Magnetogenesis with gravitational waves and primordial black hole dark matter - Archive ouverte HAL Access content directly
Journal Articles Physical Review D Year : 2024

Magnetogenesis with gravitational waves and primordial black hole dark matter

Abstract

Strongly supercooled first order phase transitions (FOPTs) can produce primordial black hole (PBH) dark matter (DM) along with observable gravitational waves (GWs) from bubble collisions. Such FOPTs may also produce coherent magnetic fields generated by bubble collisions and by turbulence in the primordial plasma. Here we find that the requirement for PBH DM can produce large primordial magnetic fields which subsequently yield intergalactic magnetic fields in the present universe (with magnitude $\lesssim 20$ pG across coherence length scales of $\simeq 0.001$-$0.01$ Mpc, assuming maximally helical magnetic fields) that easily exceed lower bounds from blazar observations. We follow a largely model independent approach and highlight the possibility of producing DM and observable multi-messenger magnetic fields and GW signals visible in next generation experiments.

Dates and versions

hal-04467898 , version 1 (20-02-2024)

Identifiers

Cite

Shyam Balaji, Malcolm Fairbairn, Maria Olalla Olea-Romacho. Magnetogenesis with gravitational waves and primordial black hole dark matter. Physical Review D, 2024, 109 (7), pp.075048. ⟨10.1103/PhysRevD.109.075048⟩. ⟨hal-04467898⟩
11 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More