
HAL Id: hal-04468022
https://hal.science/hal-04468022

Submitted on 20 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detecting Non-literal Translations by Fine-tuning
Cross-lingual Pre-trained Language Models

Yuming Zhai, Gabriel Illouz, Anne Vilnat

To cite this version:
Yuming Zhai, Gabriel Illouz, Anne Vilnat. Detecting Non-literal Translations by Fine-tuning Cross-
lingual Pre-trained Language Models. 28th International Conference on Computational Linguistics
(COLING), Dec 2020, Barcelona (on line), Spain. pp.5944-5956, �10.18653/v1/2020.coling-main.522�.
�hal-04468022�

https://hal.science/hal-04468022
https://hal.archives-ouvertes.fr


Proceedings of the 28th International Conference on Computational Linguistics, pages 5944–5956
Barcelona, Spain (Online), December 8-13, 2020

5944

Detecting Non-literal Translations by Fine-tuning
Cross-lingual Pre-trained Language Models

Yuming Zhai
BFSU Artificial Intelligence and

Human Languages Lab
Beijing Foreign Studies University

100089, Beijing, China
zhaiyuming@bfsu.edu.cn

Gabriel Illouz
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Abstract

Human-generated non-literal translations reflect the richness of human languages and are some-
times indispensable to ensure adequacy and fluency. Non-literal translations are difficult to pro-
duce even for human translators, especially for foreign language learners, and machine transla-
tions are still on the way to simulate human ones on this aspect. In order to foster the study on
appropriate and creative non-literal translations, automatically detecting them in parallel corpora
is an important step, which can benefit downstream NLP tasks or help to construct materials to
teach translation. This article demonstrates that generic sentence representations produced by a
pre-trained cross-lingual language model could be fine-tuned to solve this task. We show that
there exists a moderate positive correlation between the prediction probability of being human
translation and the non-literal translations’ proportion in a sentence. The fine-tuning experiments
show an accuracy of 80.16% when predicting the presence of non-literal translations in a sen-
tence and an accuracy of 85.20% when distinguishing literal and non-literal translations at phrase
level. We further conduct a linguistic error analysis and propose directions for future work.

1 Introduction

Translation is a cross-lingual and intercultural process helping to communicate across language barri-
ers. Human-generated parallel corpora have been largely exploited to develop machine translation (MT)
systems, which rapidly evolve and are widely used in production nowadays (Koehn et al., 2003; Och
and Ney, 2003; Wu et al., 2016; Gehring et al., 2017; Vaswani et al., 2017; Hassan et al., 2018). Multi-
ple human-generated references could be used to evaluate each MT hypothesis, since the same meaning
could be expressed in different ways.

When we take a closer look at human translations, apart from literal translations, fixed corresponding
expressions or the most commonly used renderings, various translation techniques could be employed to
produce non-literal translations. The resulting variations reflect the richness of human languages. Fur-
thermore, because of the existing differences between languages and cultures, it is sometimes inevitable
to translate non-literally to ensure adequacy and fluency. Table 1 presents two English-French transla-
tions found in the subtitles of TED Talks1, produced by volunteer translators. We mark the non-literal
translations in bold and present the literal translation of the French rendering in brackets. As shown
below, non-literal translations can occur at word, phrase and even sentence level.

Different techniques of producing non-literal translations are systematically studied by linguists and
translation scholars, such as generalization, particularization, modulation, transposition, etc. (Vinay
and Darbelnet, 1958; Chuquet and Paillard, 1989; Molina and Hurtado Albir, 2002). Based on these
studies, Zhai (2019) investigated the possibility of annotating and automatically recognizing different
translation techniques at sub-sentential level. For natural language processing (NLP) tasks, non-literal
translations can bring difficulties for automatic word alignment (Dorr et al., 2002; Deng and Xue, 2017)
or for paraphrase extraction via bilingual pivoting (Bannard and Callison-Burch, 2005; Pavlick et al.,

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1https://www.ted.com/
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It’s nothing if not ambitious. → C’est véritablement ambitieux. (Lit. It’s really ambitious.)
That’s why we’ve made it our primary goal to spend a large sum of money on an advertising effort
to help bring out and complicate the truth about coal.
→ C’est pourquoi nous avons décidé de dépenser massivement pour une campagne de communica-
tion destinée à dire, et à brouiller, la vérité sur le charbon.
(Lit. That’s why we decided to spend massively on a communication campaign intended to tell, and
blur, the truth about coal.)

Table 1: English-French non-literal translations, found in the subtitles of TED Talks

2015). Non-literal translations can also cause noisy sentence pairs in parallel corpora, which affect
the training of MT systems (Carpuat et al., 2017; Pham et al., 2018; Vyas et al., 2018). On the other
hand, non-literal but appropriate translations are difficult to produce (Carl and Schaeffer, 2017) and
machines are still on the way to simulate human translators on this aspect (Ahrenberg, 2017; Toral and
Way, 2018). To inspire MT system’s development, efforts have been done to analyze language contrasts
through alignment discrepancies (Lapshinova-Koltunski and Hardmeier, 2017), and to detect free and
fluent translation examples from English-Chinese parallel corpora (Chen et al., 2018).

In order to foster the study on non-literal translations, automatically detecting them in parallel corpora
is an important step, which can help constructing materials to teach translation to human learners or serve
as the first step to assembling as much representative data as we can to train MT systems to start produc-
ing more non-literal translations than their literal alternatives. Our research questions are the following:
do non-literal translations occur more often in human translations? Could pre-trained language models
be fine-tuned to detect the presence of non-literal translations in a sentence? And could the architecture
be adapted to distinguish literal and non-literal translations at phrase level?

To answer these questions, our approach is based on the advances in cross-lingual pre-trained language
models. Recently, Conneau and Lample (2019) introduced a new supervised learning objective that
improves cross-lingual language model’s pre-training when parallel data is available.2 Having a neural
architecture based on Transformer (Vaswani et al., 2017), their pre-trained cross-lingual LMs (XLMs)
provide general-purpose text representations, which can encode any sentence into a shared embedding
space. For our task of detecting non-literal translations, we use an English-French corpus of TED Talks
annotated with translation techniques at sub-sentential level (Zhai et al., 2019), and we demonstrate that
the generic sentence representations produced by XLM are transferable to our task after fine-tuning.

2 Related work

Research at the intersection of translation studies and NLP around non-literal translations has attracted
the attention of many researchers. In translation theories, different typologies of translation techniques
are proposed to formalize human translators’ choices when they translate non-literally (Vinay and Dar-
belnet, 1958; Chuquet and Paillard, 1989; Molina and Hurtado Albir, 2002). With established annotation
guidelines and an adapted typology, Zhai (2019) annotated EN-FR and EN-ZH parallel corpora with
translation techniques, and conducted multi-class classification of translation techniques.

Non-literal translations could bring difficulties for NLP and inappropriate ones could be undesirable
for certain tasks. Deng and Xue (2017) semi-automatically identified, categorized and quantified seven
types of translation divergences between Chinese and English, which arise either because of cross-lingual
differences or because of non-literal translations. Various models are proposed to automatically detect
translation divergences in parallel corpora, with the goal of filtering out divergent sentence pairs to im-
prove MT systems’ performance (Carpuat et al., 2017; Pham et al., 2018; Vyas et al., 2018). In the
process of bilingual pivoting paraphrasing (Bannard and Callison-Burch, 2005), non-literal translations
could be a reason leading to diverse semantic relations in the resource PPDB 2.0 apart from true para-
phrases (Pavlick et al., 2015).

2https://github.com/facebookresearch/XLM
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On the other hand, non-literal but appropriate translations are not negligible and are studied by differ-
ent approaches. Carl and Schaeffer (2017) investigated the effects of cross-lingual syntactic and semantic
distance on translation production times and found that non-literality makes from-scratch translation and
post-editing difficult. In a case study of comparing human and machine translations, Ahrenberg (2017)
suggested that the human translator used several procedures that seem to be beyond the reach of the MT
system (such as sentence splitting, shifts of phrase function and/or category, explicitation, modulation
and paraphrasing). The project of Fraisse et al. (2019) aims to preserve cultural heritage and language di-
versity by analyzing the translation adaptations in multilingual corpora of translated literary texts, which
is particularly important for low-resource languages. In order to provide insights for discourse-aware
MT system’s development, discourse-related language contrasts are analyzed for English-Croatian and
English-German (Lapshinova-Koltunski and Hardmeier, 2017; Šoštarić et al., 2018). For inspiring MT’s
further improvement on fluency and for human translators’ reference, Chen et al. (2018) proposed a
method for detecting free translation examples from bilingual parallel corpora, which is based on an
innovative use of attention scores. Yuan and Sharoff (2020) proposed a stacked neural network for fine-
grained human translation quality estimation, and they discussed that this model has limited validity for
adequate scoring of free but still valid translations.

In this paper, by using the English-French TED Talks corpus annotated with translation techniques
by Zhai et al. (2019), we investigate whether pre-trained cross-lingual language models could be fine-
tuned to detect non-literal translations at sentence and phrase level. For the latter, we compare the results
with those obtained by Zhai et al. (2019).

3 Detecting non-literal translations at sentence level

Our first goal is to detect whether there are non-literal translations in a sentence. By assuming that human
translators employ more non-literal translations than machines (Toral and Way, 2018), we first transfer
the problem into training a model to distinguish human and machine translations (Rarrick et al., 2011),
expecting that the classifier would learn the linguistic differences between them and further help predict
the presence of non-literal translations in a sentence.

After training this human-vs-machine translation classifier, we investigate whether there is a positive
correlation between the prediction probability of human translation and the non-literal translations’ pro-
portion in a sentence. Finally, we test the hypothesis that resuming the fine-tuning task on detecting
the presence of non-literal translations in a sentence after loading this human-vs-machine translation
classification model could get better performance.

3.1 Human or machine translation classifier

XLM pre-trained model Conneau and Lample (2019) pre-trained cross-lingual language models
with three objectives: CLM (Causal Language Modeling), MLM (Masked Language Modeling)3, and
MLM in combination with TLM (Translation Language Modeling, an extension of MLM, i.e. randomly
masking words in both the source and target sentences)4. For TLM, parallel sentences are concatenated as
input. When predicting a masked word in an English sentence, the model can either attend to surrounding
English words or to the French translation, encouraging the model to align EN an FR representations.

In our experiments, we fine-tune XLM’s released model mlm tlm xnli15 1024.pth, which is pre-
trained with the objectives MLM+TLM. Conneau and Lample (2019) used 80k BPE (Byte Pair En-
coding (Sennrich et al., 2016)) splits and a vocabulary of 95k sub-word units, and trained a 12-layer
bidirectional Transformer model (1024 hidden states) on the Wikipedias of 15 languages of the XNLI
dataset (Conneau et al., 2018). This model can be used to obtain a better initialization of sentence en-
coders for zero-shot cross-lingual classification, as is demonstrated in their fine-tuning experiment on
XNLI benchmark (Cross-lingual Natural Language Inference).

Our fine-tuning scheme In our case, the fine-tuning is conducted on a dataset of EN-FR Human

3Differences between their approach and the MLM of BERT (Devlin et al., 2019) include the use of text streams of an
arbitrary number of sentences (truncated at 256 tokens) instead of pairs of sentences.

4This produces a supervised cross-lingual LM that combines both the MLM and the TLM loss using additional parallel data.
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vs Machine translations. Since the classifier will be later applied on a sub-corpus of TED Talks, we
choose TED Talks, OpenSubtitles, Literary Books5 (Tiedemann, 2012) and Europarl (Koehn, 2005)
to observe the effects of having similar and different training corpus genre. The statistics of the four
corpus are shown in Table 2. The original French text is produced by human translators, and the
machine-translated sentences are generated by using fairseq (Ott et al., 2019)6 with their pre-trained
model transformer.wmt14.en-fr (Ott et al., 2018).7 The de-tokenized BLEU scores calculated by Sacre-
BLEU (Post, 2018) and CHRF3 (Popović, 2015) for each machine-translated corpus are in Table 3.

Nb sentence pairs Nb English tokens
Literary books 33 669 876 866
Europarl 30 000 869 869
OpenSubtitles 30 000 215 584
TED Talks 30 000 498 440

Table 2: Statistics of different corpora used to train human-vs-machine translation classifier. 30k sen-
tence pairs are randomly taken for the last three corpora

Conneau and Lample (2019) processed all languages with the same shared vocabulary created through
BPE, which greatly improved the alignment of embedding spaces across languages. Therefore, after
tokenizing input sentences with the Moses tokenizer (Koehn et al., 2007), we use fastBPE8 to split tokens
into sub-word units with the pre-learned BPE splits. The processed sentence pairs (source sentence
concatenated with human or machine translation, in form of tensors) are fed to the XLM model to
generate sentence embeddings (the sentence length is clipped to have a maximum of 256 tokens). Finally,
we take the first hidden state of the last layer of the transformer as input to a randomly initialized final
linear classifier, and fine-tune all the parameters. We use the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 5e-6. The fine-tuning is conducted during 10 epochs.

Results Table 3 presents the average best validation accuracy after a ten-fold cross validation. The
best result is 94.26% after training on the Literary books corpus. We also conducted a cross-corpus
training-validation experiment to see the classifiers’ generalization performance. In Table 4, when we
observe by row, testing on each validation corpus gets the best accuracy after training on the same corpus
genre (the numbers on diagonal are in bold). When we observe by column, the best validation result
for each training corpus is obtained by validating on the Literary books corpus (the numbers in the last
line are underlined). Since the BLEU and CHRF3 value are the lowest for the Literary books corpus,
this suggests that the differences between human and machine translations are the largest for this corpus,
thus the models trained on different corpus genres could still get high performance on the literary corpus.
It is worth noting that the standard deviation is the largest for OpenSubtitles corpus. A quick manual
checking shows that OpenSubtitles corpus contains sentence alignment noise, which also explains why
its BLEU and CHRF3 scores are quite low. In brief, the performance of human-vs-machine translation
classifier is encouraging, which allows us to continue the following experiments.

3.2 Correlation with non-literal translation
Upon training this human-vs-machine translation classifier, we would like to verify the following hy-
pothesis: is there a positive correlation between the prediction probability of human translation and the
non-literal translations’ proportion? It means that for each sentence, if the proportion of non-literally

5Eleven sentence-aligned EN-FR literary books are used: Pride and Prejudice, Jane Eyre, Alice’s Adventures in Wonderland,
Moll Flanders, Robinson Crusoe, A Study in Scarlet, The Great Shadow, The Hound of the Baskervilles, Rodney Stone, Three
Men in a Boat, The Fall of the House of Usher. The corpus is originally available from http://farkastranslations.
com/bilingual_books.php

6https://github.com/pytorch/fairseq/tree/master/examples/translation
7It’s important to construct this training dataset where human and machine translations share the same source sentences.

Otherwise, training a classifier using corpus from different origins (e.g. Europarl for human translations; Amazon product
reviews for machine translations) could lead to an accuracy as high as 97%, however, the bias is significant due to the obvious
differences on the average sentence length, the corpus domain, etc.

8https://github.com/glample/fastBPE
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Europarl OpenSubtitles TED Talks Literary books
BLEU value 42.07 24.55 40.11 15.91
CHRF3 value 65.52 48.55 61.72 41.97
Average with standard
deviation

84.55% ± 0.57% 78.86% ± 5.49% 73.92% ± 1.58% 94.26% ± 1.70%

Table 3: Human-vs-machine translation classification: average best validation accuracy after a ten-fold
cross validation

Validation 10%

Training 90%
Europarl OpenSubtitles TED Talks Literary books

Europarl 84.55% ± 0.57% 67.57% ± 3.30% 74.88% ± 1.97% 71.18% ± 3.26%

OpenSubtitles 72.55% ± 5.98% 78.86% ± 5.49% 72.84% ± 6.59% 71.76% ± 7.10%

TED Talks 66.44% ± 2.43% 64.54% ± 1.98% 73.92% ± 1.58% 62.29% ± 2.60%

Literary books 88.43% ± 2.35% 83.17% ± 4.77% 86.39% ± 2.47% 94.26% ± 1.70%

Table 4: Best average cross-corpus validation accuracy after a ten-fold cross-validation. The best results
for each row are in bold, those for each column are underlined

translated tokens is high, we expect that the human-vs-machine translation classifier classifies the sen-
tence as a human translation with a higher probability.

In order to save a final classifier model trained on all available data, after estimating the performance
with the above cross-validation, we fix the number of epochs for which the average validation accuracy
among ten folds was the highest. The chosen number of epochs are 5 for Europarl, 2 for OpenSubtitles,
9 for TED Talks and 8 for Literary books.

Next, we verify our hypothesis by applying the final classifier models on the corpus produced by Zhai
et al. (2019), referred to as TED-TT henceforth. It’s a subset of EN-FR TED Talks corpus manually
aligned and annotated with translation techniques.9 The inter-annotator agreement Kappa (Cohen, 1960)
between two annotators on a control corpus is 0.67, which surpasses the substantial agreement threshold
0.61. This corpus contains 1 724 sentence pairs (37k English tokens and 38k French tokens), which are
not included in our TED Talks training corpus. The translations of TED Talks’ subtitles were generated
by worldwide volunteers, instead of by professional translators as is the case for formal publication. For
this reason, it is not the most favorable context for producing complex non-literal translations. Nonethe-
less, Zhai et al. (2019) still found a significant amount of examples in this corpus during the annotation.
Therefore, it is worth it to later extend this work on literary translations.

In each sentence, the non-literal translations’ proportion is the number of English tokens annotated
with non-literal translation techniques divided by the total number of English tokens. In this experiment,
the categories literal, equivalence, lexical shift are combined together as literal translation; transposi-
tion, generalization, particularization, modulation, modulation+transposition, figurative are combined
together as non-literal translation.10

Table 5 shows the Spearman’s rank correlation coefficient (Hauke and Kossowski, 2011), which evalu-
ates whether the rankings generated from the prediction probability of being human translation (obtained
after applying softmax) are similar to the rankings generated from the non-literal translations’ propor-
tion. Using the model trained on Literary books corpus, we obtain the highest correlation coefficient
0.42, which is moderately positive and statistically significant (with p-value < 1%).

3.3 Detecting the presence of non-literal translations

After obtaining a moderate correlation between the prediction probability of being human translation
and the non-literal translations’ proportion, we move our attention back to our first goal: detecting the

9Four computational linguists participated in the annotation, who are French and Chinese native speakers.
10The detailed definitions of each category are listed in the article of Zhai et al. (2019).
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Human-vs-machine translation
classifier trained on all available data

Spearman’s ρ P-value

Literary books 0.42 5.8e-73
Europarl 0.40 4.3e-66
OpenSubtitles 0.33 9.6e-44
Ted Talks 0.23 5.1e-23

Table 5: Investigate the correlation between the prediction probability of being human translation and
the non-literal translations’ proportion

presence of non-literal translations in a sentence.
To this end, we separate the TED-TT corpus in two classes: 1) 467 sentences containing only these

categories: literal, equivalence, lexical shift; 2) 1 257 sentences containing these non-literal translation
techniques: transposition, generalization, particularization, modulation, modulation+transposition, fig-
urative. Since the dataset is imbalanced, the majority vote baseline is 72.91%.

We conduct a ten-fold cross validation on this dataset and we compare two approaches as presented
in Table 6. Because we have observed a moderate correlation between human translation and non-literal
translation (cf. Table 5), our hypothesis is that after a first fine-tuning of XLM to distinguish human
and machine translation, loading this model to resume the fine-tuning task on detecting the presence of
non-literal translations in a sentence could result in a better performance than directly fine-tuning XLM
on the latter task.

The hyperparameters are the same as those used to train the human-vs-machine translation classifier.
The results show that directly fine-tuning XLM on this dataset obtains a better accuracy (78.66%) than
the majority vote baseline. Compared to this, resuming the fine-tuning after loading the final trained
human-vs-machine translation classifier model on Literary books and Europarl corpus provides a gain of
performance (80.16% and 79.86%, respectively).

Majority vote baseline 72.91%
Approach Average best validation accuracy
Directly fine-tune XLM 78.66% ± 3.93%

Resume fine-tuning after loading the final trained human-vs-machine
translation classifier model:
Literary books 80.16% ± 3.96%

Europarl 79.86% ± 3.45%

OpenSubtitles 78.07% ± 3.11%

Ted Talks 78.24% ± 3.83%

Table 6: Detecting the presence of non-literal translations in a sentence. The best performance is in bold,
and the second best is underlined

4 Detecting non-literal translations at phrase level

As shown in Table 1, non-literal translations occur more often at sub-sentential level, and are character-
ized by various translation techniques (Vinay and Darbelnet, 1958). Therefore, our upcoming research
goal is to adapt this fine-tuning architecture to classify literal and non-literal translation at phrase level.
This step is implemented by following the work of Arase and Tsujii (2019). Different from the ef-
forts to pre-train larger models by giving enormous corpora for improvement (Liu et al., 2019; Yang et
al., 2019), Arase and Tsujii (2019) proposed to inject semantic relations between a sentence pair into
a pre-trained BERT model (Devlin et al., 2019), through simultaneous classification of sentential and
phrasal paraphrases. Their phrasal paraphrase classification aims to give explicit supervision of semantic
relations among phrases in sentence representation learning. Their work improved the sentence repre-
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sentation learning, which is the basis for the central problem of assessing semantic equivalence in natural
language understanding.

Preprocessing and architecture Inspired by the work of Arase and Tsujii (2019), we use the ar-
chitecture presented in Figure 1, where the original entire sentence pair is as follows:

This, I think, is so deeply embedded in the water supply that it wouldn’t occur to anyone to question it.
→ Ceci est tellement intégré dans la pensée que personne ne penserait à le remettre en cause.
(Lit. This is so ingrained in our thinking that no one would think to question it.)

After applying lowercasing, accent removing and BPE sub-word tokenization, the pair becomes:11

this , i think , is so deeply em@@ bed@@ ded in the water sup@@ ply that it would n’t occu@@ r to
anyone to question it . → ceci est t@@ ellement integre dans la pensee que personne ne pen@@ serait
a le re@@ mettre en cause .

A special token </s> is put at the beginning and the end for both processed source sentence s and
target sentence t. These two sequences concatenated (in form of tensors) serve as input to the XLM
model. The dataset TED-TT provides the token indexes of aligned phrases for each sentence pair. The
original alignment indexes {< (s1, s2, ..., sn), (t1, t2, ..., tm) >} of each phrase pair are adjusted after
all the preprocessing steps.

We fine-tune the same XLM’s pre-trained model mlm tlm xnli15 1024.pth, by conducting the feature
engineering as illustrated in Figure 1. The XLM model encodes the pre-processed sentence pair, and
we obtain the final hidden states for each sub-word (i.e. output of the bidirectional Transformer, which
captures rich contextualized features).

We then combine the corresponding hidden states to generate representations for source and target
phrases (h s and h t), according to the adjusted phrase alignment indexes. We choose max-pooling as
the combination function, which means selecting the maximum value over each dimension of the hidden
units (Collobert and Weston, 2008; Conneau et al., 2017). The representations h s and h t are converted
to a single vector to extract relations between them, by using these three matching methods: concatenat-
ing, calculating the absolute element-wise difference and taking the element-wise product (Conneau et
al., 2017). This final vector is fed into a fully-connected classifier and we fine-tune all the parameters.
These procedures are implemented in the forward function of our neural classifier.

Since most sentence pairs contain at least one aligned phrase pair, each sentence pair corresponds to
a sequence of binary labels: literal or non-literal translation. This is different from our fine-tuning XLM
at sentence level, where each sentence pair corresponds to only one label: human or machine translation
(or containing or not non-literal translations). To implement this change, we modify the data loading and
loss calculation function of our neural classifier.

Experiment The TED-TT dataset was annotated with multiple labels of translation techniques, and
here we conduct binary classification by combining the labels as in section 3.2. However, the number
of literal translations (21 791) is much larger than that of non-literal translations (2 234). In order to
solve this problem, we randomly retain as many literal translation as non-literal translation examples for
each sentence pair. This approach leads to an approximately balanced distribution: 2215 phrasal literal
translation examples and 2234 phrasal non-literal translation examples, contained in 1110 sentence pairs.

We conduct a ten-fold cross validation on this dataset. The Adam optimizer is used with a learning
rate of 5.5e-5. The fine-tuning is conducted during 10 epochs. The best average validation accuracy is
83.35%±1.49%, which is significantly better than the majority vote baseline 50%.

Evaluation A separately annotated test corpus (170 sentence pairs) is used for evaluating the final
model trained with all available data (saved after 7 epochs). After the preprocessing steps as described
above to obtain a balanced dataset, 100 sentence pairs containing 175 literal pairs and 177 non-literal
pairs are kept. The test accuracy is 85.20% (300/352 pairs correctly predicted).

5 Comparison with state of the art and discussion

For our detection task at phrase level, we present the confusion matrix in Table 7. Among the 41 non-
literal translations predicted as literal, the error ratio for each non-literal translation technique is as fol-

11The symbol ‘@@’ is automatically added by the tool fastBPE after BPE tokenization.
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Figure 1: Fine-tune XLM at phrase level to classify literal vs non-literal translation. We omit the sub-
word splitting of the input sentences for simplifying the presentation. For each pair of sentences, we
conduct feature engineering for all manually aligned phrase pairs. For example, the pair it wouldn’t
occur to anyone to → personne ne penserait à (Lit. no one would think to) is a non-literal translation
example; whereas the pair question it→ le remettre en cause is a literal translation example

lows: 14/56 transposition, 11/31 particularization, 8/48 modulation, 5/31 generalization, 2/3 figurative
and 1/8 modulation+transposition. And here is the distribution to explain the 11 literal translations pre-
dicted as non-literal: 4/8 equivalence, 6/160 literal, 1/7 lexical shift. As an illustration, we present the
definition of each translation technique and the corresponding prediction error examples in Table 9.

Gold
Prediction

literal non-literal

literal 164 11
non-literal 41 136

Table 7: XLM-based classifier (test accu-
racy 85.20%)

Gold
Prediction

literal non-literal

literal 147 28
non-literal 4 173

Table 8: Linguistic features-based RandomForest
classifier (test accuracy 90.90%)

In order to compare the performance of this XLM-based classifier with a non-neural classifier which
leverages linguistic features, we reuse the 198 features designed by Zhai et al. (2019). After a ten-fold
cross validation on the same training data, a tuned RandomForest classifier12 gives the best average
accuracy of 82.91%±1.28%. We then apply the saved RandomForest model trained on all available data
on the same test set, and get an accuracy of 90.90%. The confusion matrix is shown in Table 8.

The two confusion matrices show that the XLM-based classifier is better at detecting literal transla-
tions, whereas the linguistic features-based classifier is better at detecting non-literal translations. An
oracle study shows that if we could unite the strength of both, only 7 wrong cases remain (1 non-literal
translation predicted as literal, and 6 literal translations predicted as non-literal), which will result in an
accuracy of 98.01%. Therefore, a hybrid classifier could be investigated in future work to improve the
performance.

12The main hyperparameters are: n estimators=1000, max depth=50, min samples leaf=1, min samples split=3.
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Translation technique Error examples of the XLM-based classifier
Non-literal predicted as literal

Transposition Change grammatical classes without changing the meaning.
when I was a teenager→ à l’adolescence (Lit. in adolescence)

Particularization
The source word or expression could be translated into several target
words or expressions with a more specific meaning, and the translator
chooses one of them according to the context.
was met with this→ ai été confrontée au (Lit. was confronted with the)

Generalization
Several source words or expressions could be translated into a more
general target word or expression, and the translator uses the latter to
translate.
is going to ascend→ arrivera (Lit. will arrive)

Modulation
Metonymical and grammatical modulation; change the point of view;
the meaning could be changed.
lifted my face up→ ai levé la tête (Lit. raised my head)

Figurative
Introduce an idiom to translate a non-fixed expression, or a
metaphorical expression to translate non-metaphor.
putting everything I have→ mets tout mon cœur (Lit. put all my heart)

Modulation+Transposition
This category combines the transformations of Modulation and
Transposition.
is no longer a glimpse of God→ ne reflète plus Dieu (Lit. don’t reflect
God anymore)

Literal predicted as non-literal

Literal
Word-for-word translation, also concerns lexical units in multiword
form.
get up→ me lever (Lit. get up)

Equivalence
Fixed translation of proverbs or fixed expressions; a word-for-word
translation makes sense but the translator expresses differently, without
changing the meaning and the grammatical classes.
fear-based→ apeurée (Lit. frightened)

Lexical shift
The translation is not literal, but there is no change in meaning. They
are minor lexical level changes, which do not involve any translation
technique.
we→ on (Informal usage of “nous” (we))

Table 9: Definition of each translation technique and the corresponding error examples

6 Conclusion and perspectives

In this paper, we concentrate on the detection of non-literal translations by fine-tuning pre-trained cross-
lingual language models (XLM).13 A subset of TED Talks corpus manually annotated with translation
techniques is utilized to ensure that we deal with appropriate human non-literal translations.

We first train a human-vs-machine translation classifier with different corpus genres and we show that
there exists a moderate positive correlation between the prediction probability of being human transla-
tion and the non-literal translations’ proportion for a sentence. The presence of the translation techniques
modulation and modulation transposition tends to make the classification as a human translation more
difficult. For detecting whether a sentence contains non-literal translations, resuming the fine-tuning af-
ter loading the final trained human-vs-machine translation classifier brings a gain of performance (best
accuracy 80.16%) than directly fine-tuning XLM. After adapting the architecture, our XLM fine-tuning
at phrase level to distinguish literal and non-literal translations obtains an accuracy of 85.2%. We con-

13The dataset and code are available at https://github.com/YumingZHAI/nlt_xlm.
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ducted detailed error analysis and compared the XLM-based classifier with a linguistic features-based
RandomForest classifier. The oracle study shows that there exists a complementarity between the two
methods, therefore a hybrid classifier could be investigated in future work to improve the performance.

The automatic bilingual word alignment being a non-trivial task in itself (Song et al., 2020; Berrichi
and Mazroui, 2020), our detection of non-literal translations at phrase level is currently based on already
aligned pairs. In future work, it is important to leverage the advances of automatic alignment to reduce
the reliance on manual work. To observe the generalization performance, one could extend these exper-
iments to a more dissimilar language pair, for example English-Chinese. The fine-tuned models could
be used to help constructing material to teach translation and to analyze the usage of different transla-
tion techniques between languages. We aim to automatically construct a corpus containing abundant
non-literal translation phenomena based on this study, which we hope to be useful for the research on
evaluating automatic word alignment, and for giving inspiration for MT’s development to produce more
appropriate non-literal translations.
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