, the V 3 valve rejects the excess water into the
sea.

According to the MFM model of this system LMansouri
(2021), two possible faults may occur: a smooth decrease of
inlet flow C(Q1) (here, the inlet flow is an imput arriving
from the external environment and is assimilated to an
actuator fault) or a fault in the cleaning of the fine filters
C(FF ). Multiple faults are not considered. Three sensors

are used to trigger alarms: one on the position V̂ 2 of valve
V 2, the second on the position V̂ 3 of valve V 3 and the last

one on the measurement of the deareator level ĥ. Alarms
are triggered when V̂ 2 exceeds 0.75 (in percentage), V̂ 3

exceeds 0.25, and ĥ decreases below 2m. The thresholds
are tuned such that the normal conditions do not trigger
any alarm. Validation is made by simulations with the
following setting

• an inlet flow of 1 m3s−1 is considered and the outlet
flow reference is depicted in Fig. 5 (dashed line);

• 100 scenarios with fault C(Q1) and 100 scenarios with
fault C(FF ) are executed;

• each scenario has a period of 24 hours;
• faults occur at random time from time 6 to time 18;
• a Gaussian noise is added to the measured variables.

With the proposed scenarios, only alarms associated to

the measurements V̂ 2 and ĥ may be triggered and for

all scenarios, A(V̂ 2) occurs before A(ĥ). Some scenarios,

where only V̂ 2 occurs (before the end time of simulation),
have been removed from analysis.

Fig. 3 to 5 illustrate the case where a fault C(FF ) affects
the cleaning of the filters after 12 hours. As the filters
are no longer cleaned, the average differential pressure
increases and the enthalpy (represented by the position of
the fictive valve V 1) decreases from time 12 leading to a
decrease of the flow entering in the deareator. The control
loop reacts by opening the valve V 2 in order to compensate
the decrease of flow. V 2 reaches an abnormal value after
3.2h (Fig. 3). Unfortunately, as the differential pressure
continues to increase, this flow becomes finally too weak in
order to maintain the expected level in deareator (Fig. 4)
that starts to decrease and reaches the limit threshold
of 2m after 6.8h from the occurrence of the fault. The
interleaving time between the two alarms is 3.6h in this
scenario.

Fig. 3. Variation of valves position due to an increase of
the filter differential pressure

Fig. 4. Variation of the deareator level due to an increase
of the filter differential pressure

Fig. 5. Variation of the flows due to an increase of the filter
differential pressure
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Fig. 6. Histograms of the alarm interleaving times

For each scenario, an alarm sequence of the form of Equa-
tion (1) is collected. Considering the series of simulations,

the histograms of the interleaving times from A(V̂ 2) to

A(ĥ) are reported in Fig. 6. One can conclude that for a
interleaving time less than 3 hours, the cause is C(FF )
whereas for a interleaving time larger than 4 hours the
cause is C(Q1). When the alarm interleaving time belongs
to the interval [3h, 4h] one cannot conclude and an addi-
tional alarm or other information should be considered to
consolidate the inference. This is the case of the scenario
reported in Figs. 5 to 7.

5. CONCLUSION

This paper has proposed a method that uses the timing
information in order to filter the sequences of alarms
collected by SCADA systems. Assuming that the timing
aspects have been already inserted in a MFM model, the
main contribution was to show how this method can be
combined with the causality analysis obtained from the
multilevel flow modelling approach and how it can refine
such analysis.

The paper is the beginning of introducing quantification
of temporal information in MFM. The aim is as stated to
enhance the ability to distinguish between possible causal
reasoning paths. At present the cost will be, however, a
large overhead in learning and maintaining relevant model
parameters for accurate time representation. The ultimate
goal of our research is to develop a timed/causal analysis
and include it in standard tools that help operators to
assess sequences of alarms in case of critical event.
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Jimenez, F. (2017). Alarm management via temporal
pattern learning. Engineering Applications of Artificial
Intelligence, 65, 506–516.

Chen, G., Wei, P., and Liu, M. (2021). Temporal
logic inference for fault detection of switched systems
with gaussian process dynamics. IEEE Transactions
on Automation Science and Engineering, 1–16. doi:
10.1109/TASE.2021.3074548.

Chen, J. and Kumar, R. (2015). Fault detection of
discrete-time stochastic systems subject to temporal
logic correctness requirements. IEEE Transactions on
Automation Science and Engineering, 12(4), 1369–1379.
doi:10.1109/TASE.2015.2453193.

Dorgo, G., Palazoglu, A., and Abonyi, J. (2021). De-
cision trees for informative process alarm definition
and alarm-based fault classification. Process Safety
and Environmental Protection, 149, 312–324. doi:
https://doi.org/10.1016/j.psep.2020.10.024.

Guo, W., Wen, F., Liao, Z., Wei, L., and Xin, J. (2010).
An analytic model-based approach for power system
alarm processing employing temporal constraint net-
work. IEEE Transactions on Power Delivery, 25(4),
2435–2447. doi:10.1109/TPWRD.2009.2032054.

Heussen, K. and Lind, M. (2012). On support functions
for the development of MFM models. In Proceedings
of the First International Symposium on Socially and
Technically Symbiotic System. Okayama, Japan.

IEEE (2015). IEEE standard for interval arithmetic. Std
1788-2015, 1–97. doi:10.1109/IEEESTD.2015.7140721.

Kim, S.G. and Seong, P.H. (2018). Enhanced rea-
soning with multilevel flow modeling based on time-
to-detect and time-to-effect concepts. Nuclear En-
gineering and Technology, 50(4), 553–561. doi:
https://doi.org/10.1016/j.net.2018.03.008.

Kirchhubel, D., Zhang, X., Lind, M., and Ravn, O. (2017).
Identifying causality from alarm observations. In Pro-
ceedings of International Symposium on Future I&C for
Nuclear Power Plants ISOFIC2017. Gyeongju, Korea.

Lind, M. (2011a). An introduction to multilevel flow
modeling. International Journal of Nuclear Safety and
Simulation, 2, 22–32.

Lind, M. (2011b). Reasoning about causes and conse-
quences in multilevel flow models. In Proceedings of Eu-
ropean Safety and Reliability Conference ESREL2011,
2359–2367. Troyes, France. doi:10.1201/b11433-334.

Lind, M. (2016). Temporal aspects of multilevel flow mod-
elling. In Proceedings of 8th International Symposium
on Symbiotic Nuclear Power Systems for 21 Century
ISSNP2016. Chengdu, China.

LMansouri, S. (2021). Inserting event sequences in causal
tree anaysis. Technical report, Université Le Havre
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