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Asynchronous Load Balancing and Auto-scaling:
Mean-Field Limit and Optimal Design

Jonatha Anselmi

Abstract—We develop a Markovian framework for load balancing that combines classical algorithms such as Power-of-d with
auto-scaling mechanisms that allow the net service capacity to scale up or down in response to the current load on the same timescale
as job dynamics. Our framework is inspired by serverless platforms, such as Knative, where servers are software functions that can be
flexibly instantiated in milliseconds according to scaling rules defined by the users of the serverless platform. The main question is how
to design such scaling rules to minimize user-perceived delay performance while ensuring low energy consumption. For the first time,
we investigate this problem when the auto-scaling and load balancing processes operate asynchronously (or proactively), as in
Knative. In contrast to the synchronous (or reactive) paradigm, asynchronism brings the advantage that jobs do not necessarily need to
wait any time a scale-up decision is taken.
In our main result, we find a general condition on the structure of scaling rules able to drive mean-field dynamics to delay and relative
energy optimality, i.e., a situation where both the user-perceived delay and the relative energy waste induced by idle servers vanish in
the limit where the network demand grows to infinity in proportion to the nominal service capacity. The identified condition suggests to
scale up the current net capacity if and only if the mean demand exceeds the rate at which servers become idle and active. Finally, we
propose a family of scaling rules that satisfy our optimality condition. Numerical simulations demonstrate that these rules provide better
delay performance than existing synchronous auto-scaling schemes while inducing almost the same power consumption.

Index Terms—Load balancing, auto-scaling, serverless computing, asymptotic optimality, Knative

✦

1 INTRODUCTION

LOAD balancing is the process of distributing work units
(jobs) over a set of distributed computational resources

(servers) for processing. In large architectures, each server
has its own queue, as this enhances scalability, and jobs are
irrevocably dispatched to one out of N parallel servers in-
stantaneously upon their arrival. Given the stringent latency
requirements of modern applications, breaches of which
can severely impact revenue, load balancing techniques are
designed to optimize user-perceived delay performance and
popular examples are Power-of-d [24] and Join-the-Idle-
Queue (JIQ) [21].

Closely related to load balancing, auto-scaling is a term
often used in cloud computing to refer to the process of
adjusting the current service capacity automatically in re-
sponse to the current load [28]. Auto-scaling mechanisms
are meant to control the current net capacity over time
to avoid performance degradation, which yields unaccept-
ably large delays, and overprovisioning of resources, which
yields high infrastructure and energy costs. Google Cloud
Run, Amazon Elastic Compute Cloud (EC2), Microsoft Win-
dows Azure and Oracle Cloud Platform are examples of
platforms that offer auto-scaling and load balancing fea-
tures. Users of these platforms deploy their applications
with some control on how the system should scale up
resources in front of an increased load. Modern auto-scaling
mechanisms are extremely reactive in the sense that they
control the current net capacity relying on fresh observations
of the system state rather than historical data. This especially
holds true in serverless computing platforms, or Function-as-
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a-Service, which nowadays provide the convenient solution
to deploy any type of application or backend service [22].

In this paper, we are interested in the interplay between
the load balancing and auto-scaling processes. The main ob-
jective is to design a scheme that combines both to minimize
delay performance while ensuring low energy consumption.

1.1 Timescale Separation

Most of the existing performance models for load balancing
assume that the available service capacity remains constant
over time [33], i.e., auto-scaling is not taken into account.
Nonetheless, auto-scaling mechanisms are widely employed
by cloud applications and affect delay performance. This
does not mean that classic load balancing models are in-
adequate for cloud systems but simply that they assume
that auto-scaling operates at a much slower timescale than
load balancing. Essentially, this means that jobs do not see
any change in the available capacity because they evolve
much faster than servers. This makes sense if servers are
interpreted as physical or even virtual machines because
setup times are of the order of minutes if not longer [16]
while in typical applications hosted in cloud networks job
service times are about ten milliseconds [22]. The large body
of literature on load balancing, reviewed in Section 2, is
undoubtedly the proof that this timescale separation as-
sumption is well accepted for several systems. In the context
of serverless computing however, a server is interpreted
as a software function that can be flexibly instantiated in
milliseconds [35], [35], i.e., within a time window that is
comparable with the magnitude of job inter-arrival and ser-
vice times, and with negligible switching costs. Here, auto-
scaling mechanisms are extremely reactive and the decisions
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of turning servers on or off are based on instantaneous
observations of the current system state rather than on
the long-run equilibrium behavior. Therefore, the timescale
separation assumption above becomes questionable, as also
discussed in [22], because it would mean to assume that job
dynamics achieve stochastic equilibrium between consecu-
tive changes of the net service capacity, i.e., in milliseconds.

1.2 Getting Rid of the Timescale Separation Assump-
tion

While a large body of the literature investigates load
balancing and auto-scaling separately [28], [33], little has
been done when both are applied jointly within the same
timescale. Existing works focus on synchronous (i.e., both
scale-up and dispatching decisions are taken at the same
time) or centralized (i.e., all servers share a common queue)
architectures [16], [22]. For scalability reasons however, no
central queue is maintained (in this case, we say that the
architecture is decentralized) and no decisions are taken
synchronously in massive cloud systems; see Section 1.3
below. A decentralized but synchronous architecture where
JIQ is synchronized with an ad-hoc auto-scaling strategy
is considered in [12], [17], [26]. In contrast, we consider
a decentralized and asynchronous architecture, where the
term “asynchronous’ means that scaling and dispatching
decisions are decoupled.

1.3 Synchronous vs Asynchronous in Serverless Com-
puting

The load balancing and auto-scaling processes of existing
implementations of public serverless computing platforms
are either “synchronous” or “asynchronous”; this terminol-
ogy is borrowed from the cloud computing community [22],
though some works use the terms “reactive” and “proac-
tive”, respectively [13]. As explained in these references,

• The auto-scaling principle underlying a synchronous
architecture is that a new server is turned on at the
arrival time of a job if the job itself finds all servers busy.
The drawback of this approach is that all jobs that
have triggered a scale-up signal are forced to wait
before being processed. In centralized implementa-
tions, each of these jobs waits for the activation of
the server that has been launched at the moment of
its arrival (coldstart latency) [22], [29], [35], while in
the decentralized proposals given in [12], [17], [26],
each of these is sent to an already active (busy) server
chosen at random, hence slowed down by the jobs
ahead.
To the best of our knowledge, no synchronous-
decentralized implementations currently exist. In
contrast, AWS Lambda, Azure Functions, IBM Cloud
Functions and Apache OpenWhisk are examples of
synchronous-centralized platforms.

• The auto-scaling principle underlying an asyn-
chronous architecture is that the load balancing and
auto-scaling processes are decoupled. Specifically, a job
is dispatched to some running server immediately
upon its arrival according to some load balancing
algorithm and, independently of this, an auto-scaling

mechanism decides whether the current processing
capacity should change as a function of user-defined
metrics that may depend on instantaneous obser-
vations of the current system state [22]. Because of
this decoupling, scale-up decisions do not need to
wait that all active servers are busy as in the syn-
chronous approach. Thus, they may anticipate the
arrival of a job and overcome the intrinsic drawback
of the synchronous approach described above. In
addition, the scale-up decision rate is fine-tuned by
the platform user; in Knative, this is set via the
max-scale-up-rate global key.
To the best of our knowledge, no asynchronous-
centralized implementations currently exist. In con-
trast, Google Cloud Run and Knative are examples
of asynchronous-decentralized platforms [1].

In a stochastic and dynamic setting, no performance
model/analysis is available in the literature for the
asynchronous-decentralized approach. Our main motiva-
tion is to contribute to fill this gap.

1.4 Summary of our Contributions
We develop a Markovian framework for load balancing
that includes asynchronous auto-scaling mechanisms. We
refer to this framework as ‘Asynchronous Load Balanc-
ing and Auto-scaling’ (ALBA). Two (asynchronous) mech-
anisms drive dynamics in ALBA:

i) a dispatching rule, or load balancing rule, which de-
fines how jobs are dispatched among the set of active
servers as they join the system, and

ii) a scaling rule, which defines how the number of active
servers scales up and down over time, possibly as a
function of the current system state.

The dispatching rules included in ALBA are Join-Below-
Threshold-d (JBT-d), which is a generalization of JIQ, and
Power-of-d; in fact, these are the rules used in Knative [2].
We also assume that a server is turned off only if it remains
idle during an expiration window. This scale-down rule
is commonly used in practice [1], [22] and also known as
“delay-off” [16]. In contrast, we do not impose any partic-
ular structure on scale-up rules because they are usually
defined by the user of the serverless platform. Having fixed
the scale-down rule, in the following the term “scaling rule”
refers to a scale-up rule.

Our key technical contribution is a general condition on
the structure of scaling rules that is able to drive the mean-
field dynamics induced by ALBA to delay and relative energy
optimality, a situation where the user-perceived delay and
the relative energy wastage induced by idle servers vanish.
This condition suggests to scale up capacity if and only if
the mean demand exceeds the overall rate at which servers
become idle and active, which can be measured.

We also propose Rate-Idle, see Definition 2, a scaling rule
that satisfies our optimality condition. Provided that it is
combined with JIQ, we show by means of numerical sim-
ulations that Rate-Idle provides a better delay performance
than the synchronous schemes in [17], [26] while inducing
the same energy consumption cost. We own this gain to the
fact that scale up decisions may be taken before job arrivals,
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while in a synchronous scheme such as TABS-d, jobs are
forced to wait any time a scale up decision is taken.

Our results are obtained through a rigorous analysis
of the underlying Markov process in the mean-field limit.
Here, we establish the convergence of the stochastic finite
model to a fluid model with a discontinuous drift. Then, we
leverage the fluid model to identify a condition that drives
the fluid trajectories to a unique fixed point corresponding
to delay and relative energy optimality.

1.5 Organization and Main Results Detailed
Section 2 reviews the existing literature and Section 3 in-
troduces ALBA by defining a stochastic (intractable) and
a deterministic (tractable) model to describe its dynamics.
Section 4 presents our main results, i.e., Theorems 1, 2 and 3:

• Theorem 1 connects the stochastic and the deter-
ministic models and justifies the use of the latter to
approximate the dynamics of the former. This en-
ables analytical tractability and allows one to study
dynamics easily. We prove Theorem 1 following the
framework developed in [9], [31], though we develop
ad-hoc arguments to handle the discontinuities of the
drift function of the underlying Markov chain.

• Theorem 2 characterizes the fixed points of the de-
terministic model in terms of a set of non-linear
equations. It also provides a simple necessary and
sufficient condition able to tell whether or not the
nominal service capacity will be needed to handle
the incoming demand. Within Power-of-d, roughly
speaking, there always exists a unique fixed point
if the scaling rule is “nice”. Within JBT-d however,
uniqueness is guaranteed only if the scaling rule has
access to the number of servers containing exactly
one job (see Remark 1).

• Theorem 3 investigates how to design optimal and
globally stable scaling rules. More specifically, we
identify a general condition ensuring that dynamics
of the deterministic model converge to delay and
relative energy optimality. We show that optimality
can only be achieved within JIQ (or equivalently JBT-
0), though in practice this may not be the convenient
choice within architectures with several dispatchers.
In this case, an exact implementation of JIQ would
imply an expensive communication overhead per job
and Power-of-d may be the way to go as it does not
require the dispatcher(s) to store information about
the server states.

Section 5 compares by simulation the asynchronous and
synchronous approaches, showing that the former provides
a much better delay performance. Then, Section 6 develops
a tractable optimization framework to illustrate how the
results presented in this paper can be applied to trade
off between performance and energy consumption. Finally,
Section 7 draws the conclusions. Proofs of our results are
deferred to the appendix.

2 LITERATURE REVIEW

The existing literature related to load balancing and auto-
scaling is huge and our goal is to provide the necessary
background highlighting the difference of our work.

2.1 Load Balancing and the Zero Delay Property

Popular examples of load balancing algorithms that work
well when servers are homogeneous, i.e., all servers have
the same processing speed, are Random, Round-Robin (RR)
[5], [20], Power-of-d [24], Join-the-Idle-Queue (JIQ) [21],
Least-Left-Workload (LLW) and Size Interval Task Alloca-
tion (SITA) [7], [18], [19]. Random sends each job to random
server, RR sends jobs to servers in a cyclic manner, Power-
of-d sends an incoming job to the least loaded server among
d selected uniformly at random. JIQ sends an incoming
job to a random idle server if an idle server exists and to
a random one otherwise, LLW sends an incoming jobs to
the queue having the shortest workload, and SITA sends a
job to a given server if its size belong to a given interval.
In general, it is not possible to identify which of these
algorithms is the best because the general answer depends
on the underlying architecture, load conditions, service time
distribution and on the amount of information available to
the dispatcher [33].

Recently, a number of works attempted to understand
under which conditions the mean waiting time can be
driven down to zero in the limiting regime where the arrival
rate grows linearly with the number of servers while keep-
ing the average load below one. This is possible within dif-
ferent load balancing schemes and architectures. Examples
include JIQ [30], Power-of-d with d → ∞ as the network size
grows to infinity [25], Power-of-d with memory [8], SITA
combined with RR [6] and the pull-based policies developed
in [14], [32]. To some extent, the fundamental limits of
load balancing are described in [14], where the authors
investigate trade-offs between performance (the zero-delay
property), communication overhead and memory within a
certain class of symmetric architectures and the large-system
limiting regime.

2.2 Joint Load Balancing and Auto-scaling

The load balancing algorithms above have been analyzed
under the assumption that the active number of servers is
constant at all times. Few works considered a time-varying
net capacity [12], [17], [26], [27]. In these references, JIQ
is synchronized with a specific auto-scaling strategy as
described in Section 1.3. When the traffic demand and the
nominal service capacity proportionally grow to infinity, the
mechanism proposed in [26] yields the zero-delay property
but also deactivates any surplus idle servers, thus inducing
delay and relative energy optimality. This property has been
strengthened in [27], where the authors relax some finite
buffer assumptions. In contrast, our work shows optimality:

• within an asynchronous (see Section 1.3) architecture;
an advantage of asynchronism is that jobs do not
necessarily need to wait any time a scale-up decision
is taken, a fact whose performance gain is evaluated
in Section 5 by simulation;

• without limiting on an ad-hoc auto-scaling strategy;
rather, we identify a structural property on scaling
rules that induces optimality under broader condi-
tions (Theorem 3).
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3 ASYNCHRONOUS LOAD BALANCING AND AUTO-
SCALING (ALBA)
In this section, we first describe the main principles at the
basis of Asynchronous Load Balancing and Auto-scaling
(ALBA). Since our aim is to develop a model tailored
to serverless computing, we will make several references
to Knative, a popular serverless framework for hosting
Function-as-a-Service processing that is used, among others,
by Google Cloud Run. Then, we propose two performance
models for ALBA. The first is meant to capture the stochastic
nature of the underlying dynamics while the second is
deterministic and will serve to approximate the dynamics
induced by the first. The advantage of the deterministic
model is its tractability. Finally, we formalize the structure
of the scaling rules investigated in this paper.

3.1 System Description

The proposed framework, ALBA, is composed of a system
of N parallel servers, each with its own queue, that repre-
sent the nominal service capacity, i.e., the upper limit on the
amount of resources that one user can have up and running
at the same time1. In the cloud computing community,
servers are also referred to as containers, cloud functions,
instances or replicas. Public serverless computing platforms
usually require to specify such limit in order to ensure ser-
vice availability for other users. In the following, the terms
servers and queues will be used interchangeably. A server
is said warm if turned on, cold if turned off and initializing
if making the transition from cold to warm. These are the
possible server states [22], [23], [35]. An initializing server
performs basic startup operations such as connecting to
database, loading libraries, etc. This is the time to provision
a new function instance. Only warm servers are allowed to
receive jobs. A server is also said idle-on if warm but not
processing any job, and busy if warm and processing some
job. Typically, billing policies charge per number of warm
and initializing servers used per time unit.

Jobs join the system from an exogenous source to receive
service. Upon arrival, each job is dispatched to a warm
server according to some dispatching rule. After dispatch-
ing, each job is processed by the selected server according
to the presumed scheduling discipline at that server. After
processing, each job leaves the system.

Assumption 1. Jobs are dispatched to servers according to either
Power-of-d or Join-Below-Threshold-d (JBT-d).

We recall that Power-of-d sends an incoming job to the
shortest among d ≥ 1 warm servers selected at random at
the moment of its arrival and JBT-d sends an incoming job
to a warm server containing no more than d ≥ 0 jobs if
one exists otherwise to a warm server selected at random.
In all cases, ties are broken randomly. If d = 0, JBT-d is
also known as Join-the-Idle-Queue (JIQ) [21]. We limit our
framework to these types of schemes because they involve a
constant communication overhead per job (in architectures
with a single dispatcher) and because they are commonly
used in practice. For instance, Knative uses Power-of-2 if no

1. In Knative, this upper limit is specified by the max-scale-limit
global key.

limit is set on the queue length of each server and JBT-d if
such limit is set to d [2].

Alongside with the above job dynamics, the pools of
warm/initializing/cold servers change over time in the
background and in an asynchronous manner. Precisely, the
platform monitors the system state at some epochs that
we refer to as scaling times. At such times, a cold server is
selected, provided that one exists, and becomes initializing
according to the outcome of some scaling rule. After some
initialization time, or coldstart latency, an initializing server
becomes idle-on. When a server becomes idle-on, it becomes
cold after a scale down delay, or expiration time, if during
such time the server received no job; this scale-down rule is
used in several serverless computing platforms (including
Knative) [34], [35] and also in other settings [16]. We observe
that the number of warm servers fluctuates from 0 to N over
time. While in practice it may be possible to set a lower limit
on the number of warm servers, the scale down to zero (or
one) servers configuration is usually the default choice [3].

To a great extent, the scale up rule, the expiration rate
and the scaling times are under the control of the platform
user, which may design them in a way to optimize a trade-
off between performance and energy. On the other hand,
several measurements indicate that initialization times are
typically one order of magnitude higher than jobs’ service
times in serverless platforms [22], [35].

3.2 Notation

We introduce some notation that will be used throughout
the paper. Let B ∈ Z+ ∪ {+∞} be a constant that will
denote the buffer size of each server. We use I{A} to denote
the indicator function of A. If a ∈ R and A denotes an
interval, 1a

A := I{a∈A}. We also let (·)+ := max{·, 0} and
∥ · ∥ denotes the L1 norm. Unless specified otherwise, (i, j)
ranges over the set {0, . . . , B} × {0, 1, 2} if B < ∞ and
over Z+ × {0, 1, 2} otherwise. The process of interest will
take values in S := {(xi,j ∈ R+,∀(i, j)) :

∑
i,j xi,j = 1}

and our analysis holds under the distance function dw
induced by the weighted ℓ2 norm ∥ · ∥w on RZ+ defined by

∥x−x′∥2w :=
∑

i,j

|xi,j−x′
i,j |

2

2i+j . For x ∈ S , let yi :=
∑

k≥i xi,2.
We also let S1 := {x ∈ S :

∑
i≥1 ixi,2 < ∞}.

3.3 Markov Model

We model the dynamics induced by ALBA in terms of
a continuous time Markov chain. The exogenous arrival
process of jobs is assumed to be Poisson with rate λN , with
0 < λ < 1. Our analysis (Theorem 1) generalizes trivially to
a time-varying arrival rate, a case that we omit for clarity
of exposition. We discuss this point in the Conclusions.
The processing times, or service times, of jobs are indepen-
dent and exponentially distributed random variables with
unit mean. Servers process jobs according to any work-
conserving discipline. Upon arrival, each job is assigned
to one warm server as specified in Assumption 1. In the
extreme case where no warm server exists, the job is lost.
We assume that each server can contain at most B > d jobs
and a job that is sent to a server with B jobs is rejected. If
not specified otherwise, B is either finite or infinite. At each
scaling time, a cold server is selected uniformly at random,
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provided that one exists, and becomes initializing with some
probability g. This is the scaling probability (or rule) and
will possibly depend on the system state; in the conclusion
section, we will discuss how our work adapts to the case
where a random number of cold servers is selected at each
scaling time. Given that jobs arrive with a rate proportional
to N and only one server can be added at each scaling time,
we let the scaling frequency increase with N as well. As it
occurs in Knative, this implies that the number of servers
created in a time window of constant size is proportional
to N if within such window the scaling probability is not
zero. We let the inter-scaling, initialization and expiration
times be independent and exponentially distributed with
rate αN , β and γ, respectively.

Let Q̃N (t) := (Q̃N
1 (t), . . . , Q̃N

N (t)) be the vector of queue
lengths at time t, including the jobs in service, and let
S̃N (t) := (S̃N

1 (t), . . . , S̃N
N (t)) be the vector of server states.

Specifically, S̃N
k (t) ∈ {0, 1, 2} indicates whether server k is

cold (S̃N
k (t) = 0), initializing (S̃N

k (t) = 1) or warm (S̃N
k (t) =

2) at time t. Under the above assumptions, the stochastic
process (Q̃N (t), S̃N (t)) is a continuous-time Markov chain
on state space {(n, s) ∈ {0, . . . , B}N × {0, 1, 2}N : nk >
0 ⇒ sk = 2, ∀k = 1, . . . , N}.

It is convenient to describe dynamics in terms of the
process XN (t) := (XN

0,0(t), X
N
0,1(t), X

N
i,2(t) : i = 0, . . . , B)

where

XN
i,j(t) :=

1

N

N∑
k=1

I{Q̃N
k (t)=i,S̃N

k (t)=j} (1)

is the proportion of servers in state j with i jobs at time
t. The process XN (t) is still a Markov chain with val-
ues in some set S(N) that is a subset of S . Let ei,j :=
(δi,i′ δj,j′ ∈ {0, 1} : i′ ≥ 0, j′ = 0, 1, 2) where δa,b denotes
the Kronecker delta and let x := (xi,j) ∈ S(N) denote a
generic state of XN (t). For conciseness, the Markov chain
XN (t) has the following transitions:

x 7→ x′ := x+ 1
N (ei,2 − ei−1,2) with rate λNfi−1(x)

x 7→ x′ := x+ 1
N (ei−1,2 − ei,2) with rate xiN

x 7→ x′ := x+ 1
N (−e0,0, e0,1) with rate αNg

x 7→ x′ := x+ 1
N (−e0,1, e0,2) with rate βx0,1N

x 7→ x′ := x+ 1
N (e0,0 − e0,2) with rate γx0,2N

for all i = 1, . . . , B, provided that x, x′ ∈ S(N). Here,
g := g(x) : S → [0, 1] is the scaling probability, and
fi(x), which depends on the dispatching rule, represents the
probability of assigning an incoming job to a warm server
containing exactly i jobs. If y0 > 0, within Power-of-d we
have (assuming that server selections are with replacement)

fi(x) =
ydi − ydi+1

yd0
, (2)

where yi := yi(x) :=
∑

j≥i xj,2, and within JBT-d we have

fi(x) =
xi,2 I{∑d

k=0 xk,2=0}

y0
+

xi,2 I{∑d
k=0 xk,2>0}∑d

k=0 xk,2

I{i≤d}, (3)

where we have taken the convention that 0/0 = 0, for all
i = 0, . . . , B − 1. If y0 = 0, then fi(x) = 0 as no warm
server exists.

3.4 Deterministic Model

We introduce the deterministic (or fluid, mean-field) model
for the dynamics of ALBA.

Definition 1. A continuous function x(t) : R+ → S is said to
be a fluid model (or fluid solution) if for almost all t ∈ [0,∞)

ẋ0,0 = γx0,2 − αgI{x0,0>0} − γx0,2 I{x0,0=0, γx0,2≤αg} (4a)

ẋ0,1 = αgI{x0,0>0} − βx0,1 + γx0,2 I{x0,0=0, γx0,2≤αg} (4b)

ẋ0,2 = x1,2 − h0(x) + βx0,1 − γx0,2 (4c)
ẋi,2 = xi+1,2I{i<B} − xi,2 + hi−1(x)− hi(x)I{i<B}, (4d)

i = 1, . . . , B, where g := g(x) : S → [0, 1], and hi(x) =
min{βx0,1, λ} if y0 > 0 and otherwise (y0 = 0):

hi(x) = λ
ydi − ydi+1

yd0
(5)

if Power-of-d is applied and

hi(x) =



λ
xi,2∑d

k=0 xk,2
I{i≤d}, if

∑d
k=0 xk,2 > 0

(
βx0,1 + xd+1,2I{i=d}

)
I{xd+1,2+(d+1)βx0,1≤λ},

if
∑d

k=0 xk,2 = 0, i ≤ d,

xi,2

y0
(λ− xd+1,2 − (d+ 1)βx0,1)

+,

if
∑d

k=0 xk,2 = 0, i > d,
(6)

if JBT-d is applied.

As for XN
i,j(t), xi,j(t) is interpreted as the proportion of

servers in state j with i jobs at time t.
Let us provide some intuition about the fluid model.

First, when a strictly positive fluid mass of warm server ex-
ists, i.e., y0 > 0, the functions hi are interpreted as the rate at
which jobs are assigned to servers with exactly i jobs. When
the amount of fluid of cold servers is strictly positive, i.e.,
x0,0 > 0, to some extent these equations may be interpreted
as the conditional expected change, or drift, from state x
of the Markov chain XN (t). In contrast, when x0,0 = 0,
there exists a term, −I{x0,0=0, γx0,2≤αg}γx0,2 (see (4a) and
(4b)), that still drains the amount of cold servers down. This
is due to warm servers that become cold but immediately
turn initializing and it appears if the scaling rule is ‘greedy
enough’, i.e., if the rate at which new initializing servers can
be created is greater than or equal to the rate at which warm
servers go cold. This term is due to fluctuations of order 1/N
that appear when XN

0,0(t) = 0, which bring discontinuities
in the drift of XN (t), and will come out from the stochastic
analysis developed in Appendix 1.1.3.

Now, let us focus on (5) and (6), and let us assume
that y0 > 0. In the case of Power-of-d, hi = λfi and x(t)
evolves following the natural dynamics of Power-of-d as
in [24], though normalized on the variable mass of warm
servers y0(t). The case of JBT-d is more delicate because of
the discontinuous structure of fi in (3). If a strictly positive
fraction of warm servers with no more than d jobs exist, then
hi = λfi and x(t) evolves following the natural dynamics
of JBT-d, though again normalized on a variable number of
servers. On the other hand, when

∑d
k=0 xk,2 = 0, there is a

flow of warm servers with at most d jobs that are created but
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immediately used for dispatching jobs. Specifically, there
are two factors that come into play here: the first is due to
initializing servers that get warm with exactly i jobs (with
rate βx0,1), for all i ≤ d, and the second is due service
completions from servers with exactly d + 1 jobs (with rate
xd+1,2). The resulting rate can not be greater than λ, the
rate where jobs are assigned to servers, and this justifies the
I{xd+1,2+(d+1)βx0,1≤λ} term. Then, the excess of such rate,
(λ− xd+1,2 − (d+ 1)βx0,1)

+, is distributed uniformly over
servers with i > d jobs. In Theorem 3, we will show that
such rate is key for the design of fluid optimal scaling rules.
Finally, assume that no warm server exists, i.e., y0 = 0.
Here, initializing servers get idle-on with rate βx0,1 but all
of them are immediately filled by new arrivals if λ ≥ βx0,1,
and in this case the mass of idle-on servers remains zero.
Otherwise, x0,2 increases with surplus rate βx0,1 − λ.

The existence of a fluid solution started in x(0) ∈ S1 will
be direct from Theorem 1.

3.5 Scaling Rules
The scaling rule g gives the probability to activate a new
server at each scaling time as a function of the system state.
The following assumption, which will hold throughout the
paper, provides the structure of the scaling rules investi-
gated in this paper.

Assumption 2. The scaling rule g : S → [0, 1] is Lipschitz
continuous, and g(x) > 0 if x0,0 = 1.

The last technical condition is natural and will rule out
the existence of degenerate fixed points. We allow g(x) to
be greater than zero even when no cold server exists, i.e.,
x0,0 = 0. While this has no impact on the dynamics of the
stochastic model, it does affect the fluid model as there may
exist a flow of idle-on servers that go cold but instantly turn
initializing keeping the proportion of cold servers at zero.
This situation can occur if λ is large enough and not only in
the transient regime; see Theorem 2.

We propose two scaling rules that satisfy Assumption 2.

Definition 2. At each scaling time, if the system state is x,
• Blind-θ activates a new server with probability g(x) = θ,

θ ∈ (0, 1];
• Rate-Idle activates a new server with probability g(x) =

1
λ (λ− βx0,1 − x1,2)

+.
Blind-θ is oblivious of the system state and thus highly

scalable. Rate-Idle scales resources up if and only if the mean
demand, λ, exceeds the rate at which servers become idle-
on, βx0,1 + x1,2. Here, the auto-scaler needs to know the
amount of initializing servers, the amount of busy servers
with exactly one job and both the job arrival and server
initialization rates; in Knative, these variables are available
to the auto-scaler. If combined with JIQ, we will show in
Theorem 3 that Rate-Idle is asymptotically optimal.

4 MAIN RESULTS

We now present our main results. In Theorem 1, we justify
the use of the deterministic model to approximate the be-
havior of the stochastic model. Then, we focus on properties
of the deterministic model and i) characterize its fixed points
in Theorem 2 and ii) investigate the design of optimal
scaling rules in Theorem 3.

4.1 Connection between the Fluid and Markov Models
The following result shows that the fluid model can be seen
as a first-order approximation of the sample paths of the
stochastic model.

Theorem 1. Let T < ∞, x(0) ∈ S1 and assume that
∥XN (0) − x(0)∥w → 0 almost surely. Then, limit points of the
stochastic process (XN (t))t∈[0,T ] exist and almost surely satisfy
the conditions that define a fluid solution started at x(0).

Proof. Given in Appendix 1.

The stochastic and the deterministic models have some
non-standard aspects that prevent us to prove Theorem 1
by directly applying Kurtz’s theorem or similar known
results. The main technical difficulty is that the trajectories
of the deterministic model may cross or converge to points
of discontinuity of its drift function. We handle this by
following the general framework in [9], [31] and developing
ad-hoc arguments specific to the structure of our problem
(given in Appendix 1.1.3).

In view of Theorem 1 and since typical and default
maximum scale limit values of real applications are 1000 or
more [22], i.e., N ≥ 103, we expect that the fluid model x(t)
provides an accurate approximation of the average behavior
of XN (t). To support this claim, we present the results of
numerical simulations; see also Section 6. Figure 1 (left)
plots the trajectories of x(t) and XN (t) when N = 103 and
B = 102 along the coordinates of cold (x0,0), initializing
(x0,1), idle-on (x0,2) and busy (y1) servers. Also, Figure 1
(right) plots the average number of jobs per warm server,
which in state x is given by Q(x) := 1

y0

∑
i≥1 ixi,2. The fluid

(stochastic) trajectories are always represented by dashed
(continuous) lines and each curve is the average of ten
simulations. Each simulation is based on 106 events. We
have set λ = 0.7, α = 0.05, β = 0.1 and γ = 0.025. As
scaling rule, we have chosen Blind-θ where θ = 0.5

α
1−λ
1
β+ 1

γ

;
this choice will ensure that a strictly positive proportion
of cold servers exists in the long run (see Theorem 2). As
dispatching algorithm, we have used Power-of-2 (for JIQ,
see Section 6). At time zero, we have assumed that the
system is dimensioned exactly for the average demand, i.e.,
(1−λ)N servers are cold and the remaining ones are idle-on.
In both pictures, we observe that the fluid model captures
the dynamics of XN (t) accurately.

Let us comment on the dynamics in Figure 1. Initially,
the system is close to instability as capacity exactly matches
demand. Here, Q(x(t)) increases rapidly and as soon as
a warm server is created, it is filled with a job and as a
result the proportion of idle-on servers decreases. These
decrease also because they are not discovered fast enough
upon job dispatching, thus letting them go cold even in
heavy load. This explains why the number of cold servers
(the blues lines) is increasing at the beginning. Then, more
warm servers are created to mitigate the effect of the “close
to instability” window on the accumulated overall number
of jobs. Here, the mass of busy servers (y1) becomes greater
than the average demand λ = 0.7 and Q(x(t)) decreases. Fi-
nally, dynamics stabilize and in equilibrium there is a strictly
positive fraction of servers that remain cold, initializing and
idle-on. This indicates that there is a flux of idle-on servers
that expires continuously even in equilibrium.
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Figure 1. Numerical convergence of the stochastic model XN (t) (continuous lines), N = 103, to the fluid model x(t) (dashed lines) when combining
Power-of-2 and Blind-θ.

4.2 Characterization of Fixed Points

The fluid model has the form ẋ = F (x); see Definition 1.
We say that x∗ ∈ S1 is a fixed point if F (x∗) = 0. We now
investigate the fixed points of fluid model when buffer sizes
are infinite and λ is constant and less than one (for stability).

Let us define the following conditions:

x0,0 + x0,1 + x0,2 + λ = 1 (7a)
βx0,1 = γx0,2 (7b)
γx0,2 ≤ αg(x), if x0,0 = 0 (7c)
γx0,2 = αg(x), if x0,0 > 0 (7d)

and if Power-of-d is used:

xi,2 = (λ+ x0,2)

((
λ

λ+x0,2

) di−1
d−1 −

(
λ

λ+x0,2

) di+1−1
d−1

)
, (8)

for all i ≥ 1, otherwise if JBT-d is used:

if x0,2 = 0 :xi,2 = 0, 0 ≤ i ≤ d (9a)

xd+i,2 = xd+1,2

(
1− xd+1,2

λ

)i−1
, i ≥ 2 (9b)

xd+1,2 ∈ (0, λ] (9c)
g(x) = 0 (9d)

if x0,2 > 0 :xi,2 =

(
λ

zd + x0,2

)i

x0,2 I{1≤i≤d+1}, i ≥ 1

(9e)

with zd ∈ [0, 1] being the unique solution of

zd + x0,2 =
1−

(
λ

zd+x0,2

)d+1

1− λ
zd+x0,2

x0,2 (10)

if d ≥ 1 and zd = 0 if d = 0. Here, zd is interpreted as the
proportion of busy servers with no more than d jobs.

Now, let us also introduce the following assumption,
which we will only use in Theorem 2 below.

Assumption 3. For any x0,2 ∈ [0, 1 − λ], (8)-(9e) uniquely
determine xi,2 for all i ≥ 1.

Within Power-of-d, this assumption is clearly satisfied
by (8). Within JBT-d, it is satisfied only if x0,2 > 0, as if
x0,2 = 0, then xd+1,2 is only required to belong to (0, λ].
Under Assumption 3, let x◦ = (x◦

i,j) be the unique point in
S1 such that x◦

0,0 = 0, x◦
0,1 = γ

β+γ (1−λ), x◦
0,2 = β

β+γ (1−λ).
The following result characterizes fixed points.

Theorem 2. Assume that λ is constant and less than one. If x∗

satisfies the conditions in (7)-(10), then it is a fixed point of the
fluid model with B = +∞. In addition, under Assumption 3

1) If

αg(x◦) <
1− λ
1
β + 1

γ

, (11)

then x∗
0,0 > 0.

2) If (11) does not hold, then x∗ = x◦ is the unique fixed
point.

Proof. Given in Appendix 1.

At the fluid scale and in a fixed point, Theorem 2 also
provides the boundary scaling probability that distinguishes
between a “saturated” and a non-saturated system. Specif-
ically, if the scaling rule satisfies (11), then in a fixed point
there exists a fraction of idle-on servers that go cold and
instantly become initializing, provided that g(x◦) > 0. Here,
the pool of cold servers remains non-empty. On the other
hand, if g(x◦) does not satisfy (11), then no cold server exists
in a fixed point but we observe that (7a) and (7b) imply that
a strictly positive fraction of servers remain initializing, i.e.,
γ

β+γ (1 − λ). Here, the interpretation is that there still exists
a mass of idle-on servers that go cold but instantly become
initializing while keeping the proportion of cold servers
down to zero. This corresponds to a waste of resources
because initializing servers cannot process jobs. In other
words, a better performance may be obtained by keeping
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the initializing servers warm at all times (no auto-scaling);
recall also that billing policies charge warm and initializing
servers.

Within Blind-θ, g(x) = θ and the conditions (7)-
(10) easily identify a unique fixed point, say x∗, with
(x∗

0,0, x
∗
0,1, x

∗
0,2) not depending on the choice of the load

balancing algorithm.
The following remark says that uniqueness is not always

guaranteed.

Remark 1 (Multiple Fixed Points). Suppose that g(x) = 0
whenever y1 = λ = 1 − x0,0 and that JBT-d is used. Then,
Theorem 2 implies that uncountably many fixed points exist. In
fact, while xi,2 = 0 for all i = 0, . . . , d and xi,2 is uniquely
determined for all i ≥ d + 2 once fixed xd+1,2, the conditions
(7)-(10) do not tie xd+1,2 ∈ (0, λ] to a specific value.

4.2.1 Blind-θ and Random Dispatching
For illustration purposes, let us consider Blind-θ with ran-
dom dispatching (Power-of-1). This combination does not
involve any communication overhead among the auto-
scaler, dispatchers and servers, and for this reason it is well
suited for large systems with vast numbers of dispatchers.
Here, Theorem 2 identifies a unique fixed point, x∗. After
some algebra, we obtain x∗

0,2 = min
{

αθ
γ , x◦

0,2

}
and for the

mean queue length per warm server, Q(x) = 1
y0

∑
i ixi,2,

we obtain (using also (8))

Q(x∗) =
λ

min
{

αθ
γ , x◦

0,2

} . (12)

As long as a strictly positive fraction of cold servers exists,
or equivalently αθ

γ < x◦
0,2, we remark that Q(x∗) grows

linearly in λ.

4.3 Optimal Design
Within Blind-θ, Theorem 2 guarantees the existence of a
unique fixed point and all of our numerical simulations,
which we omit, indicate that it is a global attractor. Here,
necessarily x∗

0,2 > 0, by (7d), which means that a number of
warm servers remain idle-on in equilibrium. Clearly, this is
not optimal for energy consumption because idle-on servers
consume energy. Our goal now is to design scaling rules
ensuring that a global attractor exists and given by x⋆, where
x⋆ ∈ S is uniquely defined by x⋆

0,0 = 1− λ and x⋆
1,2 = λ.

Remark 2 (Fluid Optimality). In x⋆ dynamics have achieved
“delay and relative energy optimality” in the sense that both
the waiting time of jobs and the relative energy portion consumed
by idle-on and initializing servers vanish in the limit. Here, a
possible intuition is that each job is always assigned to a busy
server with exactly one job but at the precise moment where it
completes the processing of its previous job. Therefore, service
capacity perfectly matches demand.

A direct consequence of Theorem 2 and (7d) is that
it is necessary to impose g(x⋆) = 0 to achieve fluid
optimality. Within Power-of-d, this is impossible as this
condition would imply that x0,2 = 0, and then (8) would
imply xi,2 = 0 for all i, contradicting that ∥x∥ = 1. In fact,
Theorem 2 implies that the unique candidate is JIQ, though
it leaves open the possibility that x(t) may converge to a

fixed point in the sub-optimal set Ssubopt, see (14). Thus, it
remains to understand what additional structure the scaling
rule g(x) should satisfy to make x⋆ a global attractor. Here,
Remark 1 suggests that even the knowledge of the amount
of busy servers is not enough. More precisely, it implies that
one needs g(x) > 0 for all x ∈ Ssubopt as otherwise multiple
fixed points exist. Therefore, given the structure of Ssubopt

and x⋆, we have the following remark.

Remark 3. A fluid optimal scaling rule needs the access to the
amount of busy servers with exactly one job, i.e., x1,2.

The following result provides a general condition that
yields fluid optimality.

Theorem 3 (Optimal Design). Let β < 1 and let x(t), with
x(0) ∈ S1, denote a fluid solution induced by JIQ and any scaling
rule g(x) that satisfies, beyond Assumption 2,

g(x) = 0 if and only if x1,2 + βx0,1 ≥ λ. (13)

Then, limt→∞ ∥x(t)− x⋆∥w = 0.

Proof. Given in Appendix 1.

The interpretation is that x1,2 + βx0,1 represents the
overall rate at which servers become idle-on. Thus, our
optimality condition says to scale up resources whenever
the excess of the mean demand over the rate at which
servers become idle-on is positive, as in this case JIQ is smart
enough to fill them up immediately saturating the surplus
service capacity. Otherwise, if the excess is negative, one
can turn the scale-up process off (g = 0), and in this case the
natural dynamics induced by both JIQ and the scale-down
rule are enough to drive the system behavior to the desirable
configuration x⋆.

Remark 4. Rate-Idle, see Definition 2, satisfies (13). If g denotes
Rate-Idle and f : [0, 1] → [0, 1] is continuous, onto and
increasing, then f(g) is a scaling rule that as well satisfies (13).

As discussed in Section 3.1, the assumption β < 1, i.e.,
the mean server initialization rate is smaller than the mean
job service rate, is largely accepted in practice [22], [35].
From a mathematical standpoint, it is not necessary for fluid
optimality but simplifies our proof.

Remark 5 (Communication Overhead). A scaling rule sat-
isfying (13) requires the central controller to have access to
the amount of initializing and busy servers containing exactly
one job, i.e., x0,1 and x1,2. Since an initializing server informs
the platform as soon as it becomes warm, x0,1 is easily obtained
in practice. For x1,2, the auto-scaler can run a local memory with
N slots, where the n-th slot indicates the state of server n, say
‘Cold’, ‘Init’, ‘Idle-on’, ‘Busy1’ and ‘Busy≥2’, with obvious inter-
pretations. Then, one way to update the memory is by letting each
server send a message to the auto-scaler whenever the transitions
‘Busy≥2’ → ‘Busy1, ‘Busy1’ → ‘Idle-on’ and ‘Idle-on’ → ‘Busy1’
occur. As in standard implementations of JIQ, this involves only
a constant number of messages per job to be exchanged between
the auto-scaler and the servers.

4.4 Convergence to Multiple Fixed Points
In Theorem 3, we have provided a condition ensuring that
x⋆ is globally stable. In this section, we show that it is
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not always possible to have global stability. To guarantee
stability, one may expect that is enough to have a strictly
positive scaling probability whenever the current capacity of
warm servers is less than the average demand, i.e., g(x) > 0
whenever y0 < λ. The following proposition shows that this
intuition is false.

Let

Ssubopt :=
{
x ∈ S : x0,0 = 1− λ, x0,1 = x0,2 = 0,

x1,2 < λ and (9b) holds with d = 0
}

(14)

and let Q(x) :=
∑

i≥1 ixi,2 denote the average number of
jobs per server in state x ∈ S ; here, cold and initializing
servers are included in the counting.

Proposition 1. Assume that λ is constant and less than one. Let
g(x) be any scaling rule such that

g(x) =
1

λ
(x0,0 − 1 + λ)+, ∀x ∈ S : y0 < λ. (15)

Let x(t) denote a fluid model induced by such g(x) and JIQ such
that

x0,0(0) > 1− λ, x0,2(0) = 0,

x1,2(0) + βx0,1(0) < λ < Q(x(0)) < ∞. (16)

Suppose that β < 1, α ̸= β and B = +∞. Then,

g(x(t)) > 0, ∀t ≥ 0 (17)

lim
t→∞

Q(x(t)) = Q(x(0)) +
x0,1(0)

β

+
α+ β

αβ
(x0,0(0)− 1 + λ) > λ. (18)

In addition, y0(t) ↑ λ, and if x1,2(t) → x1,2(∞), then x(t) →
x(∞) with x(∞) ∈ Ssubopt.

Proof. Given in Appendix 3.

Thus, while the proportion of warm servers converges
to λ, such convergence may occur from below even if there
always exists a strictly positive probability of creating new
warm servers. In this case, the average demand is greater
than the current service capacity at any point in time and
this makes the mean queue length converge to a limit that
depends on the initial conditions.

Let us comment a little bit further and prepare the setting
for our next contribution. To create the underload situation
above where y0(t) ↑ λ, it is not necessary to assume that
all warm servers are initially busy (x0,2(0) = 0), though we
have included this condition in (16) to simplify our proof. In
contrast, to avoid this situation, it may be sufficient that g(x)
is bounded away from zero whenever y0 < λ. By continuity,
this implies that g(x) > 0 as well whenever y0 = λ, but
in this case the resulting scaling rule will not possess the
optimality property stated in Theorem 3 below (as this will
imply that g(x⋆) > 0). On the other hand, one may consider
a scaling rule that is discontinuous on the set {x : y1 = λ},
a setting that does not satisfy Assumption 2. Here, beyond
revisiting Theorem 1 for justification of the fluid model, the
problem is that scale-up decisions would significantly de-
pend on small perturbations of the equilibrium system state,
severely impacting robustness from a practical standpoint.

5 EMPIRICAL COMPARISON: SYNCHRONOUS VS
ASYNCHRONOUS

The structural differences between the synchronous and
asynchronous approaches have been described in Sec-
tion 1.3. In this section, we compare both approaches
by means of numerical simulations. Specifically, we com-
pare our asynchronous combination of JIQ and Rate-Idle
(see Definition 2) with a generalization of TABS, i.e., the
synchronous scheme developed in [26]. For the latter, we
assume that d servers are initialized at the moment of a job
arrival if all active servers are busy upon arrival of that job,
in which case the job is sent to a (busy) server at random.
Thus, the TABS scheme in [26] is recovered when d = 1.
Let us refer to such generalization as TABS-d. Clearly, d
affects the scale-up rate and plays the same role of α in
ALBA. To make the comparison fair, we will assume that α
is fine-tuned such that the resulting scale-up rate induced by
ALBA matches the scale-up rate induced by TABS-d; thus,
α = α(d). Here, the scale-up rate is defined as the number
of server initialization signals divided by the time horizon.

Our comparison metrics are

• the empirical probability of waiting, that is the aver-
age fraction of jobs that are sent to a busy server. We
refer to these as pALBA

Wait and pTABS−d
Wait .

• the empirical energy consumption, that is E =
N(winitx0,1(t) + widle−onx0,2(t) + wbusy)y1(t) av-
eraged over time; here, we assume winit = 2,
widle−on = 0.5 and wbusy = 1. We refer to these as
EALBA and ETABS−d.

Then, we consider the ratios

RWait :=
pALBA
Wait

pTABS−d
Wait

, REnergy :=
EALBA

ETABS−d
, (19)

and evaluate them by simulation of 107 events (both
schemes have been tested within the same seed sequences)
and when N ∈ {100, 500, 1000}, λ ∈ {0.35, 0.7}, d =
{1, 5, 10}, β = 0.1 and γ = 0.025. If a time unit is 10
milliseconds, these parameters are realistic [11], [22], [35].
We also assume that the initial condition is x⋆, i.e., the
global attractor of the fluid dynamics defined in Section 4.3.
This choice measures the perturbations of order 1/N that
appear around x⋆, which are not visible at the fluid scale.
Within this setting, Figure 2 plots RWait (blue) and REnergy

(red) and shows that ALBA always provides a much smaller
probability of waiting than TABS-d while inducing the same
energy consumption cost as REnergy is almost one; see the
Appendix for a table containing numerical data. In addition,
this behavior is amplified when N and d increase. As
discussed in Section 1.3, we own the performance gain of
ALBA to the fact that scale up decisions may be taken before
job arrivals, while in a synchronous scheme such as TABS-d,
jobs are forced to wait any time a scale up decision is taken.
While this anticipation induces a slightly increased energy
cost, it pays off because REnergy remains very close to one.

Since RWait decreases with the system size N , we may
postulate that it approaches zero as N → ∞. This requires
a second-order limit analysis of the underlying Markov
chains, which we leave as future work.
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Figure 2. Ratio R(N) of the transient probability of waiting induced by the
proposed asynchronous scheme (Rate-Idle+JIQ) and the synchronous
approach in [26], respectively. The initial condition is the global attrac-
tor x⋆ (defined in Section 4.3, see Theorem 3), which corresponds to
delay and relative energy optimality.

6 ENERGY OPTIMIZATION WITH PERFORMANCE
GUARANTEES

In this section, we use the fluid model in an optimization
framework to trade off between performance and energy
costs, and we numerically show that it accurately captures
the stochastic dynamics of the finite ALBA system. Let us
focus on JIQ as load balancing algorithm and on the set (say
G) of scaling rules that satisfy the assumptions in Theorem 3.
Note that these imply fluid optimality in the stationary
regime. As in, e.g., [4], let us define the cost function Jg as
the long-run time average of a linear combination between
the power consumption P (x) = c0,1x0,1 + c0,2x0,2 + c1,2y1,
ci,j > 0, and the average queue length per busy server
Q(x) = 1

y1

∑
i ixi,2 induced by the scaling rule g, i.e.,

Jg := lim
T→∞

1

T

∫ T

0
(κ1P (x(t)) + κ2Q(x(t))) dt (20)

where κi ≥ 0, i = 1, 2; one can think κ1 in terms of $/watt
and κ2 in terms of $/job. Then, Theorem 3 implies that

inf
g
Jg = Jg∗ = κ1P (x⋆) + κ2Q(x⋆) = κ1c1,2λ+ κ2 (21)

for all g∗ ∈ G. While all policies in G yield the same
(optimal) cost, their behavior is clearly different trajectory-
wise. Depending on the application, a platform user has
several options to single out a policy in G that satisfies
a further level of optimization. For instance, a substantial
portion of the applications hosted in cloud networks have
ultra-low delay requirements, as this may have important
consequences on e-commerce sales. On the other hand, also
energy bills are equally important from both financial and
environmental standpoints. Here, a system manager may
want to look for a scaling rule in G such that

Q(x(t)) ≤ q, ∀t ≥ 0 (22)

where q is related to the desired user-perceived performance
guarantee; by Little’s law, (22) is equivalent to a constraint
on the mean response time. In view of Remark 4, one may
consider the parameterized subset of scaling rules

g(x) =
1− exp(− η

λ (λ− x1,2 − βx0,1)
+)

1− exp(−η)
, η > 0, (23)

which satisfy both Assumption 2 and (13). Here, the control
parameter η > 0 indicates how aggressive the scaling
rule is: Rate-Idle is recovered when η ↓ 0 and g(x) =
I{λ≥x1,2+βx0,1} when η → ∞. Then, one may search for the
smallest (least aggressive) η such that (22) holds true.

The above problem can be easily addressed numerically
within the proposed deterministic model. Assume that the
system is currently in a light-load condition, say λ = 0.25,
and that, as a result, it is dimensioned accordingly to save
energy, say x0,0 = 1 − λ − 0.05, with x0,2 = 0.05 and
x1,2 = λ; the extra 0.05 is meant to keep a reserve of idle-
on servers ready to go. Then, at time zero, an unexpected
workload peak occurs, and λ = 0.5. Here, the platform
needs to automatically adjust the service capacity while
ensuring (22). Let us assume q = 2, α = 0.35, β = 0.1
and γ = 0.025. The dashed lines in Figure 3 represent the
dynamics of the fluid queue lengths Q(x(t)) and scaling
probabilities g(x(t)), for η = 1, 103. The corresponding con-
tinuous lines represent the average of ten simulations of the
stochastic model XN (t) with N = 1000. First, let us remark
that the fluid model approximation accurately captures the
dynamics of XN (t), though it slightly underestimates queue
lengths and scaling probabilities. Now, let us consider η = 1.
Initially, queue lengths increase as expected due to the surge
of demand and the scaling probability is large enough to
drive the proportion of cold servers to zero. This explains
the non-differentiability point of the trajectory of the scaling
rule because the amount of initializing servers stops to grow.
Then, the system has enough capacity to drain the load
and at some point the rate at which servers become idle-
on overflows the mean demand, i.e., x1,2 + βx0,1 > λ, so
that eventually g(x(t)) = 0. Finally, queue lengths assess
to their asymptotic value Q(x⋆) = 1 We conclude that
η = 1 is enough to make (22) holds true. We also notice
that the choice η = 103, which essentially means to scale
up resources at the maximum available rate α whenever
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Figure 3. Transient behavior of the queue lengths (y-axis on the left) and scaling probabilities (y-axis on the right) by varying η, see (23), for both
the fluid (x(t)) and stochastic (XN (t)) models with N = 1000.

x1,2+βx0,1 < λ, has little impact on performance. Nonethe-
less, it should be clear that the larger the value of η, the
larger the resulting time-average power consumption.

7 CONCLUSION

In cloud systems, load balancing and auto-scaling are key
mechanisms to optimize both delay performance and en-
ergy consumption. The focus of the existing literature has
been on architectures where these mechanisms are syn-
chronous or rely on a central queue. The novelty of our
work is to consider an asynchronous and decentralized
architecture. Decentralization increases scalability and asyn-
chronism does not force jobs to wait any time a scale-up
decision is taken.

Our work provides a tractable framework to evaluate
the performance of auto-scaling algorithms that are up to
the platform user to design. In our main result, we have
identified a structural condition for asymptotic optimality
that provides the platform user with some flexibility when
designing an optimal scaling rule; see Remark 4. This can be
exploited to develop new levels of optimization as we have
shown in Section 6. By means of numerical simulations, we
have show that the proposed asynchronous combination of
JIQ and Rate-Idle provides a better delay performance than
existing synchronous decentralized schemes while inducing
almost the same energy consumption.

We discuss some generalizations and open questions:

• We have assumed that only one server at a time
can be activated at each scaling time. Our approach
generalizes trivially to the case where a random
number C of cold servers is selected, provided that
the distribution of C does not depend on N . Mutatis
mutandis, it is enough to replace α by αE[C].

• Theorem 1 generalizes trivially to a time-varying
arrival rate setting if the arrival rate takes the form

Λ(t)N where Λ(t) is a bounded positive real-valued
function independent of N . This change only af-
fects Lemma 1 of the supplementary material, whose
proof directly generalizes by the functional strong
law of large numbers for the Poisson process. The
resulting deterministic model is identical to the one
in Definition 1 except that λ is replaced by Λ(t).

• From a theoretical point of view, it is interesting
to prove the “interchange of limits” property. More
specifically, within JIQ and the asymptotically opti-
mal condition identified in Theorem 3, the question
is whether or not the invariant distribution of the
underlying Markov chain concentrates on x⋆ when
N → ∞. Numerical evidence indicates that this
property holds true.

• The stability of the (finite) stochastic model is a
difficult question to answer because the proposed
ALBA framework is very general: the scale-up rule g
satisfies mild conditions (see Assumption 2) and to
come up with a stability result, one should take
additional assumptions such as considering a specific
scale-up policy. Even within the simplest scale-up
policy, i.e., Blind-θ, and the simplest dispatching
policy, i.e., where jobs are distributed to servers uni-
formly at random (or equivalently Power-of-d with
d = 1), understanding whether or not the underly-
ing Markov chain is positive recurrent is challeng-
ing. Here, one may check that (natural adaptations
of) classical Lyapunov functions used in queueing
theory to investigate stability via Foster-Lyapunov
theorem do not work. Also, the utilization of Dai’s
fluid framework [10] is again complicated by the
identification of a Lyapunov function. Finally, the
drift function does not preserve monotonicity and
stochastic dominance arguments cannot be applied.
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8 PROOFS OF THEOREMS 1, 2 AND 3
8.1 Theorem 1: connection between the fluid and the
Markov models
To prove Theorem 1, we follow two main steps. First, we
couple the processes (XN (t))t∈[0,T ], for all N ∈ Z+, on a
common probability space and show that limit trajectories
exist and are Lipschitz continuous with probability one.
The arguments used in this step are routine [7], [10], [28].
Then, we prove that limit trajectories are fluid solutions,
which is the main technical difficulty, and here we develop
arguments specific to the model under investigation.

http://arxiv.org/abs/1806.05444
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8.1.1 Coupled construction of sample paths

Let Nc(t) denote a Poisson process of rate c. We con-
struct a probability space where the stochastic processes
{(XN (t))t∈[0,T ]}N≥1 are coupled. All the processes of in-
terest can be constructed in terms of the following mutually
independent primitive processes:

• Nϕ(t), a Poisson process of rate ϕ := λ+1+α+β+γ.
This process is defined on (ΩE ,AE ,PE) and each
jump of Nϕ(t) denotes the occurrence of an event.

• (Wn)n, where the random variables Wn are
{0, 1, 2, 3, 4}-valued i.i.d. and such that P(Wn =
0) = λ/ϕ, P(Wn = 1) = 1/ϕ, P(Wn = 2) = α/ϕ
P(Wn = 3) = β/ϕ and P(Wn = 4) = γ/ϕ. This
process is defined on (ΩW ,AW ,PW ) and will iden-
tify the type of the n-th event. Specifically, Wn = 0
indicates a job arrival, Wn = 1 a potential job
departure, Wn = 2 a scaling time, Wn = 3 a poten-
tial server initialization, i.e., a server completed the
initialization phase, and Wn = 4 a potential server
expiration.

• (Ap
n)n, p = 1, . . . , d, (Dn)n, (In)n, (En)n and (Rn)n,

where the random variables Ap
n, Dn, In, En and Rn,

for all n, are all i.i.d. and uniform over the interval
[0, 1]. The rvs Ap

n, Dn, In, En will be respectively
used to select a server that i) will process an arriving
job, ii) fires a departure, iii) fires an initialization and
iv) fires an expiration. The rv Rn is related to the
scaling rule and will decide whether a new server
will be activated. These processes are defined on
(ΩS ,AS ,PS);

• (XN (0))N , the process of the initial conditions,
where each random variable XN (0) takes values
in SN . This process is defined on (Ω0,A0,P0).

Using that Nϕ(Nt) and NϕN (t) are equal in distribution
and the well-known fact that thinnings of a Poisson pro-
cess produce independent Poisson processes, each process
{(XN (t))t∈[0,T ]}, N ≥ 1, can be constructed on the product
space, say (Ω,A,P).

Now, let tn be the time of the n-th jump of Nϕ(Nt). Let
also XN (t−) := lims↑t X

N (s), Y N
i (t) :=

∑i
j=0 X

N
j,2(t) for

all i ≥ 0, Y N
−1(t) = 0 and 1x

A = 1 if x ∈ A and 0 otherwise.
Note that in the main text, yi is defined as a tail sum while
here Y N

i is a cumulative sum. The coordinates of XN (t)
are then given by (24) for all i ≥ 1. In (24), the Hi terms
depend on the load balancing scheme used: within Power-
of-d (servers are selected with replacement)

Hi(t
−
n ) :=

d∏
p=1

1
Ap

n(1−XN
0,0(t

−
n )−XN

0,1(t
−
n ))

(Y N
i−1(t

−
n ),1]

−
d∏

p=1

1
Ap

n(1−XN
0,0(t

−
n )−XN

0,1(t
−
n ))

(Y N
i (t−n ),1]

∈ {0, 1} (25)

and within JBT-d

Hi(t
−
n ) := 1

A1
n(1−XN

0,0(t
−
n )−XN

0,1(t
−
n ))

(Y N
i−1(t

−
n ),Y N

i (t−n )]
I{Y N

d (t−n )=0}

+ 1
A1

nY
N
d (t−n )

(Y N
i−1(t

−
n ),Y N

i (t−n )]
I{i≤d}I{Y N

d (t−n )>0} ∈ {0, 1}. (26)

These expressions follow by uniformization of XN (t). For
instance, XN

0,0(t) has an upward jump of size 1/N at time
tn if the event occurring at that time is of type 4 (potential
server expiration) and an idle-on server is actually selected
at time t−n by the uniformized process. Analogously, XN

0,0(t)
decreases by 1/N at time tn if the event occurring at that
time is of type 2, provided that at time t−n the cold servers
pool is not empty and the scaling rule applies. Similar
interpretations hold along the other coordinates of XN (t).

8.1.2 Tightness of sample paths and Lipschitz property

We now prove tightness of sample paths. The lemmas
in this section are routine and equivalent to the lemmas
in [11,Section 5.2].

Let us introduce the following formulas for quick refer-
ence.

Lemma 1. Let T > 0. There exists C ⊆ Ω such that P(C) = 1
and for all ω ∈ C:

lim
N→∞

sup
t∈[0,T ]

| 1
N

Nϕ(Nt, ω)− ϕt| = 0 (27)

lim
N→∞

sup
t∈[0,T ]

∣∣∣ 1
N

Nϕ(Nt,ω)∑
n=1

I{Wn(ω)=k} − P(W1 = k)ϕ t
∣∣∣ = 0

(28)
for all k ∈ {0, . . . , 4}, and

lim
N→∞

1

N

N∑
n=1

d∏
p=1

1
cpA

p
n

(ap,bp]
=

d∏
p=1

bp − ap
cp

(29)

for all ap, bp, cp ∈ [0, 1], cp > 0, p = 1, . . . , d.

Proof. This lemma directly follows by applying the func-
tional strong law of large numbers for the Poisson pro-
cess (for (27)), the fact that thinnings of a Poisson process
produce independent Poisson processes (for (28)) and the
strong law of the large numbers (for (29)).

We will work on a fixed ω that belongs to C.
Let x0 ∈ [0, 1], sequences AN ↓ 0 and BN ↓ 0 be given.

Let also D[0, T ] denote the Skorokhod space endowed with
the uniform metric d(x, y) := supt∈[0,T ] |x(t) − y(t)|, for
all x, y ∈ D[0, T ]. For N ≥ 1, let also

EN (BN , AN , x0) :=
{
x ∈ D[0, T ] : |x(0)− x0| ≤ BN ,

|x(a)− x(b)| ≤ ϕ|a− b|+AN , ∀a, b ∈ [0, T ]
}

Ec(x0) :=
{
x ∈ D[0, T ] : x(0) = x0,

|x(a)− x(b)| ≤ ϕ|a− b|, ∀a, b ∈ [0, T ]
}
.

The next lemma says that the sample paths along any
coordinate is approximately Lipschitz continuous. The proof
is omitted because follows exactly the same standard argu-
ments used in Lemma 5.2 of [11], which basically use the
fact that the jumps of the Markov chain of interest are of the
order of 1/N and that the evolution of such Markov chain
on a given coordinate only depends on the evolution of such
Markov chain on a finite number of other coordinates.
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XN
0,0(t) =XN

0,0(0) +
1

N

Nϕ(Nt)∑
n=1

(
I{Wn=4}1

En

(0,XN
0,2(t

−
n )]

− I{Wn=2}I{XN
0,0(t

−
n )>0} 1

Rn

(0,g(XN (t−n ))]

)
(24a)

XN
0,1(t) =XN

0,1(0) +
1

N

Nϕ(Nt)∑
n=1

(
I{Wn=2}I{XN

0,0(t
−
n )>0} 1

Rn

(0,g(XN (t−n ))]
− I{Wn=3}1

In
(0,XN

0,1(t
−
n )]

)
(24b)

XN
0,2(t) =XN

0,2(0) +
1

N

Nϕ(Nt)∑
n=1

(
I{Wn=1}1

Dn

[Y N
0 (t−n ),Y N

1 (t−n )]
− I{Wn=0}H0(t

−
n ) + I{Wn=3}1

In
(0,XN

0,1(t
−
n )]

− I{Wn=4}1
En

(0,XN
0,2(t

−
n )]

)
(24c)

XN
i,2(t) =XN

i,2(0) +
1

N

Nϕ(Nt)∑
n=1

(
I{Wn=0}

(
Hi−1(t

−
n )−Hi(t

−
n )I{i<B}

)
+ I{Wn=1}

(
1Dn

(Y N
i (t−n ),Y N

i+1(t
−
n )]

− 1Dn

(Y N
i−1(t

−
n ),Y N

i (t−n )]

))
(24d)

Lemma 2. Fix T > 0, ω ∈ C, and some x0 ∈ S1. Suppose that
∥XN (ω, 0) − x0∥w ≤ B̃N , for some sequence B̃N ↓ 0. Then,
there exists sequences

{
B

(i,j)
N ↓ 0

}
i,j

and AN ↓ 0 such that

XN
i,j(ω, ·) ∈ EN (B

(i,j)
N , AN , x0), ∀(i, j), ∀N. (30)

The next proposition shows that any sequence of sample
paths XN (ω, t) contains a further subsequence that con-
verges in D∞[0, T ], endowed with the metric dZ+(x, y) :=
supt∈[0,T ] ∥x(t)−y(t)∥w, to a coordinate-wise Lipschitz con-
tinuous trajectory x(t), as long as ω ∈ C. The proof is routine
and omitted because it is a repetition of the argument used
in the proof of Proposition 11 in [28] (equivalently, see also
Proposition 5.3 in [11]).

Proposition 2. Fix T > 0, ω ∈ C, and some x0 ∈ S1. Suppose
that ∥XN (ω, 0) − x0∥w ≤ B̃N , for some sequence B̃N ↓ 0.
Then, every subsequence of {XN (ω, ·)}∞N=1 contains a further
subsequence {XNk(ω, ·)}∞k=1 such that

lim
k→∞

dZ+(XNk , x) = 0 (31)

where x(0) = x0 and xi,j ∈ Ec(x0), for all i and j.

Since Lipschitz continuity implies absolute continuity,
we have obtained that limit points of XN (t) exist and are
absolutely continuous. Since all sample paths of XN (t) take
values in S , these limit points must belong as well to S
because S is a closed set. Therefore, to conclude the proof of
Theorem 1 it remains to show that the derivative of xi,j(t) is
as in Definition 1 for all i and j, provided that t is a regular
time. This is done in the next subsection and will also prove
that a fluid solution started in x(0) ∈ S1 exists.

8.1.3 Limit trajectories are fluid solutions
Fix ω ∈ C and let {XNk(ω, t)}∞k=1 be a subsequence that
converges to x (by Proposition 2), i.e.

lim
k→∞

sup
t∈[0,T ]

∥XNk(ω, t)− x(t)∥w = 0. (32)

In the remainder, we fix such ω ∈ C such that (32) holds
and for simplicity we drop the dependency on ω. Since x
must be Lipschitz continuous (by Proposition 2), it is also
absolutely continuous and to conclude the proof of Theo-
rem 1, it remains to show that x(t) satisfies the conditions

on the derivatives given in Definition 1 whenever xi,j(t) is
differentiable, for all i, j.

We say that t is a point of differentiability (of x) if xi,j(t)
is differentiable for all i, j.

We will (implicitly) use several times the following el-
ementary lemma, which holds true because x is a non-
negative absolutely continuous function.

Lemma 3. If xi,j(t) = 0 and t is a point of differentiability of
xi,j , then ẋi,j(t) = 0.

Let ϵ > 0. By Lemma 2, there exists a sequence ANk
↓ 0

such that XNk
i,j (ω, u) ∈ [xi,j(t) − ϵϕ − ANk

, xi,j(t) + ϵϕ +
ANk

], for all u ∈ [t, t + ϵ]. Thus, for all k sufficiently large,
XNk

i,j (ω, u) ∈ [xi,j(t)−2ϵϕ, xi,j(t)+2ϵϕ], for all u ∈ [t, t+ϵ].
Thus, we have

|XNk
i,j (u)− xi,j(t)| ≤ 2ϕϵ, ∀u ∈ [t, t+ ϵ] (33)

for all k sufficiently large. In addition, using (33) and that g
is Lipschitz, we obtain

|g(XNk(u))− g(x(u))| ≤ L∥XNk(u))− x(u)∥w (34a)

≤ 2ϕϵL

√√√√∑
i,j

1

2i+j
= 2ϕϵL

√
2,

(34b)

for all u ∈ [t, t+ ϵ], where L is the Lipschitz constant of the
scaling rule g.

We will refer to the following lemma, which is a straight-
forward consequence of (33) and of the strong law of the
large numbers. In points where the fluid drift function is
continuous, it will provide an expression for terms related
to job departures, server initializations/departures and, in
some cases, dispatching decisions.

Lemma 4. Fix ω ∈ C and let (32) hold. Then,

lim
ϵ↓0

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1

I{Wn=1}1
Dn

(Y N
i−1(t

−
n ),Y N

i (t−n )]
= xi,2(t)

lim
ϵ↓0

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1

I{Wn=3}1
In

(0,XN
0,1(t

−
n )]

= βx0,1(t)

lim
ϵ↓0

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1

I{Wn=4}1
En

(0,XN
0,2(t

−
n )]

= γx0,2(t).
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In addition,

lim
ϵ↓0

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1

I{Wn=0}1
A1

nY N
d (t−n )

(Y N
i−1(t

−
n ),Y N

i (t−n )]
I{i≤d}

=
λI{i≤d}xi(t)∑d

j=0 xj,2(t)

provided that
∑d

j=0 xj,2 > 0, and

lim
ϵ↓0

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1

I{Wn=0}Hi(X
N (t−n )) = λhi(x)

provided that Power-of-d is used.

Proof. Given in Section 9.

The next proposition proves the desired condition on the
amount of fluid of cold and initializing servers.

Proposition 3. Fix ω ∈ C, let (32) hold and assume that t is a
point of differentiability. Then,

ẋ0,0 = γx0,2(t)− αI{x0,0(t)>0}g(x(t))

− γx0,2(t) I{x0,0(t)=0, γx0,2(t)≤αg(x(t))} (35)

ẋ0,1 = αg(x(t))I{x0,0(t)>0} − βx0,1(t)

+ γx0,2(t) I{x0,0(t)=0, γx0,2(t)≤αg(x(t))}. (36)

Proof. Assume that x0,0(t) > 0 and let ϵ ∈ (0,
x0,0(t)

2ϕ ). Given
that

tn ∈ (t, t+ ϵ] if n ∈ {Nϕ(Nkt) + 1, . . . ,Nϕ(Nk(t+ ϵ))},
(37)

(33) implies that for all k sufficiently large, |XNk
0,0 (t

−
n ) −

x0,0(t)| ≤ 2ϕϵ < x0,0(t) and thus XNk
0,0 (t

−
n ) > 0. We have

shown that

I{XNk
0,0 (t−n )>0} = 1, ∀n ∈ {Nϕ(Nkt)+1, . . . ,Nϕ(Nk(t+ϵ))}

(38)
for all k sufficiently large. Using (24), Lemma 4 and (38), we
have

ẋ0,0(t) = lim
ϵ↓0

1

ϵ
lim
k→∞

(
XNk

0,0 (t+ ϵ)−XNk
0,0 (t)

)
= lim

ϵ↓0
lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1

(
I{Wn=4}1

En

(0,X
Nk
0,2 (t−n )]

− I{Wn=2}I{XNk
0,0 (t−n )>0} 1

Rn

(0,g(XNk (t−n ))]

)
(39a)

= γx0,2(t)− lim
ϵ↓0

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1:

Wn=2

1Rn

(0,g(XNk (t−n ))]
.

(39b)

Since t is a point of differentiability, the double limit in the
RHS of (39b) exists. Then, (34) implies that given ϵ > 0
small enough, g(XNk(t−n )) ∈ [g(x(t)) − 2ϕϵL

√
2, g(x(t)) +

2ϕϵL
√
2] for all k sufficiently large. Combining these

bounds with Lemma 1 and letting ϵ ↓ 0 (as in the proof
of Lemma 4), we obtain

lim
ϵ↓0

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1:

Wn=2

1Rn

(0,g(XNk (t−n ))]
= αg(x(t)).

(40)

Similarly, on coordinates (0,1), we obtain

ẋ0,1(t) = lim
ϵ↓0

1

ϵ
lim
k→∞

(
XNk

0,1 (t+ ϵ)−XNk
0,1 (t)

)
= lim

ϵ↓0
lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1:

Wn=2

I{XNk
0,0 (t−n )>0} 1

Rn

(0,g(XNk (t−n ))]

− 1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1:

Wn=3

I{Wn=3}1
In

(0,X
Nk
0,1 (t−n )]

= αg(x)− βx0,1(t).

Now, let us assume that x0,0(t) = 0. First, we notice that

ẋ0,0(t) = γx0,2(t)− lim
ϵ↓0

lim
k→∞

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1:

Wn=2,XN
0,0(t

−
n )>0

1Rn

(0,g(XNk (t−n ))]

ϵNk

(41)

≥ γx0,2(t)− lim
ϵ↓0

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1:

Wn=2

1Rn

(0,g(XNk (t−n ))]

= γx0,2(t)− αg(x) (42)

where the first equality follows by (39a) and Lemma 4,
and the last equality follows by (40). Thus, if x0,0(t) = 0
and γx0,2(t) > αg(x), then by the previous inequality
ẋ0,0(t) > 0, which is not possible because if t is a point of
differentiability and x0,0(t) = 0 then necessarily ẋ0,0(t) = 0
as x0,0 is a non-negative absolutely continuous function.
Thus, in a point of differentiability t where x0,0(t) = 0, we
must have γx0,2(t) ≤ αg(x). and, necessarily, ẋ0,0(t) = 0.
In this case, (41) gives

γx0,2(t) = lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1

I{Wn=2}

× I{XN
0,0(t

−
n )>0} 1

Rn

(0,g(XN (t−n ))]
. (43)

This term is interpreted as the amount of idle-on servers that
become cold but instantly turn initializing. Substituting (43)
in the previous equalities within the conditions γx0,2(t) ≤
αg(x) and x0,0(t) = 0, we obtain (35) and (36).

On the coordinates associated to warm servers, it re-
mains to prove that

ẋ0,2(t) = x1,2(t)− λh0(x(t)) + βx0,1(t)− γx0,2(t) (44)

ẋi,2(t) = xi+1,2(t)I{i<B} − xi,2(t)

+ λ(hi−1(x(t))− hi(x(t))I{i<B}), i ≥ 1, (45)
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whenever t is a point of differentiability of x. Let

Hi(t) := lim
ϵ↓0

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1

I{Wn=0}Hi(t
−
n ) ≥ 0,

(46)

which is interpreted as the rate at which jobs are assigned to
warm servers with exactly i jobs. Using Lemma 4 and (24),
we have

ẋ0,2(t) = lim
ϵ↓0

1

ϵ
lim
k→∞

(
XNk

0,2 (t+ ϵ)−XNk
0,2 (t)

)
(47a)

= x1,2(t)−H0(t) + βx0,1(t)− γx0,2(t) (47b)

ẋi,2(t) = lim
ϵ↓0

1

ϵ
lim
k→∞

(
XNk

i,2 (t+ ϵ)−XNk
i,2 (t)

)
(47c)

= xi+1,2(t)I{i<B} − xi,2(t) +Hi−1(t)−Hi(t)I{i<B}.
(47d)

In the following, we need to show that Hi(t) = hi(x(t))
where the hi’s are as in Definition 1. We treat the cases of
Power-of-d and JBT-d separately.

Lemma 5. Assume that Power-of-d is applied. Then, (44)
and (45) hold true.

Proof. If x0,0 + x0,1 < 1, then the structure of the Hi’s in
(25) and Lemma 4 immediately give (44) and (45). Now,
let us assume that x0,0 + x0,1 = 1. On coordinate (0,2), in a
point of differentiability we necessarily have ẋ0,2 = 0. Using
Lemma 4 and (24), we obtain

ẋ0,2(t) = lim
ϵ↓0

1

ϵ
lim
k→∞

(
XNk

0,2 (t+ ϵ)−XNk
0,2 (t)

)
(48)

= βx0,1(t)−H0(t) = 0. (49)

Similarly, on coordinate (1, 2), Lemma 4 and (48) imply that
in a point of differentiability we have ẋ1,2(t) = H0(t) −
H1(t) = 0 and thus H1(t) = H0(t) = βx0,1(t). Then, on
coordinate (i, 2) by induction we obtain Hi(t) = Hi−1(t) =
βx0,1(t). On the other hand, we also have

ẋ0,2(t) = βx0,1(t)− lim
ϵ↓0

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1:

Wn=0

H0(t
−
n )

≥ βx0,1(t)− λ

where in the last inequality we have just used that H0(t
−
n ) ≤

1. Thus, if βx0,1(t) > λ, we get a contradiction and t can not
be a point of differentiability. Substituting Hi(t) = βx0,1(t)
in (47) when βx0,1(t) ≤ λ, we obtain (44)-(45).

The case of JBT-d is more delicate than Power-of-d
because of the discontinuous structure of the Hi’s when∑d

j=0 X
N
j,2(t

−
n ) = 0, see (26). In addition to a more involved

argument than the one presented in the proof of Lemma 5,
which we will develop in Lemma 7 below, we need the
following lemma, which we will use to determine an ex-
pression for Hi when

∑d
j=0 xj,2(t) = 0.

Lemma 6. Assume that x(t) satisfies x0,0(t) + x0,1(t) < 1.
Then, (50) holds true for all i.

Proof. Given in Section 9.

The following lemma proves the desired property in the
case of JBT-d.

Lemma 7. Assume that JBT-d is applied. Then, (44) and (45)
hold true.

Proof. We analyze Hi and the resulting expression will be
substituted in (47). This will give (44) and (45).

First, if x0,0 + x0,1 = 1, the argument in the proof of
Lemma 5 gives i) Hi(t) = βx0,1(t) when βx0,1(t) ≤ λ
and ii) t not a point of differentiability when βx0,1(t) > λ.
This gives (44) and (45) (when x0,0 + x0,1 = 1) and in the
remainder we assume that x0,0 + x0,1 < 1.

Let us now assume that
∑d

j=0 xj,2(t) > 0 and let

ϵ ∈ (0,
∑d

j=0 xj,2(t)

2ϕ(d+1) ). Since tn ∈ (t, t + ϵ] whenever
n ∈ {Nϕ(Nkt) + 1, . . . ,Nϕ(Nk(t + ϵ))}, (33) and the tri-
angular inequality imply that for all k sufficiently large
|
∑d

j=0 X
Nk
j,2 (tn)− xj,2(t)| ≤ 2(d+ 1)ϕϵ <

∑d
j=0 xj,2(t) and

thus
∑d

j=0 X
Nk
j,2 (tn) > 0. We have shown that

I
{
∑d

j=0 X
Nk
j,2 (t−n )>0}

= 1,∀n ∈ {Nϕ(Nkt) + 1, . . . ,Nϕ(Nk(t+ ϵ))}
(51)

for all k sufficiently large, given ϵ > 0 sufficiently small.
Substituting (51) in (26) and applying Lemma 4, we ob-
tain (44) and (45) (under the conditions x0,0 + x0,1 < 1 and∑d

j=0 xj,2(t) > 0).
It remains to understand the terms Hi in the case where∑d

j=0 xj,2(t) = 0, which we assume in the remainder of the
proof.

Suppose that t is a point of differentiability. Then, by
applying Lemma 4 to XN

0,2 (see (24)), we obtain

ẋ0,2(t) = lim
ϵ↓0

1

ϵ
lim
k→∞

XNk
0,2 (t+ ϵ)−XNk

0,2 (t)

= x1,2(t)I{d=0} + βx0,1(t)−H0(t), (52)

and given that necessarily ẋ0,2(t) = 0, we obtain

H0(t) = x1,2(t)I{d=0} + βx0,1(t). (53)

Similarly, on coordinate (i, 2), with 0 < i ≤ d, we obtain

ẋi,2(t) = xi+1,2(t)I{i=d} +Hi−1(t)−Hi(t) = 0. (54)

By induction, this gives Hi(t) = H0(t) = βx0,1(t) for all
i < d and Hd(t) = βx0,1(t) + xd+1,2(t), that is,

Hi(t) = βx0,1(t) + xd+1,2(t)I{i=d}, i ≤ d. (55)

We have proven (55) under the hypothesis that t was a
point of differentiability but now we show that x(t) is not
differentiable if λ < xd+1,2 + (d + 1)βx0,1. Towards this
purpose, first we notice that

d∑
i=0

Hi(t) = lim
ϵ↓0

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1

I{Wn=0}

d∑
i=0

Hi(t
−
n )

= lim
ϵ↓0

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1

I{Wn=0}I{∑d
j=0 XN

j,2(t
−
n )>0}

≤ lim
ϵ↓0

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1

I{Wn=0} = λ.

Here, the first equality follows because the limits Hi(t) exist
and the second inequality follows by the fact that (recall the
definition of Hi in (46))
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lim
ϵ↓0

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1

I{Wn=0}1
A1

n(1−X
Nk
0,0 (t−n )−X

Nk
0,1 (t−n ))

(Y
Nk
i−1(t

−
n ),Y

Nk
i (t−n )]

I{∑d
j=0 X

Nk
j,2 (t−n )>0}

=
xi,2(t)

1− x0,0(t)− x0,1(t)
lim
ϵ↓0

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1

I{Wn=0}I{∑d
j=0 X

Nk
j,2 (t−n )>0}. (50)

d∑
i=0

Hi(t
−
n ) = I{∑d

j=0 XN
j,2(t

−
n )>0}

+ 1
A1

n(1−XN
0,0(t

−
n )−XN

0,1(t
−
n ))

(0,Y N
d (t−n )]

I{∑d
j=0 XN

j,2(t
−
n )=0} (56)

and by Lemma 4 because
∑d

j=0 xj,2(t) = 0. Then, using (55),
we necessarily have

d∑
i=0

Hi(t) = xd+1,2(t) + (d+ 1)βx0,1(t) ≤ λ (57)

and, given that necessarily Hi ≥ 0, we conclude that t can
not be a point of differentiability whenever (57) does not
hold true.

Now, we investigate Hi when i > d and assuming that
(57) holds as otherwise x(t) would not be differentiable. We
observe that

Hi(t) =
λxi,2(t)

1− x0,0(t)− x0,1(t)

− lim
ϵ↓0

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1:

Wn=0

1
A1

n(1−XN
0,0(t

−
n )−XN

0,1(t
−
n ))

(Y N
i−1(t

−
n ),Y N

i (t−n )]

× I{∑d
j=0 XN

j,2(t
−
n )>0}

=
λxi,2(t)

1− x0,0(t)− x0,1(t)
− xi,2(t)

1− x0,0(t)− x0,1(t)

× lim
ϵ↓0

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1:

Wn=0

I{∑d
j=0 XN

j,2(t
−
n )>0}

=
λxi,2(t)

1− x0,0(t)− x0,1(t)
− xi,2(t)

1− x0,0(t)− x0,1(t)

d∑
i=0

Hi(t)

= xi,2(t)
λ− xd+1,2(t)− (d+ 1)βx0,1(t)

1− x0,0(t)− x0,1(t)
.

In the first equality, we have used (26) and applied Lemma 4
to the definition of Hi in (46); In the second, we have applied
Lemma 6. In the third, we have used (56) and that

0 ≤ lim
ϵ↓0

lim
k→∞

1

ϵNk
1
A1

n(1−XN
0,0(t

−
n )−XN

0,1(t
−
n ))

(0,Y N
d (t−n )]

I{∑d
j=0 XN

j,2(t
−
n )=0}

≤ lim
ϵ↓0

lim
k→∞

1

ϵNk
1
A1

n(1−XN
0,0(t

−
n )−XN

0,1(t
−
n ))

(0,Y N
d (t−n )]

= 0

with the last inequality following by Lemma 4 as∑d
j=0 xj,2(t) = 0; in the fourth, we have substituted (55).

This concludes the proof.

Thus, we have shown that x is a fluid solution.

8.2 Proof of Theorem 2: fixed points
We now prove Theorem 2. By definition, x ∈ S1 is a fixed
point if and only if

0 = γx0,2 − αgI{x0,0>0} − γx0,2 I{x0,0=0, γx0,2≤αg} (58a)

0 = αgI{x0,0>0} − βx0,1 + γx0,2 I{x0,0=0, γx0,2≤αg} (58b)

0 = x1,2 − h0(x) + βx0,1 − γx0,2 (58c)
0 = xi+1,2 − xi,2 + hi−1(x)− hi(x), i ≥ 1. (58d)

Together with ∥x∥ = 1, we now show that these conditions
coincide with (7)-(9).

If i) x0,0 = 0 and γx0,2 > αg, or if ii) x0,0 + x0,1 = 1,
then we easily observe that x cannot be a fixed point.
Therefore, in the following we exclude these conditions.
Now, summing (58a) and (58b), we obtain

βx0,1 = γx0,2 (59)

which gives (7b). Then, (7c) and (7d) directly follow from
(58a) and (58b).

Substituting (59) in (58c), the conditions (58c)-(58d) be-
come

0 = x1,2 − h0(x) (60a)
0 = xi+1,2 − xi,2 + hi−1(x)− hi(x), i ≥ 1, (60b)

and taking summations

xi,2 = hi−1(x), i ≥ 1. (61)

The equations in (60) are interpreted as the mean-field fixed-
point equations associated to Power-of-d and JBT-d when
the number of servers is Ny0 instead of N ; we recall that
yi =

∑
i≥0 xi,2 is the proportion of warm servers with at

least i jobs. Within Power-of-d, one can directly check that
for any given x0,2, (61) holds if and only if xi,2 is given by
(8) and that, after a substitution, this gives

∑
i≥1 xi,2 = λ

so that (7a) must hold true. The following lemma, given in
Section 9, handles the more delicate case of JBT-d.

Lemma 8. Within JBT-d, for any given x0,2, (60) holds if and
only if xi,2 satisfies (9a)-(9e). In addition, (7a) holds true.

Therefore, the conditions in (58) are equivalent to (7)-(9).
This proves the first statement of Theorem 2.

Now, under Assumption 3, xi,2 is a function of x0,2,
for all i ≥ 1, and we write xi,2 as a shorthand notation
for xi,2(x0,2). Using (59), we can then focus only on the
following conditions:

x0,0 +

(
γ

β
+ 1

)
x0,2 = 1− λ (62a)

γx0,2 ≤ αg, if x0,0 = 0 (62b)
γx0,2 = αg, if x0,0 > 0. (62c)
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Here, we notice that (x◦
0,0, x

◦
0,2) =

(
0, β

β+γ (1− λ)
)

uniquely
solves (62) if (

1

β
+

1

γ

)
αg(x◦) ≥ 1− λ (63)

where x◦ is uniquely determined by (x◦
0,0, x

◦
0,2). So, let

us assume that (63) does not hold true. Then, if a point
(x0,0, x0,2) ∈ [0, 1)2 that solves (62) exists, then necessarily
x0,0 > 0 as otherwise x0,2 = x◦

0,2 (by (62a)) and (63) would
hold, contradicting the hypothesis. This proves the second
part of Theorem 2.

8.3 Proof of Theorem 3: fluid optimality

The non-linear structure taken by the hi’s when x0,2 = 0,
see (6), complicates the analysis and the identification of a
Lyapunov function. For this reason, our strategy is based on
a divide-and-conquer approach. This will actually provide
insights about the dynamics followed by fluid solutions. For
simplicity, we provide a proof assuming that B < ∞, which
is essentially equivalent to assume that xi,2(0) = 0 for all i
large enough; this is not critical as x⋆

i,2 = 0 for all i ≥ 2.
Let Q(x) :=

∑B
i=1 ixi,2, i.e., the overall number of jobs in

the system in state x. The following lemma gives a property
on the time derivative of Q(x(t)).

Lemma 9. Let x(t) be a fluid solution induced by JIQ such that
x(0) ∈ S1 and B < ∞. If t is a point of differentiability, then

Q̇(x(t)) = λ− y1(t). (64)

Proof. First, we notice that

Q̇(x(t)) =
∑
i≥1

iẋi,2(t) = −y1 +
B−1∑
i=0

hi(x(t)) (65)

where the second equality follows by applying Definition 1.
Now, we treat the cases x0,2(t) > 0 and x0,2(t) = 0
separately. Suppose that x0,2(t) > 0. Then, hi(x(t)) =
λI{i=0} (by (6)) and substituting in (65) we immediately

get Q̇(x(t)) = λ − y1(t) as desired. Thus, suppose in the
remainder that x0,2(t) = 0. Now, assume that y0(t) > 0.
Then, using again (6),

Q̇(x(t)) =− y1 + (βx0,1 + x1,2) I{x1,2+βx0,1≤λ}

+
y1
y0

(λ− x1,2 − βx0,1)
+

=− y1 + (βx0,1 + x1,2) I{x1,2+βx0,1≤λ}

+ (λ− x1,2 − βx0,1)
+

and the statement follows immediately if x1,2(t) +
βx0,1(t) ≤ λ. On the other hand, if x1,2(t) + βx0,1(t) > λ,
then, since x0,2(t) = 0 and t is supposed to be a point
of differentiability, we get (by (4c)) the contradiction that
0 = ẋ0,2(t) = x1,2(t) − h0(x(t)) + βx0,1(t) − γx0,2(t) =
x1,2(t) + βx0,1(t) > λ; the first equality holds because
x0,2(t) is a non-negative absolutely continuous function.
This shows that t cannot be a point of differentiability.
Finally, if y0(t) = 0, then the differentiability at t and
the normalizing condition ∥x∥ = 1 give 0 = ẏ0(t) =
−ẋ0,0(t) − ẋ0.1(t) = βx0,1 and thus x0,0(t) = 1. Assump-
tion 2 requires that g(x) > 0 when x0,0 = 1, so (4a)

implies that ẋ0,0 < 0. This contradicts that t is a point of
differentiability because x0,0(t) is uniformly bounded by
one and absolutely continuous.

We now prove Theorem 3 by showing that ∥x(t)−x⋆∥ →
0 in each of the following complete and mutually exclusive
cases. For each case, we show that x(t) follows a unique
trajectory that stays in S1.

Case i). Suppose that x0,2(t) = 0 for all t ≥ 0. This rules out
the possibility that x0,0(t) stays on zero for all t large enough
because (4a) and (4b), together with the normalizing condi-
tion ∥x∥ = 1, would imply that y1(t) → 1 as t → ∞, and
in this case Lemma 9 yields the contradiction that Q(x(t)) is
eventually negative. Thus, without loss of generality, let us
assume that x0,0(0) > 0. Then, using (4), x(t) satisfies

ẋ0,0 = −αg(x) (66a)
ẋ0,1 = αg(x)− βx0,1 (66b)
ẋ0,2 = 0, x1,2 + βx0,1 ≤ λ. (66c)

Note that limt→∞ x0,0(t) exists, say x0,0(∞), because
ẋ0,0(t) ≤ 0 and x0,0(t) is uniformly bounded. Thus, as t →
∞, ẋ0,0(t) = −αg(x(t)) → 0. Given the assumptions on g,
(λ−x0,1(t)−βx1,2(t))

+ → 0 and since x1,2(t)+βx0,1(t) ≤ λ
for all t, by (66c), we obtain that x1,2(t) + βx0,1(t) → λ.
Then, (66b) and g(x(t)) → 0 imply that x0,1(t) → 0 and
thus x1,2(t) → λ. In turn, (4d) gives xi,2(t) → 0 for all
i ≥ 2, and the normalizing condition ∥x∥ = 1 implies that
necessarily x0,0(t) → 1− λ. Thus, ∥x(t)− x⋆∥ → 0.

Case ii). Suppose that x0,2(t) > 0 for all t. Then, x(t) satisfies
the following conditions (using Definition 1)

ẋ0,0 = γx0,2 − αgI{x0,0>0} − γx0,2 I{x0,0=0, γx0,2≤αg}
(67a)

ẋ0,1 = αgI{x0,0>0} − βx0,1 + γx0,2 I{x0,0=0, γx0,2≤αg}
(67b)

ẋ0,2 = x1,2 − λ+ βx0,1 − γx0,2 (67c)
ẋ1,2 = x2,2 − x1,2 + λ (67d)
ẋi,2 = xi+1,2I{i<B} − xi,2, i ≥ 2. (67e)

The ODE system (67d)-(67e) is an autonomous linear
ODE system with constant coefficients and, developing the
matrix-exponential general solution of such ODE system,
for all i ≥ 1 we obtain

xi,2(t) = λI{i=1} + e−t
B∑

k=i

tk−i

(k − i)!
(xk,2(0)− λI{k=1})

(68)

and thus xi,2(t) → λI{i=1} as t → ∞. In turn, limt→∞(λ −
x1,2(t)− βx0,1(t))

+ = limt→∞(−βx0,1(t))
+ = 0 and there-

fore g(x(t)) → 0. Since g(x(t)) → 0, x0,1(t) → 0 necessarily
by (67b), and using this in (67c) we obtain x0,2(t) → 0. Since
∥x∥ = 1, necessarily x0,0(t) → 1 − λ and we have shown
that ∥x(t)− x⋆∥ → 0.

Case iii). If the conditions in cases i) and ii) are not met, then
there exists t0, t1, with t0 ≤ t1 < ∞, and δ > 0 such that

1) x0,2(t) = 0 for all t ∈ [t0, t1]
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2) x0,2(t) > 0 and ẋ0,2(t) < 0 for all t ∈ [t0 − δ, t0),
and

3) x0,2(t) > 0 and ẋ0,2(t) > 0 for all t ∈ (t1, t1 + δ].

On [t0−δ, t0), h0(x(t)) = λ (by (6)) and using (4c), we obtain
ẋ0,2(t) = x1,2(t)− λ+ βx0,1(t)− γx0,2(t) < 0 and thus by
continuity

0 ≥ lim
t↑t0

x1,2(t)− λ+ βx0,1(t)− γx0,2(t)

=x1,2(t0)− λ+ βx0,1(t0). (69)

Since x0,2(t0) = 0 on [t0, t1], (4c) implies that (69) holds as
well on [t0, t1]. On (t1, t1 + δ], h0(x(t)) = λ (by (6)) and
using again (4c), we obtain

0 < ẋ0,2(t) = x1,2(t)− h0(x(t)) + βx0,1(t)− γx0,2(t)

< x1,2(t)− λ+ βx0,1(t)

and therefore g(x(t)) = 0. By continuity of fluid solutions,
x1,2(t1) + βx0,1(t1) = λ. In addition, on (t1, t1 + δ], x(t) is
uniquely defined by

ẋ0,0 = γx0,2 (70a)
ẋ0,1 = −βx0,1 (70b)
ẋ0,2 = x1,2 − λ+ βx0,1 − γx0,2 (70c)
ẋ1,2 = x2,2 − x1,2 + λ (70d)
ẋi,2 = xi+1,2I{i<B} − xi,2, i ≥ 2, (70e)

and we also know that ẋ0,2(t) > 0. As long as a) g(x(t)) =
0 and b) x0,2(t) > 0, on [t1,∞) the fluid solution under
investigation x(t) is indeed uniquely given by the trajectory
induced by (70) on [t1,∞). In the remainder, we show that
both a) and b) hold true for all t. This will conclude the proof
because x⋆ is the unique fixed point of (70) and because
(70) is a linear ODE system with constant coefficients. For
simplicity of notation, let us shift time and assume that t1 =
0. Now, since x0,1(t) = x0,1(0)e

−βt (by (70b)) and since
x1,2(t) takes the form given in (68), substituting in (70c) we
obtain

ẋ0,2(t) = βx0,1(0)e
−βt − γx0,2(t) + e−t(x1,2(0)− λ)

+ e−t
B∑

k=2

tk−1

(k − 1)!
xk,2(0)

= βx0,1(0)e
−βt − γx0,2(t)− βx0,1(0)e

−t

+ e−t
B∑

k=2

tk−1

(k − 1)!
xk,2(0)

≥ βx0,1(0)(e
−βt − e−t)− γx0,2(t).

Thus, x0,2(t) ≥ z(t) where z(t) is uniquely defined by
ż(t) = βx0,1(0)(e

−βt − e−t) − γz(t) with z(0) = x0,2(0).
The solution of this differential equation is

z(t) = βx0,1(0)e
−γt

(
1− e−t(β−γ)

β − γ
− 1− e−t(1−γ)

1− γ

)
and now we notice that z(t) > 0 if β > 1, for all t. This
proves property b). To prove property a), we use again (68)
and x1,2(t1) + βx0,1(t1) = λ to obtain

x1,2(t) + βx0,1(t)− λ = βx0,1(0)
(
e−βt − e−t

)

+ e−t
B∑

k=2

tk−1

(k − 1)!
xk,2(0) > 0, (71)

where the last inequality follows because β < 1. Given (18),
(71) implies g(x(t)) = 0.

9 PROOFS OF TECHNICAL LEMMAS

9.1 Proof of Lemma 4
We give a proof for the first limit because the argument used
for the others is identical.

Since tn ∈ (t, t + ϵ] whenever n ∈ {Nϕ(Nkt) +
1, . . . ,Nϕ(Nk(t+ ϵ))}, (33) implies that for all k sufficiently
large |Y Nk

i (tn) −
∑i

j=0 xj,2(t)| ≤ Cϵ, for some constant C ,
i.e.,

1Dn

(
∑i

j=0 xj,2(t)+Cϵ,
∑i

j=0 xj,2(t)−Cϵ]
≤ 1Dn

(Y N
i−1(t

−
n ),Y N

i (t−n )]

≤ 1Dn

(
∑i

j=0 xj,2(t)−Cϵ,
∑i

j=0 xj,2(t)+Cϵ]
(72)

Let Γ denote the LHS of the first equation in Lemma 4.
Applying Lemma 1, we obtain

Γ ≤ lim
ϵ↓0

lim
k→∞

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1:

Wn=1

1Dn

(
∑i

j=0 xj,2(t)−Cϵ,
∑i

j=0 xj,2(t)+Cϵ]

ϵNk

=xi,2(t)

and using (72) in the other direction we obtain Γ = xi,2(t)
as desired.

9.2 Proof of Lemma 6
We recall that we have analyzed x along a fixed ω ∈ C,
where P(C) = 1. We now explicit the dependence on ω and
treat quantities x(t) and XN (t) as random variables. Let

ZN
n := 1

A1
n(1−XN

0,0(t
−
n )−X

Nk
0,1 (t−n ))

(Y N
i−1(t

−
n ),Y N

i (t−n )]
I{∑d

j=0 XN
j,2(t

−
n )>0}. (73)

For all n, the random variable ZN
n is Fn-measurable where

Fn := {XN (tN,λ−
n ), A1

n,Wn}, and

E[ZN
n |Fn \A1

n] =
XN

i,2(t
−
n )

1−XN
0,0(t

−
n )−XN

0,1(t
−
n )

I{∑d
j=0 XN

j,2(t
−
n )>0}

(74)

where the set Fn \Wn denotes the set Fn with A1
n removed.

Now, let ∆N
n := ZN

n − E[ZN
n |Fn \ Wn]. Then, E[∆N

n |Fn \
Wn] = 0 and |∆N

n | ≤ 2, and applying the Azuma–Hoeffding
inequality, we get

P

(
1

N

∣∣∣∣∣
N∑

n=1

∆N
n

∣∣∣∣∣ > δ

)
≤ 2 exp

(
− (Nδ)2

8N

)
(75)

for any δ > 0. Since
∑

N exp
(
−Nδ2/8

)
< ∞, an application

of the Borel–Cantelli lemma shows that 1
N

∑N
n=1 ∆

N
n → 0

almost surely. In particular,

lim
N→∞

1

ϵN

Nϕ(N(t+ϵ))∑
n=Nϕ(Nt)+1:

Wn=0

1
A1

n(1−XN
0,0(t

−
n )−XN

0,1(t
−
n ))

(Y N
i−1(t

−
n ),Y N

i (t−n )]

×
(
I{∑d

j=0 XN
j,2(t

−
n )>0} − E[ZN

n |Fn \Wn]
)
= 0 (76)
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almost surely. We now come back to work on a given trajec-
tory ω. In view of the previous equality, we may redefine C
in Lemma 1 to be a subset of C′ where P(C′ = 1) and (76)
holds for all ω ∈ C′. Therefore, we fix ω ∈ C and use (33)
and (74) to obtain that

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1:

Wn=0

E[ZNk
n |Fn \Wn]I{∑d

j=0 X
Nk
j,2 (t−n )>0}

≤ lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1:

Wn=0

xi,2(t) + δ

1− x0,0(t)− x0,1(t)− δ

× I{∑d
j=0 X

Nk
j,2 (t−n )>0}

for any δ > 0 sufficiently small. Replacing δ by −δ in the
last fraction term, the previous inequality can be reversed
and letting δ ↓ 0, we obtain

lim
k→∞

1

ϵNk

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1:

Wn=0

E[ZNk
n |Fn \Wn]I{∑d

j=0 X
Nk
j,2 (t−n )>0}

=
xi,2(t)

1− x0,0(t)− x0,1(t)
lim

k→∞

Nϕ(Nk(t+ϵ))∑
n=Nϕ(Nkt)+1:

Wn=0

I
{
∑d

j=0 X
Nk
j,2 (t−n )>0}

ϵNk

(77)

Finally, (77) and (76) give (50).

9.3 Proof of Lemma 8

Let wd :=
∑d

j=0 xj,2. For now, let us assume that x0,2 > 0.
In this case, wd > 0 and (60) boils down to (by (6))

x1,2 = λ
wd

x0,2 (78a)

xi+1,2 = xi,2 +
λ
wd

(xi,2 − xi−1,2), i = 1, . . . , d (78b)

xd+2,2 = xd+1,2 − λ
wd

xd,2 (78c)

xi+1,2 = xi,2, i ≥ d+ 2. (78d)

Since ∥x∥ = 1, (78) holds if and only if xi,2 = 0 for all
i ≥ d+ 2 and

xi,2 =
(

λ
wd

)i
x0,2, i = 0, . . . , d+ 1. (79)

If d = 0, then wd = x0,2 and x1,2 = λ, and the lemma is
proven. Thus, let d ≥ 1. Summing (79) over i = 0, . . . , d, we
obtain

wd =
1−

(
λ
wd

)d+1

1− λ
wd

x0,2 (80)

and letting zd :=
∑d

j=1 xj,2 we obtain (10) as desired and it
remains to prove (7a). Using (79), we notice that (10) holds
if and only if

zd + x0,2 =
x0,2 − xd+1,2

1− λ
zd+x0,2

(81)

and rearranging terms we obtain zd + x0,2 − λ = x0,2 −
xd+1,2. Then, (7a) follows by using the normalizing condi-
tion ∥x∥ = 1 as xi = 0 for all i ≥ d+ 2.

It remains to consider the case where x0,2 = 0. Here,
x0,2 = 0 if and only if x0,1 = 0, by (59), which implies

gI{x0,0>0} = 0, (82)

by (58b). In addition, if wd > 0, then (60) boils down again
to (78) and x0,2 = 0 would imply that xi,2 = 0 for all i. This
is not possible in view of ∥x∥ = 1 and, therefore, we must
have wd = 0. Since necessarily x0,0 < 1, (6) simplifies to

hi(x) =

{
xd+1,2I{i=d}I{xd+1,2≤λ} if i ≤ d,
xi,2

1−x0,0
(λ− xd+1,2)

+ if i > d (83)

and substituting in (61) we get

xi,2 = 0, i ≤ d (84a)
xd+1,2 = xd+1,2I{xd+1,2≤λ} (84b)

xi,2 =
xi−1,2

1− x0,0
(λ− xd+1,2)

+, i ≥ d+ 2. (84c)

This gives (9a). Now, if xd+1,2 > λ, then (84b) is violated,
and if xd+1,2 = 0, then (84c) and ∥x∥ = 1 give the
contradiction that 1 = λ. So, necessarily xd+1,2 ∈ (0, λ],
i.e., (9c). Here, we notice that xd+1,2 is not tied to a specific
value. Then, summing (84c) we obtain∑

i≥d+2

xi,2 =
∑

i≥d+2

xi−1,2

1− x0,0
(λ− xd+1,2), (85)

which, using ∥x∥ = 1 and (84), holds if and only if

1− xd+1,2 − x0,0 =
λ− xd+1,2

1− x0,0
(1− x0,0) (86)

i.e., if and only if x0,0 = 1− λ; note that x0,0 = 0 is not pos-
sible as otherwise (84c) and ∥x∥ = 1 give the contradiction
that 1 < λ. Since x0,0 > 0, necessarily g = 0 by (82), which
gives (9d). Using xd+1,2 ≤ λ and x0,0 = 1 − λ in (84c),
we obtain xd+2,2 = xd+1,2 (1− xd+1,2/λ) and applying
inductively (84c), we obtain (9b). This concludes the proof.

10 PROOF OF PROPOSITION 1
The fact that x⋆ is a fixed point is trivial. Suppose that there
exists δ > 0 such that x0,2(t) > 0 on (0, δ]. Then, there exists
δ′ > 0 such that ẋ0,2(t) > 0 on (0, δ′]. Using (4c), which
gives ẋ0,2 = x1,2 − λ+ βx0,1 − γx0,2, we obtain

x1,2(t) + βx0,1(t) > λ+ γx0,2(t), ∀t ∈ (0, δ′] (87)

and thus x1,2(0) + βx0,1(0) = limt↓0 x1,2(t) + βx0,1(t) ≥ λ,
by continuity of the fluid model. This contradicts the last
condition in (15) and thus x0,2(t) = 0 on a right neighbor-
hood of zero, say [0, δ]. Since g(x) = λ − 1 + x0,0, on [0, δ]
we obtain (using (4))

ẋ0,0 = −α(λ− 1 + x0,0) (88a)
ẋ0,1 = α(λ− 1 + x0,0)− βx0,1 (88b)
ẋ0,2 = 0 (88c)
ẋi,2 = xi+1,2 − xi,2 + hi−1(x)− hi(x), i ≥ 1 (88d)

where

hi(x) =

{
βx0,1 + x1,2 if i = 0,
xi,2

y1
(λ− x1,2 − βx0,1)

+ if i > 0. (89)



21

We observe that (88a)-(88b) form an autonomous linear ODE
system. By continuity of x(t), (15) holds as well on a right
neighborhood of zero. Now, we actually show that (15)
holds on [0,∞), i.e., δ = +∞. Towards this purpose, let
us analyze the system (88a)-(88b) in isolation. After some
algebra, we obtain

x0,0(t) = 1− λ+ (x0,0 − 1 + λ)e−αt (90a)

x0,1(t) =
α(x0,0 − 1 + λ)

β − α
(e−αt − e−βt) + x0,1(0)e

−βt.

(90b)

Thus,

i) x0,0(t) monotonically decreases to zero as t → ∞,
and

ii) y0(t) = y1(t) < 1 with both y0(t) and y1(t) mono-
tonically increasing to λ because ẋ0,0+ ẋ0,1 is always
non-increasing and x0,2 stays on zero.

To prove that (15) holds on [0,∞), it remains to show
that x1,2(t) + βx0,1(t) < λ for all t ≥ 0. This property
is true because x1,2 + βx0,1 ≤ y1 + x0,1 = 1 − x0,0 =
λ − (x0,0(0) − 1 + λ)e−αt < λ. Thus, x(t) satisfies (88)
on [0,∞). In addition, since x0,0(0) + x0,1(0) < 1 and
ẋ0,0(t) + ẋ0,1(t) = −βx0,1(t) ≤ 0 for all t, the drift function
of (88) is Lipschitz and therefore it induces a unique flow
[11,page 56]. Since x0,0(t) ↓ 1− λ as t → ∞, for all t ≥ 0

Q̇(x(t)) = λ− y1(t) = x0,0(t) + x0,1(t) + λ− 1

≥ x0,0(t) + λ− 1 > 0, (91)

where the first equality follows by Lemma 9. In particular,
limt→∞ Q(x(t)) exists and must be greater than λ because
λ < Q(x(0)) < ∞. Combining (90) and (91), we obtain

Q̇(x(t)) = (x0,0(0)− 1 + λ)e−αt + x0,1(0)e
−βt

+
α(x0,0(0)− 1 + λ)

β − α
(e−αt − e−βt)

=
β(x0,0(0)− 1 + λ)

β − α︸ ︷︷ ︸
:=C1

e−αt

+

(
x0,1(0)−

α(x0,0(0)− 1 + λ)

β − α

)
︸ ︷︷ ︸

:=C2

e−βt.

Integrating,

Q(x(t)) =Q(x(0)) +
C1

α
(1− e−αt) +

C2

β
(1− e−βt)

−−−→
t→∞

Q(x(0)) +
α+ β

αβ
(x0,0(0)− 1 + λ) +

1

β
x0,1(0)

which proves (17). Finally, suppose that limt→∞ x1,2(t)
exists, say x1,2(∞). Then, necessarily x1,2(∞) < λ be-
cause y1(t) → λ and limt→∞ Q(x(t)) > λ excludes that
x1,2(t) → λ. Then, using (88d) when i = 1 and that x1,2(t)
is Lipschitz continuous,

0 = lim
t→∞

ẋ1,2(t)

= lim
t→∞

x2,2 + βx0,1 −
x1,2

1− x0,0 − x0,1
(λ− x1,2 − βx0,1)

= lim
t→∞

(
x2,2 −

x1,2

λ
(λ− x1,2)

)

= −x1,2(∞)

(
1− x1,2(∞)

λ

)
+ lim

t→∞
x2,2,

which shows that limt→∞ x2,2 must exists as well and be
equal to x1,2(∞)

(
1− x1,2(∞)

λ

)
. By induction, limt→∞ xi,2

exists and is equal to xi,2(∞)
(
1− x1,2(∞)

λ

)i−1
. Thus,

x(∞) ∈ Ssubopt.

11 ADDITIONAL MATERIAL SUPPORTING NUMERI-
CAL SIMULATIONS

Table 1 reports the numerical values of RWait and REnergy

plotted in Figure 2.

λ = 0.35
d = 1 d = 5 d = 10

N = 100 0.01786, 1.00296 0.00140, 1.03773 0.001046, 1.00762
N = 500 0.00674, 1.00271 0.00031, 1.01113 0.000013, 1.00956
N = 1000 0.00400, 1.00387 0.00022, 1.00492 0.000007, 1.00554

λ = 0.7
d = 1 d = 5 d = 10

N = 100 0.01414, 1.00091 0.01086, 1.00127 0.010230, 1.00284
N = 500 0.00250, 1.00200 0.00024, 1.00081 0.000158, 1.00153
N = 1000 0.00162, 1.00234 0.00011, 1.00355 0.000025, 1.00285

Table 1
Numerical values of (RWait,REnergy) in Figure 2.
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