N
N

N

HAL

open science

A Privacy-Preserving Querying Mechanism with High
Utility for Electric Vehicles

Ugur Ilker Atmaca, Sayan Biswas, Carsten Maple, Catuscia Palamidessi

» To cite this version:

Ugur Ilker Atmaca, Sayan Biswas, Carsten Maple, Catuscia Palamidessi. A Privacy-Preserving Query-
ing Mechanism with High Utility for Electric Vehicles. IEEE Open Journal of Vehicular Technology,

2024, 5, pp.262-277. 10.1109/0JVT.2024.3360302 . hal-04467866v2

HAL Id: hal-04467866
https://hal.science/hal-04467866v2
Submitted on 13 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-04467866v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

IEEE Open Journal of

Vehicular Technology

Received 11 October 2023; accepted 21 January 2024. Date of publication 30 January 2024;
date of current version 20 February 2024. The review of this article was coordinated by Editor Miao Pan.

Digital Object Identifier 10.1109/0JVT.2024.3360302

A Privacy-Preserving Querying Mechanism
with High Utility for Electric Vehicles

UGUR ILKER ATMACA ©1:2, SAYAN BISWAS ©3:4:5, CARSTEN MAPLE ©1:2,
AND CATUSCIA PALAMIDESSI 34 (Member, IEEE)

I'WMG, The University of Warwick, CV4 7AL Coventry, U.K.
2The Alan Turing Institute, NW1 2DB London, U.K.
3INRIA Saclay, 91128 Palaiseau, France
4LIX, Ecole Polytechnique, 91120 Palaiseau, France
SEPFL, 1015 Lausanne, Switzerland

CORRESPONDING AUTHORS: UGUR ILKER ATMACA; SAYAN BISWAS (e-mail: ugur-ilker.atmaca@warwick.ac.uk; sayan.biswas@epfl.ch)

This work was supported in part by the Academic Centre of Excellence in Cyber Security Research - University of Warwick under Grant EP/R007195/1, in part by
The Alan Turing Institute under Grant EP/N510129/1, in part by the PETRAS National Centre of Excellence for IoT Systems Cybersecurity under Grant
EP/S035362/1, and in part by Autotrust under Grant EP/R029563/1. (Ugur Ilker Atmaca and Sayan Biswas contributed equally to this work.)

ABSTRACT Electric vehicles (EVs) are becoming more popular due to environmental consciousness. The
limited availability of charging stations (CSs), compared to the number of EVs on the road, has led to
increased range anxiety and a higher frequency of CS queries during trips. Simultaneously, personal data use
for analytics is growing at an unprecedented rate, raising concerns for privacy. One standard for formalising
location privacy is geo-indistinguishability as a generalisation of local differential privacy. However, the noise
must be tuned properly, considering the implications of potential utility losses. In this paper, we introduce the
notion of approximate geo-indistinguishability (AGeol), which allows EVs to obfuscate their query locations
while remaining within their area of interest. It is vital because journeys are often sensitive to a sharp drop in
quality of service (QoS). Our method applies AGeol with dummy data generation to provide two-fold privacy
protection for EVs while preserving a high QoS. Analytical insights and experiments demonstrate that the
majority of EVs get “privacy-for-free” and that the utility loss caused by the gain in privacy guarantees is
minuscule. In addition to providing high QoS, the iterative Bayesian update allows for a private and precise
CS occupancy forecast, which is crucial for unforeseen traffic congestion and efficient route planning.

INDEX TERMS Charging station, electric vehicle, geo-indistinguishability, location privacy, privacy-utility

trade-off.

I. INTRODUCTION

Air pollution is one of the immediate issues that the world
is experiencing [1], [2], [3]. In the United Kingdom in 2019,
27% of all greenhouse gas emissions came from transporta-
tion, as the largest emitting sector [4], [5], [6]. Hence, the
transportation industry and academic communities are in-
creasingly interested in developing alternative energy vehicles
to reduce emissions. Automobile manufacturers are introduc-
ing a new generation of electric vehicles (EVs) that often
employ connected and automated driving functions [7].

EVs are regarded as one of the most promising means
of reducing emissions and reliance on fossil fuels. Along
with environmental benefits, EVs provide superior energy
efficiency to conventional vehicles [8]. As the cost of

batteries continues to decrease, the large-scale adoption of
EVs is becoming more viable [9]. Despite the advantages and
competitive cost, many customers remain concerned about
running out of battery power before reaching their destination
or waiting for their EVs to charge. The primary obstacles to
EV adoption are the availability of chargers and the range that
can be travelled on a single charge, often referred to as range
anxiety in the literature [10].

There has been some recent focus on forecasting how busy
the charging stations (CS) are in certain areas to ensure that
the EVs can plan their journeys conveniently [11], [12]. How-
ever, the existing research in this direction, primarily founded
upon machine learning based methods, does not address the
privacy concerns involved in such predictive techniques and
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does not consider situations where there may arise unprece-
dented traffic congestion (e.g. due to a one-off concert or an
event). One of the most successful approaches for protecting
the privacy of personal data while analysing and exploiting the
utility of data differential privacy (DP) [13], [14], which math-
ematically guarantees that the query output does not change
significantly regardless of whether a specific personal record
is in the dataset or not. Our proposed method, in addition to
allowing the EVs to have formal privacy guarantees on their
queries to locate the nearest CS, enables the users to estimate
the live occupancy of the CS efficiently allowing convenient
journey planning.

However, the classical central DP requires a trusted curator
who is responsible for adding noise to the data before publish-
ing or performing analytics on it. A major drawback of such
a central model is that it is vulnerable to security breaches
because the entire original data is stored in a central server.
Moreover, there is the risk of having an adversarial curator.
To circumvent the need for such a central dependency, a local
model of DP, also called local differential privacy (LDP) [15],
has been getting a lot of attention lately. In this model, users
apply the LDP mechanism directly to their data and send the
locally changed data to the server.

LDP is particularly suitable for situations where users need
to communicate their personal data in exchange for some ser-
vice. One such scenario is the use of location-based services
(LBS), where a user typically reports her location in exchange
for information like the shortest path to a destination, points
of interest in the surroundings, traffic information, friends
nearby, etc. One of the recently popularised standards in lo-
cation privacy is geo-indistinguishability (Geol) [16], which
optimises the quality of service (QoS) for users while pre-
serving a generalised notion of LDP on their location data.
The obfuscation mechanism of Geol depends on the distance
between the original location of a user and a potential noisy
location that they report [17], [18]. Geol can be implemented
directly on the user’s device (tablet, smartphone, etc.). The
fact that the users can control their explicit privacy-protection
level for various LBS makes it very appealing. However, a
drawback of injecting noise locally to the datum is that it
deteriorates the QoS due to the lack of accuracy of the data.

On the other hand, future vehicles are becoming more
sophisticated in their sensory, onboard computation, and com-
munication capacities. Furthermore, the emergence of Mobile
Edge Computing (MEC) also changes the Intelligent Trans-
portation Systems (ITS) by providing a platform to assist
computationally heavy tasks by offloading the computation
to the Edge cloud [19]. This architecture often employs three
tiers, with the vehicle on the first, MEC on the second, and
standard cloud services on the third [20]. Fig. 1 shows the sys-
tem architecture for the location privacy framework proposed
in this paper.

ITS provides a platform containing distributed and re-
source-constrained systems to support real-time vehicular
functions where these functions’ efficacy relies on the data
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FIGURE 1. System architecture (EV: Electric Vehicle, RSU: Roadside Unit,
MEC: Mobile-Edge Computing Unit).

shared across entities. However, the risk of privacy dis-
closure and tracking increases due to data sharing [21].
Privacy-preserving schemes are developed using estab-
lished techniques such as group signature, anonymity, and
pseudonymity [22], [23]. However, it is possible to iden-
tify privatised data with adequate background information.
Hence, DP approaches have emerged as the gold standard of
data privacy because they provide a formal privacy guarantee
independent of a threat actor’s background knowledge and
computing capability [24].

Geol is the state-of-the-art method for location privacy-
preserving with LDP. It can preserve one’s location privacy
among a set of locations with similar probability distributions
without requiring a trusted third-party. It provides rigorous
privacy for location-based query processing and location data
collection by modelling the location domain based on the
Euclidean plane. However, vehicles are located on the road
network under normal circumstances. For vehicular location
queries, Geol mechanism may result in publishing unrealistic
privatised locations such as houses, parks, or lakes. Thus,
there is a need for an adapted model of Geol for vehicular
application. This paper proposes a novel privacy model called
AGeol, based on the notion of Geol by using a discrete road
network graph. Our key contributions in this paper are out-
lined as follows.

e We present the notion of approximate geo-indis-
tinguishability (AGeol), a formal standard of location-
privacy in a bounded co-domain, by generalising the
classical paradigm of geo-indistinguishability We illus-
trate its applicability by proving the compositionality
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theorem. Moreover, we show that the truncated Laplace
mechanism canonically guarantees AGeol.

® We propose a two-fold privacy-preserving navigation
method for EVs dynamically querying for CS on road
networks — the method protects against threats to individ-
ual locations of queries with formal AGeol guarantees
and against adversaries tracing the trajectories of the EVs
in an online setting.

e Using real vehicular data and real locations of CSs from
San Francisco, we experimentally show that our method
ensures a very high fraction of EVs to have “privacy for
free” and that the utility-loss for the EVs is very low
compared to the gain in privacy.

® Our method not only ensures location-privacy guaran-
tees but also enables EVs to estimate the real-time
occupancy of CSs using sanitised queries to help users
to plan their journeys efficiently.

The rest of this paper is organised as follows. Section II
reviews some of the related work in this area. Section III intro-
duces some fundamental notions on DP and Geol. Section IV
develops the mathematical theory of AGeol. Section V eluci-
dates the model of our proposed mechanism by formalizing
the problem we are tackling, thoroughly discussing system
architecture, and laying out the privacy-threat landscape we
are addressing in this work. Section VI analyzes the cost of
privacy on the EVs induced by our mechanism. Section VII
presents the experimental results to illustrate the working of
our mechanism, and Section VIII concludes the paper.

Il. RELATED WORK

Both corporate and academic communities have recently
piqued interest in advancing EVs and charging infrastructure
to improve the transportation system’s sustainability. Despite
the advancements, the EV sector confronts challenges that de-
lay the adoption process, such as range anxiety, an absence of
convenient and available charging infrastructure and waiting
time to charge [25], [26]. An offline static map of CS is insuffi-
cient to resolve these obstacles since EVs may need to reserve
a charging station when a trip is planned or query the available
stations based on their battery state, and CS must be reserved.
Thus, live vehicular and charging station data is utilised in
querying and reservation/scheduling mechanisms [27], [28],
[29]. Encryption techniques can be used in such mechanisms
to prevent external intrusions, but they cannot preserve users’
privacy from malicious servers and third-parties.

Several data types are considered in these mechanisms,
including real-time location, intended route, battery level, and
station availability, to ensure the drivers are not detoured
from their intended route [27], [30]. Although disclosing such
information poses privacy concerns for the driver’s location
and vehicle tracking, the privacy requirements of such mech-
anisms are not sufficiently studied in the literature. Existing
methods for planning charging points for EV journeys are
considered mechanisms for confidentiality and integrity, but
the drivers’ location privacy is regarded as an issue of trust in
the third-party service provider [31], [32].
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This problem can be addressed by several approaches based
on the threat model of the system. Location anonymity is
achieved through cloaking an area [33], [34]. This approach
can only be applied to the Edge of our system model to
provide anonymity to a group of EVs, but we consider the
Edge as an honest-but-curious threat actor and aim to pre-
serve vehicles’ privacy locally. Thus, such techniques are not
trivially applicable to our considered threat model. Further-
more, anonymity techniques do not provide a formal privacy
guarantee [35]. Similarly, mix-network approaches cannot be
applied because there is no guarantee that multiple vehicles
will be present in an Edge’s coverage in any timestamp due to
vehicles’ movement [36].

An applicable approach to download the charging station’s
live map on EVs to search for the nearest or on-the-route
available charging station has been considered and studied by
the community [37]; however, the communication overhead
of this technique is predicted to be much higher than the vehi-
cles’ location-based inquiry since it will require downloading
a recent snapshot of the map for each query and, thus, has
been criticised in the literature [38]. Moreover, due to the
absence of data sharing, such methods hinder the statistical
utility of the location data for the servers that may be useful
for a variety of purposes (e.g. providing vital statistics to
industries and institutions for optimally placing the CS on
the map based on the query densities) and prevent the EVs
from receiving any information about the traffic around and
occupancy of certain CS restricting them to plan their journeys
accordingly.

DP methods are gaining widespread usage in safeguarding
location privacy across various domains, including automotive
systems. The studies in [39], [40] proposed models by deploy-
ing a Geol-based mechanism on the Edge for LBS. However,
their approach did not consider preserving vehicles’ locations
against the Edge. An approach that complements the problem
we aim to address in this paper was proposed by Qiu et al. in
[41] where the authors proposed a technique to crowd-source
a task in a vehicular network while preserving Geol of the
location of the vehicles offering Mobility as a Service in the
spatial network to solve a task at a publicly known location in
the map (e.g. taxi services). The problem formulation in this
work is the inverse of what we aim to achieve in this paper.
Hence, this work cannot be extended to address the privacy
concerns induced by multiple dynamically generated queries
throughout the journey.

In [42], Cunningham et al. studied the problem of trajectory
sharing under DP and proposed a mechanism to address it.
However, this work assumes the setting of an offline trajec-
tory sharing which breaks down in the practical environment
where the trajectories are being shared online as there is
no prior information or limitation on the number of queries
made by an EV during a journey and their respective lo-
cations. Therefore, the method proposed by the authors in
[42] cannot be directly adapted to our dynamic environment
closely simulating the real-world scenario for such a use
case.
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Of late, a major direction of research is along the lines of
studying the statistical utility of differentially private data. A
standard notion of statistical utility, which is extended to a
variety of contexts, is the precision of the estimation of the
distribution of the original data from that of the noisy data.
Iterative Bayesian update (IBU) [43], [44], an instance of
the famous expectation maximization method from statistics,
provides one of the most flexible and powerful estimation
techniques and has recently become in the focus of the com-
munity [45], [46]. In this work, we use IBU to approximate
the distribution of the true locations of the queries made to the
server and based on that, the users of the EVs can predict the
availability of the CS around them in real-time and plan their
route accordingly.

1Il. PRELIMINARIES

The most successful approach to formally address the privacy
risks is DP, mathematically guaranteeing that the query output
does not change significantly regardless of whether a specific
personal record is in a dataset or not. Most research performed
in this area probes two main directions. One is the classical
central framework [13], [14], in which a trusted third-party
(the curator) collects the users’ personal data and obfuscates
them with a differentially private mechanism.

Definition 3.1 (Differential privacy [13], [14]): For a cer-
tain query, a randomizing mechanism R provides e-DP if, for
all neighbouring1 datasets, D and D', and all S € Range(R),
we have P[R(D) € S] < e P[R(D') € S].

A major drawback of the central model is that it is vul-
nerable to security breaches because the entire original data
is stored in a central server. Moreover, there is the risk that
the curator may be corrupted. Therefore, a local variant of
the central model has been widely popularized of late [15],
where the users apply a randomizing mechanism locally on
their data and send the perturbed data to the collector such
that a particular value of a user’s data does not have a major
probabilistic impact on the outcome of the query.

Definition 3.2 (Local differential privacy [15]): Let X and
Y denote the spaces of original and noisy data, respectively. A
randomizing mechanism R provides ¢-LDP if, for all x, x' €
X,and ally € Y, we have P[R(x) = y] < ¢ P[R(X') = y].

Recently, Geol [16], a variant of the local DP capturing the
essence of the distance between locations [17], [18] has been
in focus as a standard for privacy protection for location-based
services, being motivated by the idea of preserving the best
possible quality of service despite the local obfuscation oper-
ated on the data.

Definition 3.3 (Geo-indistinguishability [16]): Let X be a
space of locations and let dg(x, x") denote the Euclidean dis-
tance between x € X and x’ € X. A randomizing mechanism
R is e-geo-indistinguishable if for all x;, x» € X, and every
y € X, we have P[R(x) = y] < ¢*“®E&12) P[R(x) = y].

Definition 3.4 (Iterative Bayesian update [43], [44]): Let
C be a privacy mechanism that locally obfuscates points from

I Differing in exactly one place.

VOLUME 5, 2024

TABLE 1. List of Key Notations

Notation Description
X Domain of original locations
dx Distance on X'
Yy Domain of obfuscated locations
dy Distance on )
P [y|=] Prob. that mechanism X, applied to value z, reports y
I Fixed Edge in the network
R(I) Area of coverage by I
m Number of locations reported by each EV
lu Vector of locations reported by EV w
L(t) Set of location vectors received by I at time ¢
L'(t) Shuffled set of all individual locations queried at time ¢
R(t) Set of nearest CS for £’(t)
G Road network graph
dg Travelling distance in graph G

the discrete space & to ) such that C,, = P(ylx) for all
x,ye X, V. Let X1, ..., X, be i.i.d. random variables on X
following some distribution 7 y. Let ¥; denote the random
variable of the output when X; is obfuscated with C.

Let y € V" be a realisation of {Y1,...,Y,} and g be the
empirical distribution obtained by counting the frequencies of
each element of ) as observed in y. The iterative Bayesian
update (IBU) is a cutting-edge and strong technique for expec-
tation maximization in statistics that can be used to estimate
7y by converging to the maximum likelihood estimate of
with the knowledge of y and C. IBU works as follows:

1) Start with any full-support PMF 6 on X.
2) Tterate 6, 1(x) = Zyey q(y)% forall x € X.

IV. APPROXIMATE GEO-INDISTINGUISHABILITY (AGEOI)
In the classical framework of Geol [16], the space of the
noisy data is, in theory, unbounded under the planar Laplace
mechanism. Under a certain level of Geol that is achieved,
the planar Laplace mechanism ensures a non-zero probability
of obfuscating an original location to a privatised one which
may be quite far, thus inducing a possibility of a substantial
deterioration in the QoS of the users. This loss of QoS can
be more sensitive in the context of the navigation of EVs,
where it is extremely important to prioritize a bounded domain
where a user is willing to drive — this may be a result of time
constraints, the rising cost of fuel, geographical boundaries
(e.g. international borders), etc. — giving rise to an idea of
area of interest for each EV. This motivated us to extend the
classical Geol to a more generalized, approximate paradigm,
inspired by the approach of the development of approximate
DP from its pure counterpart.

Let X and ) be the spaces of the real and noisy locations
equipped with distance metrics dy and dy, respectively. In
general, (X, dy) and (), dy) may be different and unrelated.
However, for simplicity, here we assume X C ) and, there-
fore, dy = dy = d, and we proceed to define the notion of
approximate geo-indistinguishability. It is worth noting here
that, to an extent, we abuse the formal notion of “metric”
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as d is not required to be symmetric, i.e., there may exist
X1, xp € Y suchthatd(xy, xp) # d(x2, x1).

Definition 4.1 (Approximate geo-indistinguishability): A
mechanism /C is approximately geo-indistinguishable (AGeol)
or (€, §)-geo-indistinguishable if for every measurable § C ),
any pair of secrets x,x’ € X, and for €, § € R5( satisfying
8e€4e) e 0, 1]:

Pe[y € S] = e“/“Pc[y € S48 (1)

One of the biggest advantages of DP and all of its variants
that are accepted by the community is the property of compo-
sitionality, where the level of privacy can be formally derived
with a repeated number of queries. Thus, we now enable
ourselves to investigate the working of the compositionality
theorem with the AGeol which we defined, to stay consistent
with the literature [35].

Theorem 4.1 [Compositionality Theorem for AGeol]: Let
mechanisms K; and K be (€1, §;) and (e, §2) geo-
indistinguishable, respectively. Then their composition is
(€1 + €2, 81 + 82)-geo-indistinguishable. In other words, for
every S1, S € Yand all x1, x}, x2, xj € X, we have:

Pr,ic, [0 32) € S1 x $a(x1,x2)]

< ¢C1dGxter o)

Py, [01,32) € S1 x $a2|(x], x5)]

+ (81 + 82) ey A7)+ (00, x5) )

Proof: Let us simplify the notation and denote:

P, = Pr,lyi € Silxil, P/ = Py, lyi € Silx]],

S5; = 8;e?%iD for i € {1,2}. As mechanisms K; and K>
are applied independently, we have:

Py i, (01, 32) € St X Sal(vi, )] = PPy (3)
Pic, i, [01.2) € 81 x S21(x], x5)] = PP, “4)
Therefore, P, 1, [(v1,¥2) € S1 x S2](x1,x2)] = PP
< (min (1 -5y, 1 /010p)) + 5
x (min <l — 3§y, 2 d(xz’xé)PD + Sz)
<mymy +8my +mi8y + 815,
[Where m; = min (1 -5, ee"d(x"’x;)Pi’ﬂ
< el d(xy,x}))+€ d(xz,xé)PiPé
+81 =818+ 8 — 815 + 8182
< efrdmx e dinag)
x P, i, [(01.32) € S1 x S2l(x], x5)]

F (81 + 8) edxD )
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We now proceed to generalize the conventional planar
Laplace mechanism [47] to define the truncated Laplace
mechanism extended to a generic metric space.

Definition 4.2 (Truncated Laplace mechanism): The trun-
cated Laplace mechanism L on a space X equipped with, not
necessarily symmetric, distance metric d truncated to a radius
r, 1s defined as:

ce €40 ifd(x,y) <r

Prbid = {O otherwise )
where c is the truncated normalization constant defined such
that f‘ <y Prlylxldy = 1, and € is the desired privacy parame-
ter. Let us call r to be the radius of truncation for L.

Note that for a discrete domain ), ¢ is defined by normal-
izing Zyey P,[ylx] = 1, and, in this case, £ is a truncated
geometric mechanism [48] extended to a generic metric space.

Lemma 4.2: For every x1,x € X and y € ), we have
e UP[ylx ] — Pelylx] < 1.

Proof:

e €dx)p [ylm] —-P [yIX2] =<1
. <e—e(d(X1,x2)+d(xl ) _ gmedty )) =1 ©®

Now we observe that d(x1, x2) 4+ d(x1,y) > d(x2,y) due to
the fact that d is a metric and it satisfies the triangle inequality.
Immediately, we have e~ €l x)+d(xy) _ p—ed(x2.y) < () for
any € € R>. Therefore, as ¢ > 0, (6) is trivially satisfied. W

Theorem 4.3: L satisfies (e, §)-geo-indistinguishability
where

max e~ 10 2IPL [yl | — Pr [yla], 0
yey
x1,0€X

§ = max

Proof: Trivially §e?®1%2) > 0 for any x1, x, € X as § > 0.
Moreover, Lemma 4.2 ensures that §¢4®1-2) < 1. Now ob-
serve that for every § € ) and for all x1,xp € X, we have:

e~€d)p, [y|x1] — P [y|x2] < §el1mOd00)
= P, [y|x1] — d(xl,xz)pc [y|x2] < § edx1x2)

|

The explicit process of sampling private locations satisfy-

ing AGeol from a given set of original locations through a

truncated Laplace mechanism on a discrete location space has
been described in Algorithms 1 and 2.

V. SYSTEM MODEL

This section details our privacy-preserving model for finding
an optimal CS in the Internet of Vehicles (IoV), as a use case
of the proposed AGeol technique. We begin with a discussion
of the location privacy problems inherent in finding optimal
CS in the IoV. This is followed by road networking modelling,
a description of the system architecture for differentially pri-
vate location sharing, the trust relationship between system
tiers, and the privacy threat model.
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Algorithm 1: Discrete and Truncated Laplace Mechanism
(DTLap).

Input: Discrete domain of original locations: X,
Discrete domain of private locations: )/, Desired
privacy parameter: €, Desired truncation radius: r;
Output: Channel C' satisfying (5);

Function DTLap (X, ), €, 1) :

Set C' +— empty channel;

Set Y < empty list;

for x € X do

Cr = —=

yey
d(z,y)<r
for y € )Y do
if d(z,y) < r then
| Cla,y] =0
else
| Cla,y] = cpeme oy

e—cd(z,y) 5

B Return: C;

Algorithm 2: Sampling Private Locations With DTLap
(DTLapSamp).

Input: Discrete domain of original locations: X,
Discrete domain of private locations: )/, Desired
privacy parameter: €, Desired truncation radius: 7;
Vector of original locations: X;

Output: Corresponding vector of private locations:
Y;

Function DTLapSamp (X, YV, €,7, X):

C = DTLAP(X, YV, ¢€,1);

Set Y < empty list;

for x € X do
L Randomly sample y € Y ~ Clz,:];

Append y to Y
L Return: Y;

A. PROBLEM STATEMENT
EVs have emerged as crucial components of future sustainable
transportation systems, aimed at reducing CO2 emissions.
Consequently, they have received considerable attention from
both academia and industry [26]. However, due to their lim-
ited battery capacity, EVs often need to visit CS during
journeys. This requirement leads to range anxiety among
some drivers, where they fear that their vehicles lack sufficient
battery power to reach their intended destinations. Range anx-
iety is recognized as a major obstacle to the broad acceptance
of EVs [49]. While CS are not always readily available, as it
takes time to sufficiently charge EVs, the implementation of a
CS booking service can help alleviate range anxiety.

To minimize charging wait times, EVs can access CS book-
ing services through third-party providers, enabling them to
discover the nearest and readily available CS. This can be

VOLUME 5, 2024

achieved through static or live location queries. However,
location sharing raises privacy challenges, such as vehicle
tracking. Geol technique provides a formal privacy guarantee
for location queries. However, it is not highly applicable to
this use case for two reasons. It does not consider the feasible
locations where a vehicle can be present, and it does not stop
vehicle tracking in the case of linked queries during the vehi-
cle trajectory. Thus, a tailored privacy-preserving mechanism
is facilitated by combining the proposed AGeol technique
with dummy location generation.

B. ROAD NETWORK MODEL

Similar to [41], the road network G is represented as a
weighted directed graph G = (N, E, W), where N is the set of
nodes, E € N? is the set of edges, and W : N? - Rt is the
set of weights representing the minimum travelling distance
between any two nodes. The nodes and edges correspond
to junctions and road segments of the network, respectively.
Each edge e € E is addressed by the pair of respective starting
node, ending node, and a weight representing the travelling
distance through that edge, i.e., e = (N, N, w,) € N, where
the direction of the traffic is from N; to N one. Forany i € N
and j € N, let the sequence of edges (eq,...,e,) denote a
path from node i to node j if Nj, =i and Ny = j. Hence, let
C(i, j) represent the set of paths that connect node i to node
j. Then W is a N x N matrix, where

min Y w, ifCG J)#¢
Wij = PeC(i.)) ecp
00 otherwise

Essentially W;; is the shortest travelling distance from node i
to node j in the network. We shall address the quantity W;; as
the traversal distance between nodes i and j in the graph G
and denote it as dg(i, j) for every (i, j) € N°. Note that, as G
is a directed graph, dg may not be symmetric.

C. SYSTEM ARCHITECTURE

IoV applications are revolutionising transportation systems by
mitigating human errors, enhancing travel convenience, and
reducing energy, operational, and environmental costs [50],
[51]. EVs have emerged as a viable technology for lower-
ing carbon emissions and travel costs [52]. However, range
anxiety is one of the major challenges of their wide adoption.
Vehicular location data can be utilised to optimise the vehicle
charging plan and mitigate range anxiety. Third-party ser-
vices can assist users by recommending available CS in close
proximity. However, depending on these third-party providers
gives rise to notable privacy concerns within the threat model
of honest-but-curious service providers, which in turn requires
users to place their trust in them.

The system architecture, illustrated in Fig. 1, incorporates
vehicles within an ITS that operates on a three-tier architec-
ture. This architecture comprises Roadside Units (RSUs) con-
nected to a Mobile Edge Computing (MEC) Server, which is
connected to the Core Cloud through a secure communication
channel. The Core Cloud facilitates the connection between
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vehicles and third-party services, including the charging sta-
tion recommender system, which is the main focus of this
paper. However, guaranteeing the complete trustworthiness
of the cloud architecture and third-party service providers
in handling vehicular location data is not feasible, align-
ing with the honest-but-curious threat model. Consequently,
our proposed architecture only shares privatised vehicular
location data. The subsequent sections delve into a compre-
hensive description of the roles and functions of each system
component.

1) VEHICLE TIER

We fix a road network G with nodes G(N) and edges G(E).
We choose an arbitrary edge I/ € G, and focus on the queries
made by the EVs in I’s range of coverage, R(I), provided by
its RSU. An EV u employs a local obfuscation technique to
protect its true location x* € R(I) to x{ € R(I) within the cov-
erage area R(I) of a specific edge. When an EV moves from
the area of coverage of one Edge cloud to another, we can
assume the queries and the privacy threats against the Edge
to reset as each Edge communicates with the Cloud-based
services and the third-party service providers.

The vehicle u utilises DTLap and DTLapSamp algorithms
to apply the truncated Laplace mechanism, guaranteeing
AGeol. DTLap creates a probabilistic mapping from each
original location to a set of private locations, ensuring that
each mapping adheres to the differential privacy constraints
specified by €. The truncation radius r limits how far a private
location can be from the original location, enhancing practical
utility. Using the channel created by DTLap, DTLapSamp
generates a vector of private locations that correspond to a
given vector of original locations. The result is a vector of
locations that preserves privacy while reflecting the distribu-
tion of the original locations. Then the vehicle generates m —
1 plausible dummy locations {x3,...,x,} € R(IY"~! in the
coverage area of the respective edge with the privatised loca-
tion and reports the vector of m locations, /, = (x{, ..., x},),
to /. At any given time, u locally obfuscates its true location
x" € R(I) to x{ € R(I) using a truncated Laplace mechanism
guaranteeing AGeol and generates m — 1 feasible dummy
locations {x3, ..., x,} € RU y"=1in the coverage area of the
respective edge. Then u reports the vector of m locations,
ly = (x{,...,xp), to I for the Edge to process and commu-
nicate the query to the cloud services and the third parties to
find the nearest available CS in R([1).

2) EDGE TIER

Given the substantial volume of data generated and exchanged
between vehicles and infrastructure, the installation of edge
clouds in close proximity to vehicles becomes essential to host
off-board vehicular services, which require low access latency
from onboard vehicular services [53]. In addition to perform-
ing essential data processing and forwarding functions, the
Edge also serves as a layer for data aggregation. Moreover, it
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enables the deployment of supplementary privacy-preserving
measures before sharing the data with third-party entities.

3) CLOUD TIER

It is expected to provide computation and storage capabilities
for top-level processes, including data-sharing interfaces for
third-party services.

4) THIRD-PARTY SERVICE PROVIDER

It is the external party to ITS and is expected to enhance the
quality of the function for finding the available CS for the ve-
hicles by receiving search queries compromised of privatised
and dummy location vectors for the respective vehicles.

5) COMMUNICATION CHANNEL

ITS comprises a network of RSU, vehicle on-board electronic
control units (ECU), and distributed cloud computing and
storage services. Wireless communications are enabled for
V2V (Vehicle to Vehicle), V2I (Vehicle to Infrastructure) and
V2X (Vehicle to Everything), facilitated by the technologies
such as IEEE 802.11p DSRC/WAVE (Dedicated Short Range
Communication/Wireless Access in Vehicular Environments),
cellular advances such as C-V2X, and the long-term evolu-
tion for vehicles (LTE-V) [54]. Confidentiality of the wireless
communication channel is secured by public key infrastruc-
ture (PKI) encryption methods which are beyond the scope of
this work.

D. PRIVACY THREAT LANDSCAPE

In real-time IoV location-based applications, it is often nec-
essary for users to share their location information with the
service provider in order to access location-specific services.
However, this raises privacy concerns as it can potentially
expose sensitive information about individuals’ movements
and activities. To address these concerns, data perturbation
techniques can be employed to protect the privacy of users
while still allowing them to access the services they need.
These techniques introduce uncertainty or noise into the data,
preventing an attacker from identifying the precise location of
an individual. However, real-world solutions often rely on user
consent, access control, and non-disclosure agreement-based
mechanisms instead of providing formal privacy guaran-
tees. Thus, there are existing privacy challenges related to
shared location data, including journey tracing and location
identification.

Furthermore, apart from these major privacy challenges,
vehicular location data may also be susceptible to unautho-
rised use, data inference, retention, or insider privacy breaches
within the service provider when formal privacy guarantees
are lacking. The third-party provider is typically considered an
honest-but-curious adversary model, assuming it is honest in
accurately executing the protocol required to provide location
data. However, there is a possibility that the provider may be
curious about inferring users’ private information based on the
acquired location data [55].
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This study aims to offer a formal privacy guarantee for
location-based querying that can be utilised by vehicles
throughout their trajectories to effectively address the asso-
ciated privacy challenges with this process. To achieve this,
the system is considered in three categories: (i) the vehicle
users (data subject), (ii) ITS encompassing the Edge and Core
Cloud Tiers (data controller and data processor), and (iii)
the third-party that receives the privatised data through the
deployed privacy-preserving mechanisms. The third-party is
assumed to be an EV charging management system, which
may operate under a registration-based approach for a specific
area. Our focus is on mitigating the following two major
sources of threats that have the potential to compromise the
privacy of EVs.

1) LOCATION IDENTIFICATION

It is vital to ensure that the privatized version of the true
location of the EV is within a certain radius of interest w.p.
1, making sure that the reported location is within a feasible
and drivable distance away, and most importantly, within the
area of coverage of the Edge where its true location lies.
Therefore, we defined AGeol as an extension of Geol. Thus, to
ensure the privacy of any given query in the road network, the
EVs locally obfuscate their true locations using the truncated
Laplace mechanism with their desired parameter ¢ and the
radius of truncation r, which, in turn, decide the value of §.

2) JOURNEY TRACING

EVs may inquire about the nearest available charging station,
without proceeding with the query, and raise further queries
along the journey. Subsequently, additional queries may be
raised at different points during the journey. In our model,
we aim to capture this realistic setting by allowing multi-
ple queries to be made by the EV within a single journey.
However, this introduces a potential threat of approximately
tracing the trajectory of the EV’s journey by interpolating the
locations of the queries, despite each individual location being
AGeol-protected. This is due to the fact that the obfuscated
location of each query is not distinguishable from the real
location, but they are not too far off from each other with
a very high probability. Consequently, if a large number of
queries are made within a single journey, it becomes relatively
straightforward to approximate the trajectory of the EV’s jour-
ney.

Cunningham et al. [42] proposed a mechanism to securely
share trajectories under LDP. However, the authors in [42]
assumed a model of offline sharing of the entire trajectory
and, hence, sanitising it with the proposed mechanism to en-
gender LDP guarantees. In our setting, this method cannot be
directly implemented as we consider a dynamic environment
where the queries made by the EVs are in real-time, with
the server not having any prior knowledge of the number or
the location of the queries made by a certain EV. Therefore,
the mechanism of [42] cannot trivially be extended in the
online location-sharing environment, and hence, the threat of
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adversaries able to reconstruct the journey of a particular EV
with a high number of queries remains as a concern.

E. PROPOSED QUERY MODEL

During the journey, an EV u located within the coverage of
an Edge [ locally obfuscates its true location x* € R(I) to
x{ € R(I) using the truncated Laplace mechanism guarantee-
ing AGeol, and generates m — 1 feasible dummy locations
(x5, ....x,} € RU )’"‘1, i.e., locations that cannot be trivially
identified as being artificially generated given the query of
the previous time stamp w.r.t. realistic speed limits, travel-
ling conditions, etc. For the first query that u makes along
its journey, it generates random m — 1 dummy locations in
R(I). Thus, each query of u consists of reporting the vector
of m locations, [, = (x{,...,x;,) € R(I)", to I for the Edge
to process and communicate the query to the Cloud services
and the third-parties to find the nearest available CS in R([).
This approach ensures that the adversary will have at least
m possible trajectories that the EV could have realistically
followed at every time stamp, making it highly improbable
for the Edge and the third-party to be able to conclude which
of them was the actual journey as, after k queries made along
a single journey, each interpolated trajectory will have a prob-
ability of at least 1/m* of being the real one.

Fig. 2 illustrates 10 reported dummy locations along with
the privatized location for two consecutive time windows.
Notably, the dummy locations in the subsequent time window
can be feasibly linked to at least one of the preceding dummy
locations. At any given time, the Edge collects all the reported
locations from the querying EVs, shuffles them by effacing the
links between the location vectors and the corresponding EVs,
and sends this jumbled collection of all the reported locations
in the network to know their respective nearest available CS to
the third-party service provider. After receiving the response,
the Edge, which internally keeps the record of the IDs of the
EVs against their queried locations, assigns the corresponding
vector of locations of the nearest available CS to each EV and
communicates them back to the respective vehicles.

In other words, at time ¢, if the Edge receives the location
vectors from k; querying EVs as L(t) = {/,,, ...,luk, }, the
Edge is responsible for shuffling all the individual locations
in these reported vectors and forward the scrambled col-
lection £'(t) = {x! :u € {u1, ..., uy, i € [m]} to the Cloud
and the third-party, while internally keeping a track of the
IDs of the EVs to reconnect the query-response back to the
corresponding users. Setting £ as the location of the nearest
available charging station from location x in R(/), the Edge re-
ceives R(t) = {X} :u € {uy, ..., u,, i € [m]} as the response
from the third-party service provider handling the CS data
real-time. After this, matching the IDs of the EVs with the lo-
cations of the CS, the Edge communicates the response vector
fu = (£ : i € [m]) back to the corresponding EV u. Then the
EV can choose to navigate to arg minxeiu{dg(x, Xx,)}, where
X, 1s the real location of u. The overview of this mechanism is
given in Fig. 1.
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@)

FIGURE 2. Reported dummy and privatised locations for two respective time windows (White Pins: Privatised locations, Orange Pins: Dummy locations in

1st Time window, Blue Pins: Dummy locations in 2nd Time window).

V1. COST OF PRIVACY ANALYSIS

Definition 6.1 (Cost of privacy): Suppose an EV u at location
x" chooses to locally obfuscate its real location of a query
as x| using the truncated Laplace mechanism L. , satisfying
(e, §)-geo-indistinguishability with a corresponding radius of
truncation r. Then we define the cost of privacy (CoP) of
EV u as CoP(u, L, ;) = c(x", £]) — c(x", £), where £* and
£ are the nearest available CS in the network to x* and x{,
respectively, and ¢ : G(N)? — R* is any cost function that
reflects the “cost” of the commute from locations x to y in the
network.

In other words, CoP, as in Definition 6.1, essentially cap-
tures the extra cost that an EV needs to cover as a result of the
privatized location it reports to the Edge satisfying AGeol, as
opposed to its true location. In this paper, for the purpose of
simplicity of the analysis, we considered the cost function as
the travelling distance in the network, i.e., ¢ = dg. However,
in practice, any suitable cost function could be used (e.g.
fuel efficiency, time, etc.) could be used as c, depending on
the context and requirement of the architecture. To formally
characterize and analyze the CoP of the EVs in the network,
inspired from the classical version of Voronoi decomposition,
we extend the concept in the setting of our road network in
the network coverage for a fixed Edge w.r.t. graph-traversal
distance, d,.

Definition 6.2 (Voronoi decomposition): Let G be the graph
representing the road network equipped with travelling dis-
tance dg. Let the set of CS in G be Cg = {c1, ..., cps}-
Then the Voronoi decomposition on G w.r.t. Cg is defined as
Ve ={V;: i €[ngl} such that V; N V; = ¢ for any i # j and
Uicing) Vi = G, where

Vi={xeG: dox,c)) =dg(x,cj)V j€lngl,j #i}

Definition 6.3 (Closed ball around a location): For any x €
G and r € R, the closed ball of x of radius r is defined as
Br(x) ={y € G: dg(x,y) =r}

Definition 6.4 (Fenced Voronoi decomposition): For any
r € R5¢ and charging station i, let the r-fenced Voronoi de-
composition on road network G be defined as V" = {V/ :
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i € [ng]} such that V."" N Vj*’ =¢fori# jandV, " ={xe
Vi : By(x) C V;}. In other words, Vfr essentially constructs an
area contained within V; restricted by a fence at a distance r
from the edge of V;.

Theorem 6.1: Suppose an EV u positioned at x* on G
obfusucates its location using AGeol with any radius of
truncation r € R>o. Let £ be the location of the near-
est available charging station to the true location x*. Then
P[CoP(u, L) = 0] = 1 for every x* € Vﬁ;r. In other words,
if an EV lies in the r-fenced Voronoi decomposition for its
nearest available CS, it has a zero cost for privacy w.p. 1.

Proof: Immediate from Definition 6.4. |

Theorem 6.2: Suppose an EV u lies in Vi \ V" and it
uses AGeol to obfuscate its true location x* to x| with a
radius of truncation r and privacy parameter € for making
a private query to the Edge. Then P[CoP(u, L. ,) =0] =
1— Zx,l, eve, ce=€d6"XD) where c is the normalizing constant
of the truncated Laplace mechanism as in Definition 4.2.

Proof: To compute P[CoP(u, L. ;) = 0], we only need to
exclude the possibilities where the reported location of the
EV lies outside the Voronoi decomposition of the station £“,
which, essentially, is 1 — Zxﬁ'ev;u ce€dc (. xy) [ |

VII. EXPERIMENTAL STUDY

This section presents the experimental study with the objec-
tives as follows: (i) to validate proposed theoretical claims
and solutions empirically; (ii) to use the method to find the
nearest available charging station for EVs as a case study;
(iii) to investigate the cost of privacy in real-time settings; and
(iv) to conduct a real-time CS occupancy prediction technique
from the noisy vehicle distribution. Standard Python packages
are used to run the experiments in an environment with an
Intel core i7 processor, 16 GB of RAM, and an Ubuntu 20.04
operating system.

A. DATASET PREPARATION
The road network data extracted from OpenStreetMap [56].
The cost of privacy is calculated as the additional routing
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distance caused by noise in vehicular locations during queries
to identify the optimal charging station. The cost of privacy
depends on the sparsity of CS. We prepared two datasets: one
with 404 existing charging station locations in San Francisco
obtained from the United States Department of Energy [57],
and another by merging existing and planned charging station
locations with on-street and off-street parking locations from
DataSF [58], resulting in 716 independently distributed loca-
tions.

The EPFL mobility dataset includes GPS records of 536
taxi trajectories in San Francisco over four weeks [59]. The
dataset provides information such as the taxi identifier, lat-
itude, longitude, occupancy state (vacant or occupied), and
a UNIX epoch timestamp. Leveraging the occupancy infor-
mation, we were able to split the complete taxi trajectories
into individual customer trajectories, resulting in over 450,000
exported trajectories. For our study, we randomly selected 536
trajectories from each taxi.

B. EXPERIMENTAL SETUP

A group of EVs sends out location queries to find the closest
available CS during their journeys on the road network G.
The edges of the road network G are truncated into discrete
segments with an equal k travel distance, similar to the work
in [41]. DTLap is utilised to generate the privacy channel by
using the Laplace mechanism for the user’s desired values for
privacy budget € and truncation radius r. Following this, DT-
LapSamp is used to generate privatised locations with respect
to the users’ real locations.

A location query contains a privatised location and m — 1
dummy locations as a vector and is collected by the Edge
for sending them to the third-party through the core cloud
as a single vector of all locations. The third-party responds
to the locations in the vector with the closest available CS
for each, and the Edge sends vehicle location vectors to the
related vehicles without being able to differentiate privatised
and dummy locations.

For IBU to approximate the original distribution of the
query locations of the EVs in the road network in order to
predict the availability of the CS and, thus, assist the users
in planning their journeys appropriately, we note that each
original query location goes through two independent steps
of sanitization: a) locally using the truncated Laplace mecha-
nism to achieve AGeol and b) generating the realistic dummy
locations in the area of coverage of the Edge to ensure pro-
tection against attacks reconstructing their journeys. Setting
the domain & as the area of coverage of the RSU of the fixed
Edge that we focus on, while the former is a straightforward
use of the channel L, the latter can be thought of as m — 1
independent applications of the uniform channel U/, where
U: X%+ R with U,y denoting Py [y|x] = 1/|X|, by each
EV. Therefore, after accounting for the normalization, the
channel incorporating the local obfuscation and the generation
of the dummy locations used by each EV reduces down to
%L’ + m,—;lu which we use as the privacy channel to imple-
ment IBU.
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The first set of experiments examines the CoP for randomly
selected 536 vehicle traces, where each trace contains a series
of GPS coordinates and 3 randomly selected points along
each for the real locations of the queries. The discrete road
network is generated by setting the distance k = 100 meters.
The parameters of € and r are varied in the range of 0.2 to 2,
and 1 to 20, respectively.

The privatised location, together with the dummy locations,
is sent to the third-party for a query to prevent the third-party
from tracking the vehicle. The area of Edge coverage, rather
than the vehicle’s area of interest, is considered for dummy
location generation rather than the vehicle’s area of interest,
as the centre of mass may give away the true location. The
second set of experiments examined the impact of dummy
locations on the CoP.

The location queries could be used for real-time predictive
analysis on the optimisation of the smart power grid, manag-
ing staff, and determining where new CS should be deployed.
Thus, service providers can have the utility of the datasets
(e.g., training ML models, etc.) with DP-based methods while
the privacy of individuals is preserved. The third set of exper-
iments utilises the IBU method to retrieve the true distribution
of locations of the queries from the noisy distribution, which
includes privatised and dummy locations.

C. RESULTS AND DISCUSSION

1) COST OF PRIVACY

DP approaches introduce a trade-off between privacy and data
utility, with a higher level of privacy requiring a greater level
of noise. The efficacy of the respective service may corre-
spondingly decrease due to the fall in data utility, and this
difference in the quality of service is referred to as the ‘cost
of privacy’ (CoP) in this study. In particular, in the context of
the use case considered in this paper, the CoP is formalised in
Definition 6.1.

The following results are achieved by carrying out the
experiments for 3 linked queries of 536 randomly selected
vehicle trajectories for varying values of € or r ranging from
0.2t02, and 1 to 20, respectively. Fig. 3 demonstrates the CoP
in terms of the extra travelling distance due to the privacy-
preserving mechanism, where a similar pattern is observed
for both of the datasets. Another observation is that a high
frequency of queries resulted in no cost for privacy preserva-
tion. Fig. 4 shows the fraction of the queries with “privacy
for free” where both datasets followed similar patterns. Ve-
hicle queries contain dummy locations and their privatised
true locations. It is possible that the dummy locations can
sometimes provide a better utility, but our experiments con-
sider the utility of a privatised location as the worst-case for
analysis.

Fig. 3 shows that our method provides a negligible cost of
utility loss for the formal privacy gain enjoyed by the EVs. By
increasing the truncation radius, an abrupt drop in the distance
between the location of the nearest available charging station
for the true location of the query and that of the privatised one
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FIGURE 3. CoP (i.e., by Definition 6.1, the difference in the distance an EV needs to cover to reach the nearest CS with and without local obfuscation to
achieve Ageol) for varying ¢ or r of AGeol (1st row is for sparse CS, 2nd row is for dense CS).

implies that the cost of the extra travel distance needed to be
taken due to the AGeol guarantee is almost negligible. A sim-
ilar trend is seen for the varying € with a fixed radius. As the
level of privacy decreases, the fraction of EVs in the network
enjoying privacy for free grows to be more than 60% for a
radius of truncation of merely 10 road segments, where each
segment is 100 meters long, for ¢ > 0.5. However, more than
90% of the EVs achieve a zero cost of privacy for € > 1.5,
irrespective of the truncation radius as illustrated in Fig. 4.
Due to increasing perturbation for the disclosed locations,
the width of the confidence interval for zero cost of privacy
increases, as seen in Fig. 4. The likelihood of achieving zero
cost of privacy fluctuates over a wider range and it does not
monotonically decrease with the growing radius due to rising
randomness.

2) IMPACT OF DUMMY DATA GENERATION

Considering an adversary interested in finding the true lo-
cations of the EVs, («, Bl-identifiability is defined for any
location x as P[d(y,x) < @) > B, where y is any guessed
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location by the adversary. With the proposed method, with
a sufficiently small radius of truncation to obfuscate the true
location using the truncated Laplace and generating m — 1
dummy locations in the area of coverage of the Edge, the
probability of hitting the true x within an error of o is
Pld(x,y) < a] = m e € = B, where c is the normalising
constant.

There has been some work in this area from the per-
spective of just Geol [39], [40], [41], [60], [61] or just
from the standpoint of generating dummy locations exploiting
anonymisation techniques [62], [63]. One of the first major
concerns in using only Geol is when we allow dynamic and
multiple queries along the journey of the EVs, as individual
locations, despite being privatised, can still be interpolated
to approximate the entire trace. If only dummy locations are
used, however, any estimated (or observed) y could be the real
location w.p. ﬁ, as there is no formal privacy guaranteed,
i.e., every location x has, is (0, (m — 1)~ !)-identifiable among
(m — 1) dummy locations. With potential parallel processing,
brute-force attacks are just one way that it has been shown
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FIGURE 4. Fraction of EVs incurring no CoP for varying ¢ or r of AGeol (1st row is for sparse CS, 2nd row is for dense CS).

that anonymisation techniques are not sufficient to protect
privacy [64].

Fig. 5 illustrates how the CoP increases with an increase
in the noise due to the lack of dummy locations under the
same level of identifiability. To achieve the same («, f§)-
identifiability with just AGeol without dummy locations, the
parameter € needs to be scaled by (Inm)~!, i.e., more noise
needs to be added, which results in having a worse trade-off
between privacy and CoP for the same level of privacy.

3) REAL-TIME PREDICTIVE STUDY

Predicting the availability of CS is a vital aspect of EV
trip planning, offering a solution to alleviate range anxi-
ety. Existing methodologies predominantly leverage machine
learning-based approaches for such predictions [65], [66],
[67], [68], [69]. These models generally focus on pre-booking
of CS timeslots, drawing upon historical data such as previous
CS usage, traffic density, and external factors like weather
conditions. However, the static nature of these predictions
may not fully accommodate the dynamic and often unpre-
dictable fluctuations in traffic patterns. The rigid scheduling
could lead to scenarios where an EV misses its charging slot
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due to traffic delays or a CS remains unutilized despite being
available. Hence, a real-time predictive analysis would be
critical to determine the likelihood of a CS being available
when an EV arrives.

To address this gap, our proposed method emphasises real-
time predictive analysis, crucial for assessing CS availability
upon an EV’s arrival. By preserving privacy and captur-
ing live traffic distribution data from querying vehicles, our
approach utilises IBU to estimate current traffic conditions.
The statistical distance between the estimated and the original
distributions are shown in Fig. 6. We considered two different
levels of AGeol with € = 0.6 and € =2 and IBU was run
for 100 iterations. The results demonstrate that the distance
between the original and the estimated distributions of the
traffic is decreasing. The accuracy of the estimation of the
original distribution from the noisy locations is illustrated
by the heatmaps of Fig. 6 depicting the original, noisy, and
estimated traffic distributions. This essentially highlights
the high statistical utility of our proposed method and,
specifically, helps in the prediction of how likely a CS
will be available when the vehicle arrives and the traffic,
in general.
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VIIl. CONCLUSION

This paper studied a fundamental problem of the risk of pri-
vacy violation for EVs dynamically querying for CS along
their journeys. The setting of the problem has not been ad-
dressed in the literature, and some of the related techniques
along the lines of privacy-preserving vehicle routing cannot
be adapted directly into the practical model considered in
this work. To address this, we theorised the notion of AGeol
allowing us to attain Geol in a strictly bounded space of
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secrets. Formally justifying its soundness and applicability by
proving the compositionality theorem, we derived the appro-
priate privacy parameters to prove that the truncated Laplace
mechanism satisfies AGeol and used it to propose a location
privacy-preserving method for EVs querying for CS. Our
method protects the privacy of both the specific positions of
the queries and the trace of the entire journey.

In the experiments, datasets with real vehicle traces and
locations were used to demonstrate the trade-off between
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privacy and utility and the impact of dummy locations on
this trade-off. We used IBU for real-time estimation of the
original distribution of the EVs from the reported (noisy)
locations. The proposed method is distinct from current ma-
chine learning-based approaches in that it considers real-time
changes in the number of location-based queries. Thus, our
method can capture the effect of unprecedented traffic varia-
tions on the occupancy of the CSs. Using IBU, we are capable
of predicting the likelihood of a particular station being oc-
cupied by another vehicle at the time of arrival and, hence,
enable an online prediction technique to estimate the avail-
ability of CS around an EV and, in turn, allowing users to do
convenient route planning. A consistent trend of a substantial
majority of the EVs to have “privacy for free” was observed
across all the experiments, i.e., most of the EVs suffer no loss
of utility even for fairly high-level formal AGeol. In general,
we observe that the cost of privacy induced by our method
is fairly low across settings, thus, ensuring privacy protection
for the location of the EVs without incurring a high price to
pay for that. We dissected this cost of privacy incurred by our
method using Voronoi decomposition to draw insight into the
privacy-utility trade-off from a foundational perspective.
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