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Brief Announcement:
Global certification via perfect hashing

NICOLAS BOUSQUET, LAURENT FEUILLOLEY, and SÉBASTIEN ZEITOUN

In this work, we provide an upper bound for global certification of graph homomorphism, a generalization of

graph coloring. In certification, the nodes of a network should decide if the network satisfies a given property,

thanks to small pieces of information called certificates. Here, there is only one global certificate which is

shared by all the nodes, and the property we want to certify is the existence of a graph homomorphism to a

given graph.

For bipartiteness, a special case of graph homomorphism, Feuilloley and Hirvonen proved in [3] some upper

and lower bounds on the size of the optimal certificate, and made the conjecture that their lower bound could

be improved to match their upper bound. We prove that this conjecture is false: their lower bound was in fact

optimal, and we prove it by providing the matching upper bound using a known result of perfect hashing.

1 INTRODUCTION
The topic of certification originates from self-stabilization in distributed computing, and consists

in the following. Nodes of a network are provided with a unique identifier, and with some pieces

of information called certificates. These certificates can either be local (each node receive its own

certificate), or global (there is a unique certificate, which is the same for all the nodes). The aim of

the nodes is then to decide if the network satisfies a given property. To do so, each node should

take its decision (accept or reject) based only on its local view in the network, which consists in its

neighbors, their identifiers and their certificates. The correctness requirement for a certification

scheme is the following one: for every network, the property is satisfied if, and only if, there exists

an assignment of the certificates such that all the nodes accept. Unsurprisingly, the parameter we

want to optimize is the size of the certificates, which is usually expressed as a function of 𝑛, the

number of nodes in the network. For a given property P, the optimal size of the certificates can be

seen in some sense as a measure on the locality of P: the smaller it is, the more local P is. We refer

to the survey [2] for an introduction to certification.

As mentioned above, there are two kinds of locality in certification. In one case, the certificates are

local, and the verification is local too; in the other case, the certificate is global, but the verification

remains local. When speaking about local or global certification, we thus refer to the locality or

globality of the certificate (and not of the verification, which is always local). In general, these two

kinds of certification are somehow linked, because bounds for one can be derived from bounds for

the other. Namely, a global certification scheme is a particular case of a local one, and conversely, a

local certification scheme can be transformed into a global one by giving as global certificate the

list of the local certificates of each node in the network (so that each node can simulate the local

certification scheme by recovering its own local certificate from the global one, see [3] for more

details). However, these generic transformations are often not optimal.

In this work, the property we want to certify is the existence of a homomorphism to a given

graph 𝐻 . A particular case which has already been studied in [3] is bipartiteness (it corresponds to

the case where 𝐻 is a clique on two vertices). Note that there exists a local certification scheme

for bipartiteness using only one bit per vertex (where the certificate is the color in a proper two-

coloring, and the verification of every node just consists in checking if it received a different color

from all its neighbors). Here, we focus on global certification, and with a global certificate it is less

clear how to certify it. Authors in [3] made the following Conjecture 1 (which is also discussed

in [2], see Open Problem 9), in the standard case where the range of identifiers is polynomial in 𝑛:
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Conjecture 1. The optimal size for global certification of bipartiteness is Θ(𝑛 log𝑛).

In [3], the authors proved upper and lower bounds, both parametrized by 𝑛 (the number of

vertices in the graph), and by the range of identifiers, denoted by𝑀 (𝑛) (or simply𝑀 , keeping in

mind that it is a function of 𝑛). More precisely, they proved the following:

Theorem 2. Let 𝑠 denote the optimal size for global certification of bipartiteness. Then, we have:

𝑠 = Ω(𝑛 + log log𝑀) and 𝑠 = 𝑂 (min{𝑀,𝑛 log𝑀})

In the standard case where𝑀 = 𝑛𝑐 for some constant 𝑐 > 1, Conjecture 1 is equivalent as saying

that the lower bound of Theorem 2 can be improved to match the upper bound. It would also

mean that the generic transformation which turns a local certification scheme of size 𝑂 (1) into a

global one of size 𝑂 (𝑛 log𝑛) (where the global certificate is the list of the local certificates with
each corresponding identifier), is optimal for bipartiteness.

In fact, we show that Conjecture 1 is false. Interestingly, it turns out that the lower bound of

Theorem 2 is optimal, as stated in Theorem 3.

Theorem 3. There exists a global certification scheme for bipartiteness with a certificate of size
𝑂 (𝑛 + log log𝑀).

Note that, in the standard case where 𝑀 is polynomial in 𝑛, it gives a certificate of size Θ(𝑛),
which is better than the generic transformation from 𝑂 (1)-local certificates to a 𝑂 (𝑛 log𝑛)-global
one, corresponding to Conjecture 1. Note also that this bound remains Θ(𝑛) even in the case where

𝑀 = 2
2
𝑂 (𝑛)

(while the previous upper bound provided by Theorem 2 would be 2
𝑂 (𝑛)

in that case).

We actually prove a generalization of Theorem 3, in terms of graph homomorphisms. Remember

that a homomorphism from a graph 𝐺 to a graph 𝐻 is a function 𝜑 : 𝑉 (𝐺) → 𝑉 (𝐻 ) such that,

for every edge {𝑢, 𝑣} ∈ 𝐸 (𝐺), we have {𝜑 (𝑢), 𝜑 (𝑣)} ∈ 𝐸 (𝐻 ). Graph homomorphisms generalize

graph colorings, since one can easily remark that a graph is 𝑘-colorable if and only if there exists a

homomorphism from𝐺 to the clique on 𝑘 vertices. For example, a graph is bipartite if and only if

there is a homomorphism from 𝐺 to an edge.

Our main result is then the following.

Theorem 4. Let 𝐻 = (𝑉 ′, 𝐸′) be a graph. There exists a global certification scheme for the existence
of a homomorphism to 𝐻 with a certificate of size 𝑂 (𝑛 log𝑛′ + log log𝑀) (where 𝑛′ = |𝑉 (𝐻 ′) |).

Finally, let us give some intuition on the proof technique used to obtain the bound of Theorem 3

(which is the same as in Theorem 4 because it is just a particular case). As well as in the proof of

the upper bounds of Theorem 2, the prover writes a proper two-coloring in the certificate. Then,

each vertex recovers its own color and the colors of its neighbors, and checks if the coloring is

locally correct. What differs is the way to encode this coloring. For the 𝑂 (𝑀) bound, the prover
gives as certificate a list of𝑀 bits, where the color of the vertex with identifier 𝑖 ∈ {0, . . . , 𝑀 − 1} is
the 𝑖-th bit of the list. For the 𝑂 (𝑛 log𝑀) bound, the certificate is the following: for each identifier

𝑖 appearing in the graph, the prover writes 𝑖 (with 𝑂 (log𝑀) bits) together with the color of the

vertex having the identifier 𝑖 . In the new upper bound of Theorem 3, the idea is to somehow

compress the identifiers in the range {1, . . . , 𝑛}, and then use the same technique as for the 𝑂 (𝑀)
bound. The compression phase is performed using a known result of perfect hashing, stated in

Theorem 7. This result have independently been used in [1] with another type of labeling, but to

our knowledge, it is the first time that perfect hashing is used in distributed computing. We hope

that this technique could have other applications in future works, in particular for problems related

to space complexity.
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2 MODEL AND DEFINITIONS
For completeness, let us remind some basic graph definitions. All the graphs we consider are finite,

simple, and non-oriented. Let 𝐺 = (𝑉 , 𝐸) be a graph. For every 𝑢 ∈ 𝑉 , we denote by 𝑁 (𝑢) the open
neighborhood of 𝑢, which is set of vertices 𝑣 ∈ 𝑉 such that {𝑢, 𝑣} ∈ 𝐸. A proper two-coloring of 𝐺

is a function 𝜑 : 𝑉 → {0, 1} such that, for every 𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑁 (𝑢), we have 𝜑 (𝑢) ≠ 𝜑 (𝑣). We

remind that a graph 𝐺 is bipartite if and only if it has a proper two-coloring.

Now, let us define formally the model of certification. Let𝑀 : N→ N, called the identifier range
(which is fixed: it is part of the framework for which certification schemes will be designed). Let

𝑛 = |𝑉 |. In the following, we just write𝑀 instead of𝑀 (𝑛) to have lighter notations. An identifier
assignment of 𝐺 is an injective mapping 𝐼𝑑 : 𝑉 → {0, . . . , 𝑀 − 1}. Finally, let 𝐶 be a set, called the

set of certificates.

Definition 5. Let 𝐼𝑑 be an identifier assignment of 𝐺 , and 𝑐 ∈ 𝐶 (called the global certificate). Let
𝑢 ∈ 𝑉 . The view of 𝑢 consists in all the information available in its neighborhood, that is:

• its own identifier 𝐼𝑑 (𝑢);
• the set of identifiers of its neighbors, which is {𝐼𝑑 (𝑣) | 𝑣 ∈ 𝑁 (𝑢)};
• the global certificate 𝑐 .

A verification algorithm is a function which takes as input the view of a vertex, and outputs a

decision (accept or reject).
Let P be a property on graphs. We say that there is a global certification scheme with size 𝑠 (𝑛)

and identifier range𝑀 if there exists a verification algorithm 𝐴 such that, for all 𝑛 ∈ N, there exists
set 𝐶 of size 2

𝑠 (𝑛)
satisfying the following condition: for every graph𝐺 with 𝑛 vertices, 𝐺 satisfies

P if and only if, for every identifier assignment 𝐼𝑑 with range 𝑀 , there exists a certificate 𝑐 ∈ 𝐶

such that 𝐴 accepts on every vertex.

A verification algorithm is just a function, with no more requirements. In particular, it does not

have to be decidable. However, in practice, when designing a certification scheme to prove upper

bounds, it turns out to be decidable and often computable in polynomial time. The fact that no

assumptions are made on this verification function in the definition just strengthens the results

when proving lower bounds, by showing that it does not come from computational limits.

Let us give a last definition, about perfect hashing.

Definition 6. Let 𝑘, ℓ ∈ N with 𝑘 ⩽ ℓ , and let𝐻 be a set of functions {0, . . . , ℓ − 1} → {0, . . . , 𝑘 − 1}.
a) A function ℎ ∈ 𝐻 is a perfect hash function for 𝑆 ⊆ {0, . . . , ℓ − 1} if ℎ(𝑥) ≠ ℎ(𝑦) for all 𝑥,𝑦 ∈ 𝑆 ,

𝑥 ≠ 𝑦.
b) The family of functions𝐻 is a (𝑘, ℓ)-perfect hash family if, for every 𝑆 ⊆ {0, . . . , ℓ −1} with |𝑆 | = 𝑘 ,

there exists ℎ ∈ 𝐻 which is perfect for 𝑆 .

3 MAIN RESULT
Let us now prove our main result:

Theorem 4. Let 𝐻 = (𝑉 ′, 𝐸′) be a graph. There exists a global certification scheme for the existence
of a homomorphism to 𝐻 with a certificate of size 𝑂 (𝑛 log𝑛′ + log log𝑀) (where 𝑛′ = |𝑉 (𝐻 ′) |).

The key ingredient to prove Theorem 3 is the following Theorem 7 (see e.g. [4] for a proof).

Theorem 7. Let 𝑘, ℓ ∈ N with 𝑘 ⩽ ℓ . There exists a (𝑘, ℓ)-perfect hash family 𝐻𝑘,ℓ which has size
⌈𝑘𝑒𝑘 log ℓ⌉.

Proof of Theorem 3. Let us describe a global certification scheme for the existence of a homo-

morphism to 𝐻 using a certificate of size 𝑂 (𝑛 log𝑛′ + log log𝑀) where 𝑛′ = |𝑉 (𝐻 ) |. First, since
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𝐻 has 𝑛′ vertices, we can number them from 1 to 𝑛′ and write the number of a vertex of 𝐻 on

log𝑛′ bits. Similarly, for every 𝑘, ℓ ∈ N with 𝑘 ⩽ ℓ , by applying Theorem 7, we can number

the functions in 𝐻𝑘,ℓ between 0 and |𝐻𝑘,ℓ | − 1. Thus, a function of 𝐻𝑘,ℓ can be represented using

log |𝐻𝑘,ℓ | = 𝑂 (𝑘 + log log ℓ) bits.
Let 𝐺 = (𝑉 , 𝐸) be a graph with |𝑉 | = 𝑛, for which there exists a homomorphism 𝜑 from 𝐺 to 𝐻 .

Let 𝐼𝑑 be an identifier assignment of 𝐺 . The certificate given by the prover is the following one.

Let us denote by 𝑆 := {𝐼𝑑 (𝑣) | 𝑣 ∈ 𝑉 } the set of identifiers appearing in 𝐺 . The set 𝑆 is included

in {0, . . . , 𝑀 − 1} and has size 𝑛. Let ℎ ∈ 𝐻𝑛,𝑀 be a perfect hash function for 𝑆 . By definition,

the function ℎ induces a bijection between 𝑆 and {0, . . . , 𝑛 − 1}. Let 𝐿 be the list of size 𝑛 such

that the 𝑖-th element of 𝐿, denoted by 𝐿[𝑖], is equal to 𝜑 (𝑣), where 𝑣 is the unique vertex in 𝑉

such that ℎ(𝐼𝑑 (𝑣)) = 𝑖 . The certificate given by the prover to the vertices is the triplet (𝑛,ℎ, 𝐿),
where ℎ is represented by its numbering in 𝐻𝑛,𝑀 . Since it uses 𝑂 (𝑛 log𝑛′) bits to represent 𝐿 and

𝑂 (𝑛 + log log𝑀) bits to represent ℎ, the overall size of the certificate is 𝑂 (𝑛 log𝑛′ + log log𝑀).
Let us describe the verification algorithm. Each vertex 𝑢 does the following. First, it reads 𝑛 in

the global certificate and computes𝑀 . Then, it can determine ℎ in 𝐻𝑛,𝑀 thanks to its numbering in

the certificate. Finally, 𝑢 accepts if and only if, for all 𝑣 ∈ 𝑁 (𝑢), {𝐿[ℎ(𝐼𝑑 (𝑢))], 𝐿[ℎ(𝐼𝑑 (𝑣))]} ∈ 𝐸′
. If

it is not the case, 𝑢 rejects.

Let us prove the correctness. First, assume that 𝐺 admits indeed a homomorphism to 𝐻 . Then,

by giving the certificate as described above, since 𝜑 is a homomorphism, each vertex 𝑢 ∈ 𝑉 accepts.

Conversely, assume that every vertex accepts with some certificate 𝑐 , and let us prove that there

exists a homomorphism from 𝐺 to 𝐻 . Since all the vertices accept, every vertex 𝑢 checked if

{𝐿[ℎ(𝐼𝑑 (𝑢))], 𝐿[ℎ(𝐼𝑑 (𝑣))]} ∈ 𝐸′
for every 𝑣 ∈ 𝑁 (𝑢), for some function ℎ which is written in 𝑐 .

Note that nothing ensures that ℎ is indeed a perfect hash function for the set 𝑆 of identifiers, but

in fact, it is not necessary to check that ℎ is injective on 𝑆 . Indeed, since every vertex 𝑢 accepted,

then for every 𝑣 ∈ 𝑁 (𝑢), we have {𝐿[ℎ(𝐼𝑑 (𝑢))], 𝐿[ℎ(𝐼𝑑 (𝑣))]} ∈ 𝐸′
. So 𝜑 (𝑢) := 𝐿[ℎ(𝐼𝑑 (𝑢))] defines

a homomorphism from 𝐺 to 𝐻 . Thus, it proves the correctness of the scheme. □

4 GENERALIZATION : GLOBAL CERTIFICATION OF A CONSTRAINT SATISFACTION
PROBLEM

More generally, perfect hashing can be used to certify the existence of a solution to a Constraint

Satisfaction Problem (abbreviated into CSP). A CSP consists in a set 𝑉 of variables, a domain 𝐷

of values for the variables, and a set 𝐶 of constraints. We say that it admits a solution if there is a

mapping from the variables to the domain, satisfying all the constraints. For instance, 𝑘-colorability

is a particular case of a CSP, where there is one variable 𝑥𝑢 for each vertex 𝑢, the domain is

{0, . . . , 𝑘 − 1}, and the constraints are 𝑥𝑢 ≠ 𝑥𝑣 for every edge {𝑢, 𝑣}.
Using the same perfect hashing technique, we can design a global certification scheme in

𝑂 (𝑛 log |𝐷 | + log log𝑀) for the existence of a solution for any CSP with 𝑛 variables and domain 𝐷 ,

such that the variables perform the verification, have identifiers, and each variable 𝑣 knows the

identifiers of all the variables𝑤 sharing a constraint with 𝑣 .

Acknowledgments. The authors would like to thank William Kuszmaul for fruitful discussion on

hashing.
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