
HAL Id: hal-04468389
https://hal.science/hal-04468389v1

Submitted on 6 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resource-Aware Edge-Based Stream Analytics
Ioan Petri, Ioan Chirila, Heitor Murilo Gomes, Albert Bifet, Omer F. Rana

To cite this version:
Ioan Petri, Ioan Chirila, Heitor Murilo Gomes, Albert Bifet, Omer F. Rana. Resource-
Aware Edge-Based Stream Analytics. IEEE Internet Computing, 2022, 26 (4), pp.79–88.
�10.1109/MIC.2022.3152478�. �hal-04468389�

https://hal.science/hal-04468389v1
https://hal.archives-ouvertes.fr

 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/147720/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Petri, Ioan , Chirila, Ioan, Gomes, Heitor, Bifet, Albert and Rana, Omer 2022. Resource-aware edge-based
stream analytics. IEEE Internet Computing 26 (4) , pp. 79-88. 10.1109/MIC.2022.3152478

Publishers page: http://dx.doi.org/10.1109/MIC.2022.3152478

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

IEEE INTERNET COMPUTING 1

Resource-Aware Edge-Based Stream Analytics

Ioan Petri, Ioan Chirila, Heitor Murilo Gomes, Albert Bifet, Omer F. Rana, Member, IEEE
Understanding how machine learning algorithms can be used for stream processing on edge devices remains an important

challenge. Such ML algorithms can be represented as operators and dynamically adapted based on the resources on which they are
hosted. Deploying machine learning algorithms on edge resources often focuses on carrying out inference on the edge, whilst learning
and model development takes place on a cloud data center. We describe TinyMOA, a modified version of the open-source Massive
Online Analytics (MOA) library for stream processing, that can be deployed across both local and remote edge resources using the
Parsl and Kafka systems. Using an experimental testbed, we demonstrate how machine learning stream processing operators can be
configured based on the resource on which they are hosted, and discuss subsequent implications for edge-based stream processing
systems.

Index Terms—edge computing, MOA, sensor data processing, stream processing, machine learning.

I. INTRODUCTION

AN INCREASE in performance and reliability of edge
devices provides computational capacity in proxim-

ity to an end user and to the data capture / generation source.
Applications that can be hosted directly on these devices has
also continued to increase over recent years, ranging from
real time event processing to the identification of triggers that
can initiate cloud-based execution, service and data migration
to/from mobile devices and cloud systems, leading to more
complex data processing of stream-based (e.g. audio and
video) data. IoT applications can also generate vast amounts
of data, often streamed from a device to a data processing
system. The ability to run machine learning on resource-
constrained IoT devices provides an alternative to connecting
to the cloud. Data movement from edge to the cloud brings
cost inefficiencies including latency, connectivity and security.
The ability to host machine learning algorithms on constrained
hardware can enable developers to change the way applica-
tions interact with computational infrastructure [1]. Given the
resource constraints of IoT devices, their capability needs to be
enhanced using edge computing to ensure efficiency, accuracy,
productivity and cost reductions [2].

We analyse how machine learning (ML) algorithms can be
applied to data streams on edge devices. We note that ML
libraries can vary in computational complexity, based on a va-
riety of hyperparameters that influence their construction and
subsequent deployment. The complexity of an ML algorithm
is also determined by the mode of usage, e.g. whether the
algorithm is being used in “inference” or “learning” mode.
Existing ML libraries, such as TensorFlow-Lite (TF-Lite) often
involve a data center-based model development, and then an
edge-based inference. This choice is made based on the com-
putational and data storage capacity of edge devices compared
to data center capacity (the former is expected to have substan-
tially lower capacity than the latter). This discrepancy between
edge and data center resources is therefore used to modify the
types of operations carried out on an edge device compared
to a data center. An ML model undergoes ”adaptation” to

Ioan Petri, Ioan Chirila and Omer Rana are with Cardiff University, UK
Heitor Murilo Gomes and Albert Bifet are with the University of Waikato,

NZ

make it execute on an edge resource. In TensorFlow to TF-
Light, the number of bits used to encode weight parameters
of a learned model are reduced (quantization) and the range
of weight values are constrained (distillation) before moving
the model to a resource constrained device. Our approach is
focused on modifying the size and range of Java classes that
can be hosted on a resource, realised using a custom Java class
loader as explained in section II-B. This forms the key focus of
this paper, i.e. how the resource characteristics and properties
of a computational resource can dynamically modify the ML
algorithm executed on a resource. We investigate, in particular,
how ML applied to data streams can be adapted based on the
resources on which ML algorithms are hosted, using the MOA
(Massive On-line Analytics) software toolkit. Using stream
processing terminology. We refer to ML algorithms used for
analysing the properties of a stream as “operators”, capable of
being placed on edge or data center resources. In particular, we
describe the development of TinyMOA, a version of MOA that
can be hosted on edge resources [15]. MOA includes a number
of machine learning algorithms, including classification (e.g.
Hoeffding Trees, Naive Bayes, Stochastic Gradient Descent),
clustering (e.g. StreamKM++, CluStream/micro-clusters), out-
lier detection, concept drift detection and tools for evaluation.
The rest of this paper is organised as follows: Sections II
compares our approach with other related efforts, highlightly
key novelty of this work. An application scenario to support
machine-aware edge orchestration is presented in section III
followed by results in Section IV. We conclude and identify
future research directions in Sections VI.

II. RELATED WORK

A. Background

Edge computing builds on the growth in IoT infrastructures
where heterogeneous and networked devices collaborate to
achieve particular data monitoring/ processing objectives. Fog
cells have been used to group IoT devices based on vicinity,
i.e., single IoT device coordinating a group of other IoT de-
vices, to support security, performance and data analysis. Such
fog cells can lead to the development of IoT services to process
data in close vicinity to data sources/ sinks as an alternative to
transmission of data to a cloud system. The use of fog (edge)

IEEE INTERNET COMPUTING 2

cells can reduce communication delays, to provide a more effi-
cient use of computational, storage and networking resources.
Application scenarios include supporting pre-processing of
data streams from sensor nodes [3]. Edge computing must
also take into consideration user mobility, geo-distribution,
latency and variable connectivity within a communication
network [4]. In edge processing, quality of service metrics
such as minimising network latency are supported through the
use of cloudlets – which can bring edge capacity closer to
IoT and mobile devices. Complementary to edge computing,
“Cloud of Things” [5] provides in-network capacity between
IoT and Cloud Computing for data processing. Similarly,
operations on data (such as sampling or filtering), as it is being
transmitted from an IoT device to a Cloud data center, can be
carried out using in-transit processing, thereby reducing data
volumes and limiting the size of the data being moved across
the network [6]. This is equivalent to executing a number of
stream operations on data along its path from a source to a
destination.

Specialist services can also be provided on IoT/sensor de-
vices based on their operating environment, such as provision
of specialist operating systems (e.g. Contiki, Wind River
VxWorks etc) which enable dynamic modification of code
running on sensor nodes within a network. LooCI (LOOsely
coupled Component Interfaces) supports the integration of
software components across different sensor nodes. Edge
nodes can also be viewed as hosting environments for code,
the functionality of such nodes can be modified dynamically.
Examples of sensor-hosted, lightweight Virtual Machine en-
vironments include DAViM (Dynamically Adaptable Virtual
Machine) [7], and Mate [8] – a Java byte-code interpreter
that executes over Contiki. Mate breaks an application into
capsules that can be distributed throughout the network at
runtime. Additional examples include Parsl & funcX, which
enable (serverless) functions to be executed across different
types of resources. The hosting environment can be modified
depending on the resource being considered using a specialist
Executor.

R-Pulsar is a software library for IoT systems that extends
the capabilities of a cloud environment, by aggregating re-
sources from local devices using a programming model for
data collection and processing. R-Pulsar has been tested on
various embedded devices such as Raspberry Pis (RPis) and
Android phones to enable timely stream analytics by exploit-
ing edge and data center resources. R-Pulsar can also perform
and orchestrate data analytics between the edge and the
cloud for computing continuum applications [9]. R-MStorm is
another stream processing system that allocates tasks to edge
devices within stream groups – to partition the stream among
counterpart tasks. The system implements stream selection to
support approximate computation, e.g. filtering of stream units
to reduce processing workload by optimising the processing
accuracy [10]. Microsoft-AI [11] supports stream processing
applications for Android devices. The platform supports a
wide range of AI scenarios configured to support application-
specific model execution. The AI platform provides features
for optimising performance and accuracy when using machine
learning models with edge devices.

IoT data streams require processing on real time data which
often require machine learning operations (i.e. inference) to
be executed at the edge [12]. When sensor readings are
trasferred from IoT devices to the Cloud, a reduction in
data volume is needed. Dynamic clustering using centroids
and fuzzy join on data streams can address data motion
and online changes in data streams [13]. The volatility in
data streams with data drifts are some of the challenges
that impact on the performances of machine learning. The
execution of machine learning at the edge [14] imposes several
constraints on the learning algorithms, which is expected to
yield accurate prediction while updating its model in an on-
line fashion without surpassing strict memory and processing
time constraints. Other challenges related to learning from
streaming data concern the occurrence of concept drifts in the
data, the lack of labelled data amongst others [15]. An ideal
machine learning algorithm developed for streaming data must
be resource-aware and able to maintain an accurate model
based on the data on which it has been trained. The algorithm
should monitor its computational resources usage and limit
them appropriately.

B. MOA & TinyMOA Software Library

MOA is a software environment for implementing machine
learning algorithms for processing streaming data. MOA con-
tains a number of pre-built algorithms that can be configured
by a user, ranging from decision trees (such as Hoeffding
Trees) to dynamic clustering algorithms. A number of stream
generators are also included to enable experiments to be
carried out on synthetically generated data (such as a rotating
hyperplane). MOA also provides a number of evaluation
metrics (such as the Kappa statistic, accuracy, precision, etc) as
a way to evaluate the performance of a learning algorithm and
provide a basis for comparison between algorithms. MOA is
popular among researchers as it is simple to configure and run
experiments, but it can also be used in practical applications
to process incoming instances using Kafka Streams. Kafka1

is an Apache project that enables development of applications
that make use of topic-based event publishers and subscribers.
Kafka streams2 enable dynamic partitioning of incoming data
streams based on the resources on which these streams must
be processed, providing both scalability and fault tolerance.

TinyMOA is a variant of MOA that can be hosted on edge-
based devices (e.g. a RPi). TinyMOA fragments the MOA
library into sub-components, enabling distribution of key
MOA components to edge devices. Using custom classloaders,
TinyMOA enables dynamic adaptation of stream processing
algorithms based on the properties of the resources on which
these algorithms are hosted – achieved in practice by limiting
the number of Java classes that are hosted on the resource.
TinyMOA only includes classifiers used in the specific ex-
periment of interest, as indicated in section IV, and the core
classes required for these classifiers to execute – such as the
Instance representation to support data stream processing. The
file size of MOA is 2.8MB while TinyMOA is only 970KB.

1https://kafka.apache.org/
2https://kafka.apache.org/documentation/streams/

https://kafka.apache.org/
https://kafka.apache.org/documentation/streams/

IEEE INTERNET COMPUTING 3

Figure 1 illustrates the class loading mechanism in TinyMOA,
where a limited number of MOA classes are uploaded to a RPi
device, depending on the type of stream processing algorithm
being considered.

We consider different edge, fog and cloud resources to host
ML algorithms (hereby referred to as “operators”), combing
the use of the MOA toolkit for real-time stream processing
with Parsl [16]. This enables us to dynamically deploy MOA
algorithms on the available computational resources. Parsl
allows a variety of different types of resources to be inte-
grated into the hosting environment (through the use of Parsl
executors), such as high performance computing resources and
edge devices (consisting of RPi). Each resource is treated as
a Parsl endpoint, able to support a Parsl Executor that can
execute an algorithm from MOA. We benchmark different
machine learning algorithms (as stream processing operators)
and measure their execution performance on different edge
configurations. Configuration of the ML algorithm is modified
based on the type of resource on which it will be hosted.

III. METHODOLOGY & DEPLOYMENT

In this section we provide details about the edge experimen-
tal testbed and subsequent integration with MOA. Figure 2
identifies experiments and the associated data flow which
changes at different stage in the process. We have implemented
a Python script decorator, scheduled as an asynchronous task
using the DataFlowKernel in Parsl. This enables a future
object to be identified, i.e. placeholder data structure that is
associated with an outcome that will occur once computa-
tion has completed. We also configure components of the
DataFlowKernel such as the Task Table keeping account
of scheduled tasks, Dependency Check which verifies
Parsl has fulfilled all the data dependencies before execution,
Memoization Lookup to prevent the same App from
being executed many times with the same input parameters.
An Executor Selection can be used to specify the type
of task executor we want to deploy on the desired machine
(e.g. a Raspberry Pi or an HPC resource). We make use of the
HighThroughputExecutor in all our scenarios.

We use the Kafka software library on the same device
as the Parsl-Executor to support stream management. Kafka
is used to generate data streams for edge processing with
improved latency and cost-efficiency. In our deployment, a
Kafka server acts as a data streaming engine for the MOA
classification algorithms, comprising of a zookeeper client and
a server. Using the Zookeeper pub/sub. framework, we support
a number of “Brokers” which hold a “Topic” that a listener can
subscribe to. In our case the Topic contains the “Census” train-
ing data3, which has been added via a Producer push request
and which can be consumed by the MOA machine learning
algorithm. The Census.arff file is 40MB in size, containing 68
numeric attributes, and can be streamed from a data producer
to a consumer running the MOA algorithm (stream processing
operator). This provides a useful benchmark data set that can

3Available from: https://moa.cms.waikato.ac.nz/
kdd-2017-hands-on-tutorial/

be used to compare the performance of stream processing on
a RPi vs. a desktop/cloud-based processing platform.

We have configured an experimental testbed that supports
deployment and testing of several scenarios, across two main
environments: Configuration 1: Local environment (Worksta-
tion) : ThinkPad T410i with 8GB RAM, Linux Ubuntu 18.04
Virtual Environment1 (Python3.7, Parsl1.1.0, MOA Release
2021.07) Virtual Environment2 (Python3.6, Parsl0.9.0, MOA
Release 2021.07). Configuration 2: Remote environment
(Raspberry Pi): RPi 4 model B with 2GB RAM - Raspbian
OS/Linux 10 Virtual Environment1 (Python3.7, Parsl1.1.0,
MOA Release 2021.07) Virtual Environment2 (Python3.6,
Parsl0.9.0, MOA Release 2021.07). Hence, we implement
and test MOA algorithms and their deployment on (i) a
local resource, and (ii) remote Raspberry Pi (RPi) environ-
ment. These experiments demonstrate the behaviour of MOA
machine learning on edge devices deployed on their own,
locally or remotely through Parsl. In addition, we compare
a simplified stream processing pipeline using TinyMOA. We
therefore investigate reducing the size of the deployed software
library (TinyMOA vs. MOA) on the execution time of the
analysis tasks. For conducting these experiments we have
defined a scenario that will be run on both systems locally
and remotely.

The choice of tools and architectural design of our system
allows for scalable remote deployment of stream processing
on heterogeneous edge devices which can be scaled to take ad-
vantage of cheaper computational resources. This is achieved
by fragmenting MOA into portable Java classes, that can be
combined with custom classloaders. This coupled with Parsl
enables an adaptive framework that can be supported across a
number of different types of computational resources.

IV. EVALUATION & RESULTS

This section reports findings for what-if scenarios that
use datastreams with machine learning algorithms and their
subsequent execution on customized edge environments. The
reported experiments utilise time-to-complete metrics for mea-
suring the efficiency of the ML algorithms on local vs.
remote resources (local resources have greater computational
capacity than remote resources). The experiements aim to
benchmark different machine learning algorithms and measure
their execution performance on different edge configurations.

a) Experiment 1: Hoeffding tree and KMeans: In
this experiment we measure the execution time of Hoeffding
tree [17] and KMeans [18] implementation in MOA. As
indicated in figure 3, the number of examples (on y-axis) to
train the learner rang from 5K to 10M. The MOA stream
generator was generators.WaveformGenerator
which generates a stream for predicting one of three
waveform types. As illustrated in Figure 3, we report the
execution time on a local systems with spec. Intel Core
i5-5200U, 8RAM compared to execution time on a RPi4
model B with 2GB RAM. As expected the local system with
the better computational specs outperforms the edge device.
Also Kmeans requires more computational resources and
more time to complete.

https://moa.cms.waikato.ac.nz/kdd-2017-hands-on-tutorial/
https://moa.cms.waikato.ac.nz/kdd-2017-hands-on-tutorial/

IEEE INTERNET COMPUTING 4

Fig. 1. Left: a number of edge nodes running Parsl executor to host MOA libraries + Kafka; Right: realisation of this architecture using custom class loading
mechanisms via a “core” TinyMOA implementation

Fig. 2. Experimental testbed components – where MOA algorithms are executed on the Raspberry Pi (RPi) as a Parsl application. A RPi therefore hosts a
Parsl Executor and a Kafka Broker. The Parsl DataFlowKernel uses a secure data channel to interact with the Parsl Executor to carry out data processing and
execute a stream processing operator. This enables a MOA algorithm to be directly migrated to a RPi based on the capacity of the resource on which it is
hosted.

Fig. 3. Execution time Hoeffding Tree and Kmeans: Local execution vs Remote RPi

IEEE INTERNET COMPUTING 5

Fig. 4. MOA Hoeffding tree derivations and WaveformStream

b) Experiment 2: MOA Hoeffding tree derivations
and WaveformStream: In this experiment we use differ-
ent Hoeffding Tree algorithms including Hoeffding Option
Tree [19], Adaptive Size Hoeffding Tree [20], Hoeffding
Adaptive Tree [21], and Random Hoeffding Tree [22]. All
were tested using the Waveform data stream generator (Wave-
formStream). In the experiment below, the x-axis represents
the type of machine learning algorithm used while the y-
axis shows the execution time in seconds. All the learners
in this example were trained with 100K instances using
the generators.WaveformGenerator stream. As illus-
trated in Figure 4, the execution time of different Hoeffd-
ingTree types uses MOA on a RPi4 model B with 2GB
RAM and the best performer is the RandomHoeffdingTree
followed by the HoeffdingTree and ASHoeffdingTree. The
diagram describes only one set of trained examples because the
different classification trees display the same relative execution
behaviour regardless of the size of the training data.

Fig. 5. Percentage of correct classification for different Heoffding Tree types

c) Experiment 3: Percentage of correct classifica-
tions for different HoeffdingTree types: This scenario is
a continuation of the previous experiment in Figure 4, and
analyses the accuracy of different Hoeffding tree types using
the EvaluateMethod provided by MOA, which is used to
measure the percentage of correct classifications. The objective
of this experiment was to determine which models achieve
the best accuracy and speed performance. The experiment
configures all learners as trained with 100K instances using
the generators.WaveformGenerator stream. As illustrated in
Figure 5, the RandomHoeffdingTrees displayed a faster ex-
ecution time however this is at the cost of accuracy as can

be seen in Figure 8 because it has the lowest accuracy score
out of the different types of HoeffdingTrees. The remaining
HoeffdingTrees displays a very similar accuracy score all
having a rating above 80% accuracy.

Fig. 6. Comparison of Streamgenerators with HoeffdingTrees

d) Experiment 4: Hoeffding tree vs related MOA
algorithms: This scenario aims to explore the performances
of various MOA algorithms in comparison to the Hoeffding
tree algorithms based on different edge configurations. A
Kafka installation on RaspberryPis produce data streams and
subsequent data changes as required for the algorithms anal-
ysis. This experiment conducts comparisons across different
stream generators including WaveformGenerator, SEAGener-
ator, LEDGenerator,HyperplaneGenerator, RandomTreeGener-
ator and ArffFileStream. The x-axis represents the set of
heterogeneous data streams used while the y-axis represents
the time-to-completion in seconds. The learner used in this
example was a HoeffdingTree which was trained with 100K
instances of each data stream. As illustrated in Figure 6,the
biggest fluctuations in our results came from the SEAGenera-
tor and the ArffFileStream which show a percentage decrease
of 75.8% and a percentage increase of 153.13%, respectively,
as time-to-completion when compared to the WaveformGen-
erator.

e) Experiment 5: Hoeffding tree with ArffFileStream
via Kafka and Parsl: In this experiment we provide
analysis for the execution of HoeffdingTree algorihtm with
ArffFileStream with Kafka and Parsl. The y-axis measures
the maximum number of examples to train the learner
ranging from 5K to 1M. The stream generator used was
generators.ArffFileStream which stream an .arff file
used for training the model in this case is Census.arff. As
illustrated in Figure7, we report the execution time on a RPi4
model B with 2GB RAM. The experiment also shows how the
execution time fluctuates when MOA algorithm is wrapped in
a Parsl file and executed locally through Parsl, when MOA
algorithm streams data from a local Kafka server and lastly
when MOA together with the Kafka stream is wrapped in a
Parsl and executed remotely. The scenarios where MOA has
been trained using kafka as a data streaming engine takes a
longer time to complete due to the MOA having to consume
the Topic data rather than have access to it from a local source
on the computer memory.

f) Experiment 6: Hoeffding tree with Arff FileStream
via Websockets and Parsl: In this experiment we test the

IEEE INTERNET COMPUTING 6

Fig. 7. Comparison of MOA local, MOA with Kafka and MOA with Remote Parsl and Kafka

Fig. 8. Comparison of MOA local, MOA with Parsl and MOA with Websocket

execution of a HoeffdingTree algorithm using Parsl and a
websocket to channel the incoming set of data for execution.
The y-axis measures the number of examples to train the
learner ranging from 5000 to 2M. The stream generator
used was generators.ArffFileStream which streams
the Census.arff file for training the model. As illustrated in
Figure8, the execution time fluctuates when MOA algorithm
is wrapped in a Parsl file and executed locally and remotely
– showing the variation in times between Parsl and the Web-
socket implementation. The limitation with this experiment is
that unlike data streams which feed the learning model during
its training, in this scenario the file is firstly transported via
a TCP-based network connection before the data file can be
used by the learning model thus adding an additional delay to
the execution time.

g) Experiment 7: Comparing MOA and TinyMOA on
WaveformStream via Parsl: In this experiment, we consider
a set of homogenous machine learning tasks that were trained
with 500K training instances of the WaveformGenerators
stream. The objective is to analyse machine learning algo-

Fig. 9. Comparison of MOA and TinyMOA

rithms and their behaviour when executing on edge systems.
As illustrated in Figure 9, we observe a 0.02-0.2 second
difference in execution time between MOA and TinyMOA.
The file size difference does not affect the execution time
of the machine learning algorithm when executed through
Parsl, but rather follows the same behaviour of the algorithm

IEEE INTERNET COMPUTING 7

when deployed without Parsl. This demonstrates that although
significantly smaller in deployment size, TinyMOA offers a
viable alternative for a much larger MOA deployment, but on
resource constrained devices.

V. DISCUSSION

When applying machine learning to a data stream, the learn-
ing algorithm is expected to yield accurate predictions while
updating its model in an online fashion without surpassing
strict memory and processing time constraints [16]. This raises
some key challenges in relation to the functionality in use of
the entire workflow. One such challenge is that the model will
be processing a massive stream of data in short periods of time,
very often with limited computational resources available at
the edge. This ‘processing’ refers to both making predictions
and updates to the underlying machine learning model (i.e.
training). On top of that, the data may be susceptible to
unexpected changes, also known as concept drifts, which must
be detected and actioned upon to avoid a catastrophic decrease
to the machine learning model predictive performance. In this
paper we have used the abstraction of data streams [14] and
explore how machine learning tasks can be accommodated
at the edge to enable more flexible and autonomous stream
execution. We have used the MOA framework on a costumized
Parsl edge computing infrastructure to enable the execution of
different machine learning algorithms for data stream analysis.

VI. CONCLUSION

The developement of resource aware stream processing
offers a number of benefits: (i) effective use of resources in
proximity to data stream generation to support latency-aware
application requirements; (ii) limiting the need to transmit a
stream across a lossy network to a data centre for analysis.
We describe how these benefits can be realised by supporting
stream processing on edge resources. We present benchmarks
for the execution of different machine learning algorithms in
edge configured environments, using an extension to the MOA
library – referred to as TinyMOA. Overall, the paper provides
the following contributions: a seamless integration of machine
learning algorithms, as stream processing operators, using a
custom class loading mechanism for MOA. The Parsl system
is used to to deploy TinyMOA on edge resources and Kafka is
used to partition a stream across different resources executing
TinyMOA.

Using several stream analytics experiments on a sample data
set, we demonstrate how stream operators can be deployed at
the edge by taking into consideration resource constraints. Our
experiments can be used to configure an edge environment
to make more effective use of such operators. The proposed
aproach can be used to manage stream processing on edge
resources in a wide range of applications where computation
needs to be completed closer to data source.

REFERENCES

[1] Gopinath, Sridhar, et al. “Compiling KB-sized machine learning models
to tiny IoT devices.” Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation. 2019.

[2] D. Puschmann, P. Barnaghi and R. Tafazolli, “Adaptive Clustering for
Dynamic IoT Data Streams,” in IEEE Internet of Things Journal, vol. 4,
no. 1, pp. 64-74, Feb. 2017, doi: 10.1109/JIOT.2016.2618909.

[3] Dastjerdi AV, Gupta H, Calheiros RN, Ghosh SK, Buyya R (2016)
Fog computing: principles, architectures, and applications. In: Internet
of things: principles and paradigms, chap. 4, MorganKaufmann

[4] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A
platform for internet of things and analytics,” in Big Data and Internet
of Things: A Roadmap for Smart Environments. Springer, 2014, pp.
169–186.

[5] M. Aazam and E.-N. Huh, “Fog computing and smart gateway based
communication for cloud of things,” in Intl. Conference on Future Internet
of Things and Cloud (FiCloud). IEEE, 2014, pp. 464–470.

[6] A. R. Zamani, M. Zou, J. Diaz-Montes, I. Petri, O. Rana, A. Anjum
and M. Parashar. “Deadline constrained video analysis via in-transit
computational environments.” IEEE Transactions on Services Computing,
2017.

[7] S. Michiels, W. Horre, W. Joosen and P. Verbaeten, “DAViM: a dynami-
cally adaptable virtual machine for sensor networks”, Proc. of Int. Work.
on Middleware for sensor networks (MidSens), pp 7–12, Melbourne,
Australia, November 28 2006. ACM Press.

[8] P. Levis and D. Culler, “Mate: A Tiny Virtual Machine for Sensor
Networks”, Proc. of the 10th Int. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS X), Oct.
2002. Available at: https://sing.stanford.edu/site/publications/2

[9] D. Balouek-Thomert, et al. “Towards a computing continuum: Enabling
edge-to-cloud integration for data-driven workflows.” The Int. Journal of
High Performance Computing Applications 33.6 (2019): 1159-1174.

[10] M. Chao and R. Stoleru. “R-mstorm: A resilient mobile stream process-
ing system for dynamic edge networks.” IEEE International Conference
on Fog Computing (ICFC). IEEE, 2020.

[11] Microsoft AI, Available at https://
cloudblogs.microsoft.com/opensource/2021/12/14/
add-ai-to-mobile-applications-with-xamarin-and-onnx-runtime/, last
accessed Dec. 2021

[12] Adi, Erwin, et al. ”Machine learning and data analytics for the IoT.”
Neural Computing and Applications 32.20 (2020): 16205-16233.

[13] D. Mrozek et al. “A hopping umbrella for fuzzy joining data streams
from IoT devices in the cloud and on the edge.” IEEE Transactions on
Fuzzy Systems 28.5 (2019): 916-928.

[14] A. Bifet, R. Gavalda, G. Holmes, B. Pfahringer, “Machine learning for
data streams: with practical examples in MOA”. MIT Press; 2018.

[15] Gomes HM, Read J, Bifet A, Barddal JP, Gama J. Machine learning
for streaming data: state of the art, challenges, and opportunities. ACM
SIGKDD Explorations Newsletter. 2019 Nov 26;21(2):6-22.

[16] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J.M. Wozniak, I. Foster and M. Wilde, “Parsl:
Pervasive parallel programming in Python”. In Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed
Computing (pp. 25-36), 2019.

[17] P. Domingos and G. Hulten. “Mining high-speed data streams.” Proc.
of the 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, 2000.

[18] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations.” Proc. of 5th Berkeley symposium on mathematical
statistics and probability. Vol. 1. No. 14. 1967.

[19] B. Pfahringer, G. Holmes, and R. Kirkby. “New options for hoeffding
trees.” Australasian Joint Conference on Artificial Intelligence. Springer,
Berlin, Heidelberg, 2007.

[20] A. Bifet, G. Holmes, B. Pfahringer, and R. Gavalda. “Improving
adaptive bagging methods for evolving data streams.” Asian conference
on machine learning, pp. 23-37. Springer, Berlin, Heidelberg, 2009.

[21] A. Bifet, and R. Gavalda. “Adaptive learning from evolving data
streams.” Int. Symposium on Intelligent Data Analysis, pp. 249-260.
Springer, Berlin, Heidelberg, 2009.

[22] A. Bifet, G. Holmes, and B. Pfahringer. “Leveraging bagging for
evolving data streams.” Joint European conference on machine learning
and knowledge discovery in databases, pp. 135-150. Springer, Berlin,
Heidelberg, 2010.

https://sing.stanford.edu/site/publications/2
 https://cloudblogs.microsoft.com/opensource/2021/12/14/add-ai-to-mobile-applications-with-xamarin-and-onnx-runtime/
 https://cloudblogs.microsoft.com/opensource/2021/12/14/add-ai-to-mobile-applications-with-xamarin-and-onnx-runtime/
 https://cloudblogs.microsoft.com/opensource/2021/12/14/add-ai-to-mobile-applications-with-xamarin-and-onnx-runtime/

	INTRODUCTION
	Related work
	Background
	MOA & TinyMOA Software Library

	Methodology & Deployment
	Evaluation & Results
	Discussion
	Conclusion
	References

