
HAL Id: hal-04467821
https://hal.science/hal-04467821

Preprint submitted on 20 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local certification of forbidden subgraphs
Nicolas Bousquet, Linda Cook, Laurent Feuilloley, Théo Pierron, Sébastien

Zeitoun

To cite this version:
Nicolas Bousquet, Linda Cook, Laurent Feuilloley, Théo Pierron, Sébastien Zeitoun. Local certification
of forbidden subgraphs. 2024. �hal-04467821�

https://hal.science/hal-04467821
https://hal.archives-ouvertes.fr

Local certification of forbidden subgraphs

NICOLAS BOUSQUET, Univ Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, France
LINDA COOK, Discrete Mathematics Group, Institute for Basic Science (IBS), Republic of Korea
LAURENT FEUILLOLEY, Univ Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, France
THÉO PIERRON, Univ Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, France
SÉBASTIEN ZEITOUN, Univ Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, France

Abstract
Detecting specific structures in a network has been a very active theme of research
in distributed computing for at least a decade. In this paper, we start the study of
subgraph detection from the perspective of local certification. Remember that a local
certification is a distributed mechanism enabling the nodes of a network to check
the correctness of the current configuration, thanks to small pieces of information
called certificates. Our main question is: For a given graph 𝐻 , what is the minimum
certificate size that allows checking that the network does not contain 𝐻 as a (possibly
induced) subgraph?
We show a variety of lower and upper bounds, uncovering an interesting interplay
between the optimal certificate size, the size of the forbidden subgraph, and the
locality of the verification. Along the way we introduce several new technical tools, in
particular what we call the layered map, which is not specific to forbidden subgraphs
and that we expect to be useful for certifying many other properties.

1 INTRODUCTION
1.1 Context
Finding some given small structures in a graph, triangles for example, has become a major theme
in the area of distributed graph algorithms. A lot of effort has been put recently in understanding
various versions of this problem (detection, listing, counting, and testing) in several congested
models, especially Congest and Congested cliqe. We refer to the recent survey by Censor-
Hillel [3] for an introduction to the topic and a full bibliography. This fundamental problem turned
out to be very challenging and has been an incubator for new techniques, such as the expander
decompositions [6] (that has later been used in other contexts, for example for derandomizing
minimum spanning tree construction [7]).

Substructure detection has also become an important research topic in the more specific field of
local certification. In local certification, one is interested in how much memory it takes to store a
locally checkable certification of some given property. More precisely, for a given property, a local
certification consists in a local algorithm taking as input a neighborhood around each node, along
with labels assigned to nodes, called certificates, and outputting a binary decision, accept or reject.
A certification scheme is correct if the following holds: there exists an assignment of certificates
such that the local algorithm accepts at every node, if and only if, the property is satisfied in the
network. Actually, the notion originates from self-stabilization [27], where one certifies the output
of an algorithm, but in this paper we will focus on properties of the network itself. We refer to [16]
for an introduction to local certification. (Formal definitions will be given later.)

Authors’ addresses: Nicolas Bousquet, Univ Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, Villeurbanne, France, nicolas.
bousquet@univ-lyon1.fr; Linda Cook, Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, Republic of
Korea, lindacook@ibs.re.kr; Laurent Feuilloley, Univ Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, Villeurbanne, France,
laurent.feuilloley@univ-lyon1.fr; Théo Pierron, Univ Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, Villeurbanne, France,
theo.pierron@univ-lyon1.fr; Sébastien Zeitoun, Univ Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, Villeurbanne,
France, sebastien.zeitoun@univ-lyon1.fr.

ar
X

iv
:2

40
2.

12
14

8v
1

 [
cs

.D
C

]
 1

9
Fe

b
20

24

The classic measure of quality of a local certification is the size of the certificate, as a function of 𝑛,
the size of the graph. For example, certifying that a graph is acyclic can be done with certificates of
size 𝑂 (log𝑛), and this is optimal. One often separates graph properties into two broad categories:
the ones that have a compact certification, that is of (poly)logarithmic size, and the ones that do
not, and typically need linear or even quadratic size1. This distinction can be seen as a local versus
global dichotomy, if one considers the certificates to be the amount of global information needed to
locally decide a property. Understanding what are the properties that fall in each of these regimes
has been a major direction in the area in recent years, in particular with meta-theorems partially
capturing the compact properties [17, 22, 23].

When it comes to local certification of network substructures, the positive case, that is certifying
that a given substructure exists in the network, is often easy. Indeed, one can often simply put
the names of the vertices involved in the certificates of all vertices, and use a locally-encoded
spanning tree to point to a node of the structure. The real challenge is to certify that some structure
is absent from the network, which is intuitively a much more global property. In that direction, the
community has been focusing on one type of substructures, namely graph minors. Remember that
a graph 𝐻 is a minor of a graph 𝐺 is it can be obtained from 𝐺 by edge and vertex removals, as
well as edge contractions. The following is one of the key questions of the area.

Conjecture 1.1 (Excluded-minor certification conjecture). For every graph 𝐻 , certifying that a
graph is 𝐻 -minor-free can be done with certificates of size 𝑂𝐻 (log𝑛).

The conjecture has been proved for planar graphs [19], bounded-genus [13, 20], small excluded
minors [1], path and cycle minors [17], and planar minors (with polylogarithmic certificates) [23].
A relaxed version has also been proved for every 𝐻 [14], but the full conjecture is still widely open.

In this paper, our focus is not minors but another type of substructure, namely subgraphs, which
are actually more popular in distributed computing, as discussed above. The general question we
want to answer is the following.

Question 1.2. What is the optimal label size for certifying that the network does not contain a fixed
graph 𝐻 as a non-induced or an induced subgraph?

Remember that a graph 𝐻 is a (non-induced) subgraph of 𝐺 if it can be obtained from 𝐺 by
removing vertices and edges, and an induced subgraph of𝐺 if it can be obtained from𝐺 by removing
only vertices (and the edges adjacent to these removed vertices).2,3 Subgraphs, which are very
localized in the graph, might look easier to manage than minors, which can span a large part of
the graph (because of the contraction operation). And indeed, if one allows the local verification
algorithm to look at large enough (constant) distance, every node can see whether the forbidden
subgraph appears or not in its neighborhood. But if we do not allow this, then the problem seems
to become more challenging than for minors. Intuitively, since minors can appear in many ways
in a graph, forbidding one constrains the graph structure a lot, and one can use this structure for
certification. For example, forbidding a triangle as minor implies that the graph is a tree, while
forbidding a triangle as induced subgraph still leaves a very complex graph class.

1Any property can be certified with a quadratic number of bits in this model, with certificates encoding the adjacency
matrix, see e.g. [16].
2In the literature, these two cases are simply called subgraph and induced subgraph, but to better differentiate we often add
non-induced or non-necessarily induced to qualify the first case.
3For subgraph detection, induced subgraphs have been less popular, for no obvious reason, except maybe that they are
difficult to manage. A paper that focuses on induced subgraphs is [28].

1.2 Discussion of previous work and refinement of the question
As mentioned earlier, there is a large literature on subgraphs detection in various distributed models.
In general, results in these models are difficult to adapt to local certification. Indeed, on the one
hand, the non-constructive aspect of certificates makes the latter a stronger model, but on the other
hand, local certification is a broadcast-type model, in the sense that all neighbors see the same
information from a specific node, which implies that comparisons with unicast models such as
Congest are rarely useful.4

The only model that is clearly useful for us is Broadcast Congest where, at each round, each
node sends the same𝑂 (log𝑛)-bit message to all its neighbors. Suppose that there is an upper bound
of 𝑓 (𝑛) rounds in this model to detect some subgraph (where detection means that if the graph
contains one or several copies of the subgraph, then at least one node will detect at least one copy).
Then we can derive an upper bound of𝑂 (𝑓 (𝑛) log𝑛) for certification, by encoding in the certificate
of each node all the messages that it sends during the run of the algorithm. Indeed, given this
information, every node can check that the run is correct, and a node rejects this certification in
the end, if and only if, the output of the original algorithm is a detection.

A nice result proved in [15, 26] is that any tree on 𝑘 vertices can be detected in𝑂 (𝑘2𝑘) rounds of
the Broadcast Congest model. From this result and the reasoning above, we derive the following
theorem.

Theorem 1.3 (Derived from [15, 26]). For any tree 𝑇 , certifying that a graph contains 𝑇 as a (not
necessarily induced) subgraph can be done with certificates of size 𝑂 (log𝑛) bits.

Actually, one can also derive this result from the meta-theorem of [17] (see Corollary 2.7, noting
that forbidding a path of length 𝑡 as a minor is equivalent to forbidding it as a (non-induced)
subgraph). From the same paper, one can adapt a matching lower bound (see Section 7 in [17]).
Given that the techniques to obtain Theorem 1.3 are very specific to non-induced subgraphs

(roughly, a lot of information about non-edges is lost in the kind of compression that allows to
store so little information), a first concrete question is the following.

Question 1.4. What is the optimal certificate size for induced trees?

For this question, the only non-trivial case known in the literature is for 𝑃4-free graphs5, which
can be certified with 𝑂 (log𝑛) bits [22]. This proof is not really helpful to understand the general
case, since it heavily uses the fact that 𝑃4-free graphs are the same as cographs, a graph class whose
well-understood structure can be efficiently utilized for certification.

For lower bounds, results in BROADCAST CONGEST cannot be adapted directly, but the tech-
niques can sometimes be borrowed. This is the case for the following theorem for cliques. (Note
that, for cliques, induced and non-induced subgraphs are equivalent.)

Theorem 1.5 (Derived from Proposition 5 in [9], see also [11]). For constant 𝑘 , certifying
𝐾𝑘 -free graphs requires certificates of size Ω(𝑛/𝑒𝑂 (log

√
𝑛)) bits.

Actually, [9] only mentions the result for triangles, but it is easy to generalize it to cliques.
Indeed, if there would exist a more compact certification of larger cliques, one could use it to certify
triangles, by simulating 𝑘 − 3 virtual nodes adjacent to every node of the graph, i.e. by giving their
certificate in a 𝐾𝑘 -freeness certification to every node of the original graph.
At that point, one might simply conclude that being 𝐾𝑘 -free is a global property, since it needs

polynomial size proof, and move on to the next problem. We claim that understanding where is the
4The topic of broadcast versus unicast in local certification has been explored in [30].
5Remember that 𝑃𝑘 denotes the path on 𝑘 vertices, and we will also use 𝐾𝑘 for cliques on 𝑘 vertices.

right complexity on the spectrum between Θ(𝑛) and Θ(𝑛2) (or more precisely Θ(𝑚), where𝑚 is the
number of edges) is actually an important question. A useful analogy here is with the CONGEST
model, where algorithm running in 𝑂 (𝑛) rounds are considered efficient (and are often optimal),
whereas larger complexities, especiallyΘ(𝑛2), means that the problem is hard. The same intuition is
true for local certification: using 𝑜 (𝑛2) bits means that (in dense graphs) we can avoid transferring
information about all the edges, and having (quasi-)linear certificates means that one can store
only a small piece of information per node of the graph. We will see later that this approach is also
fruitful technically, since it forces one to design nice new tools and data structures.

We phrase this point of view into a question.

Question 1.6. For the (induced) subgraphs that require polynomial certificate size, what are the
right polynomials? Are they (quasi)-linear in the number of vertices, or in the number of edges? Or in
between?

As a side remark, note that when forbidding non necessarily induced subgraphs or minors, and
taking only 𝑛 as a parameter, one can use the fact that the number of edges is bounded away
from 𝑛2, but this is not true for induced subgraphs (for example a clique does not contain any
induced copy of 𝑃𝑘 for 𝑘 > 2).

For the case of cliques, we can actually almost match the lower bound of Theorem 1.5.

Theorem 1.7. Certifying that a graph does not contain a given constant-size clique as a subgraph
can be done with 𝑂 (𝑛 log𝑛) bits.
To establish this theorem, we give as a certificate to each node the list of the identifiers of its

neighbors. Of course, this is useless for the node itself, since it knows this information, but it allows
its neighbors to have knowledge at distance 2, which is enough for detecting cliques.6 Note that
this techniques is not restricted to cliques: it applies to any setting where the forbidden subgraph
would be detected automatically if we could increment the radius by 1.

After paths and cliques, a natural direction is to target cycles and some specific small subgraphs
(e.g. diamonds). Here, we know from personal communication [8] that some cases have been solved:
non-induced cycles require Ω(𝑛) bits, and the technique based on triangles [9, 11] allows proving
subpolynomial lower bounds for various small graphs. We take another direction, that opens new
perspectives and, as side results, we will also obtain answers to some of these questions.

As mentioned earlier, certifying that a subgraph is absent from a graph is trivial if the nodes can
see far enough in the graph, and the results above illustrate that we have some understanding of
the distance 1 case. Our main question is: what happens in between?

Question 1.8. What is the optimal size for forbidden induced or non-induced subgraphs, as a function
of the verification radius and of the subgraph size?

It is very unclear what one should expect. Is it the case that, even with radius 2, the certificate
size drops? Or on the contrary, one should see (almost) all the subgraphs in order to gain from a
larger verification view? Note that increasing the verification radius beyond 1 means that the view
of a vertex might contain a quadratic number of edges. This rules out the intuitive lower bound
argument that the view at distance 1 of a node contains only at most 𝑛 edges and 𝑛 certificates,
when 𝑛2 bits of information is necessary. In this sense, the lower bounds are more difficult, and
adding on top that we look for constructions that hold even for induced subgraphs, makes it
especially challenging. Also, the increased radius allows for more fancy upper bound techniques,
for example if some node would “naturally” receive a large certificate, we can cut it into pieces and
distribute it to its neighbors to average the maximum certificate size.
6To our knowledge, this observation has never been used in local certification, but can be considered as folklore.

Note that the idea of increasing the verification radius is not new: it has been introduced
for constant radius (larger than 1) in [24], and non-constant radius in [18, 29], with recent new
developments motivated by the so-called trade-off conjecture [2]. In this paper, the focus is slightly
different, since the radius has to be compared to the subgraph size. In particular, questions like
“can we go down to constant-size certificates if we look far enough?” are trivial to answer.

Additional discussion and motivation will be given in Section 1.4, after we describe our results.

1.3 Our results and techniques
The results of this paper are upper and lower bounds for certifying that a given subgraph does
not appear in the network. The lower bound applies to any verification radius 𝑘 , while the upper
bounds apply for 𝑘 ⩾ 2.

Paths as benchmark. For concreteness, let us start with Table 1, that summarizes the different
results we get for induced paths.

Forbidden induced subgraph Certificate size Reference
𝑃2𝑘−1 0 Direct
𝑃2𝑘+1 𝑂 (𝑛 log𝑛) Discussion after Theorem 1.7
𝑃3𝑘−1 𝑂 (𝑛 log3 𝑛) Theorem 1.12
𝑃⌈ 14

3 𝑘⌉−1 𝑂 (𝑛3/2 log2 𝑛) Theorem 1.13
𝑃4𝑘+3 Ω(𝑛

𝑘
) Theorem 1.9

Table 1. Bounds for induced paths verification when vertices can see at distance 𝑘 ⩾ 2.

We will see later in this section that several of our results hold for more general subgraphs
(induced and non-necessarily induced), but paths are good as a benchmark, and all our techniques
were first designed for paths and then generalized.

Let us make a few observations on this table before we review the theorems and techniques. A
first observation is that all of these bounds are in the polynomial regime. Hence a general insight is
that compact certifications do not exist for forbidden subgraphs, except for specific cases (e.g. 𝑃4-free
graphs and non-necessarily induced trees) or for cases where we forbid several subgraphs (see the
additional related work, Subsection 1.4). But, as argued earlier, there is an important difference
between certifying with Θ(𝑛) bits and Θ(𝑛2) bits, and in this regime, a lot can be done. A second
observation is that our upper bounds are increasing faster when we increase the ratio between the
path length and the radius, but without crashing into Θ(𝑛2). This suggests that there might be a
trade-off, although our lower bound does not allow such a parametrization. Finally, since our lower
bound applies for paths of length at least 4𝑘 + 3, we do not rule out that below this length a very
compact certification exist. We do not believe this to be true, and think that the right bound should
be close to our upper bounds. Also note that we do have non-trivial polynomial upper and lower
bounds for lengths between 4𝑘 + 3 and ⌈(14/3)𝑘⌉ − 1.

Lower bounds. Our lower bound is the following.
Theorem 1.9. When the vertices can see at distance 𝑘 , at least Ω(𝑛

𝑘
) bits are needed to certify𝑇 -free

graphs, where 𝑇 is either 𝑃4𝑘+3 or a tree of diameter at least 4𝑘 + 2 without degree 2 vertices.
While we designed our lower bound arguments to handle paths, we believe they can be extended

to all trees of diameter at least 4𝑘 + 2, but the proof becomes more technical. To avoid too much
technicalities, we rather extend it only to the trees without degree 2 vertices.

The general technique to establish this lower bound is inspired by the now classic reduction from
non-deterministic communication complexity. There are actually several challenges to overcome
for this to work with induced structures, but this discussion is deferred to Section 3.

Note that when restricting to radius 1, this theorem implies that 𝑃7-free graphs are hard to certify,
while we already know that 𝑃4-free graphs are easy. We leave the remaining path lengths open.

Overview of our core upper bound technique. All our upper bounds use the same tool, that we
call a layered map, which can be seen as a refinement of the so-called universal scheme (that we
remind below). Just like the universal scheme, our layered maps are not specific to one type of task,
and we believe they can be used in various contexts beyond subgraph finding. On the contrary, the
tools we implement on top of these layered maps, are specific to subgraph detection.

Remember that in the universal scheme, the prover gives as certificate to every node the full map
of the graph, and the vertices check that they have been given the same map as their neighbors, and
that the map locally coincides with their neighborhoods. This takes 𝑂 (𝑛 log𝑛 +min(𝑚 log𝑛, 𝑛2))
bits (where𝑚 is the number of edges), using adjacency matrix or adjacency lists. Now, to make
use of the larger verification radius, we use an idea from [18], which is to spread the map. More
precisely: on correct instances, the prover cuts the map into pieces and distribute it to the nodes of
the graph in such a way all the vertices can see all the pieces in their neighborhood. Every vertex
then simply reconstructs the map, and resumes the universal scheme.
This technique works well if the neighborhood at distance 𝑘 is large enough to drastically

decrease the certificate size. This is the case for example when the minimum degree of the graph
is polynomial, but in general this assumption is not met. Our layered map is a relaxed version of
this spread universal scheme, where the nodes are given different certificates depending on their
degree, and are able to check “partial maps” of the graph.
We describe the technique in the simpler setting with two groups of vertices, separating high

and low degrees with a threshold of
√
𝑛, and we show how this can be used to prove the following

theorem (which does not appear in Table 1 since it is superseded by better results).

Theorem 1.10. We can certify 𝑃4𝑘−1-free graphs by looking at distance 𝑘 with certificates of size
𝑂 (𝑛3/2 log2 𝑛).

Intuitively, the high-degree vertices have enough neighbors to spread the whole map in their
neighborhood, while the subgraph restricted to the low degree vertices is sparse enough to be
given to all vertices (without spreading). The difficulty is that if the maps given to two high-degree
vertices are not equal, and if these nodes are separated by enough low degree nodes, no node will
be able to detect the inconsistency.
Actually, thanks to the radius 𝑘 , if two high-degree vertices can be joined by hopping to high-

degree vertices at distance at most 2𝑘 , and the certification is accepted, then their maps must
be identical. Therefore, we can define so-called extended connected components, or ECC for short,
which partition the sets of high-degree vertices into groups that must have the same map. Our first
technical work is to prove that we can certify exactly to all vertices the list of the ECCs, and how
they partition the vertex set, with linear-size certificates.

We now sketch how to prove Theorem 1.10. Suppose that𝐺 contains a path 𝑃 on 4𝑘 − 1 vertices.
Because different ECCs are at distance at least 2𝑘 , such a path can touch zero, one or two ECCs. In
the case of zero or one ECCs, the inconsistency issue raised earlier does not appear, and either the
maps given are incorrect (and detected as incorrect), or they are correct and the vertices can see
that they describe a graph with a long path. The case of two ECCs is more tricky. Essentially what
we do is to give and certify for every node the length of the longest path starting from it and going
towards the closest ECC. Along with other arguments, this ensures that at least one vertex will
detect a long path touching two ECCs. (More details in Section 5.)

List of the forbidden subgraph upper bounds. It will be easier to sketch the proofs of our improved
theorems once we will have formally described the layered maps, hence here we just list our results
for reference, and refer to Section 5 for discussion of the proof techniques.

Theorem 1.11. For every𝑘 ⩾ 2, we can certify𝐻 -free graphs by looking at distance𝑘 with certificates
of size 𝑂 (𝑛3/2 log2 𝑛) for every 𝐻 of size at most 4𝑘 − 1.

Actually, this theorem also holds for non-necessarily induced graphs. (The other theorems too,
but it is not relevant since they are about paths, and we know Theorem 1.3).

Theorem 1.12. For every 𝑘 ⩾ 2, we can certify 𝑃3𝑘−1-free graphs by looking at distance 𝑘 with
certificates of size 𝑂 (𝑛 log3 𝑛).

Theorem 1.13. For every 𝑘 ⩾ 2, we can certify 𝑃⌈ 14
3 𝑘⌉−1-free graphs by looking at distance 𝑘 with

certificates of size 𝑂 (𝑛3/2 log2 𝑛).

1.4 Additional related work and discussions
Certification size landscape. A fruitful line of work in the Local model consists in establishing

the landscape of complexities for the classic family of problems called Locally checkable languages,
LCLs for short; See e.g. [31]. In this perspective, one aims at characterizing the functions 𝑓 (𝑛)
for which there exists a problem whose optimal complexity is 𝑓 (𝑛). Developing the same kind of
theory for local certification size is an exciting research direction. So far, the only sizes for which
we have natural problems with tight bounds are: 𝑂 (1), Θ(log𝑛), Θ̃(𝑛) and Θ̃(𝑚), where Θ̃ means
up to subpolynomial factors. (One can actually build a problem for any size 𝑓 (𝑛,𝑚) above log𝑛,
but it is artificial in the sense that the definition of the problem refers to the function 𝑓 .)

The constant certification size regime contains local properties such as coloring (intuitively the
LCLs), and the dependency in other parameters such as the maximum degree has been explored very
recently [2]. The size Θ(log𝑛) is very common, with the archetypal problem being acylicity. See for
example the list of problems in [24], and the recent series of papers establishing meta-theorems for
this regime [17, 22, 23]. Actually, in some of these papers, the upper bounds are polylogs and not
logs, and they are not matching the lower bounds, leaving open whether some of these properties
have optimal certificate size Θ(log𝑐 𝑛), with 𝑐 > 1, or not.7 Finally, in the polynomial regime, we
know problems with complexity Θ̃(𝑛) (e.g. diameter ⩽ 3 [5]) and problems with complexity Θ̃(𝑚)
(e.g. symmetric graphs [24] and non-3-colorable graphs [24]). Our paper explores the polynomial
regime, but unfortunately since the bounds do not match we cannot conclude for sizes between
𝑛 and𝑚. Nevertheless, we believe that the case of induced paths of various sizes is a promising
direction in this landscape perspective.

Certification of graph classes and forbidden subgraphs. A recent trend in local certification has
been to focus on certifying graph property (e.g. planarity) instead of certifying the output of an
algorithm (e.g. that a set of pointers distributed on the nodes collectively form a spanning tree). Two
motivations behind this focus are that the optimal certification size can be seen as a measure the
locality of a graph property (raising interest from the graph theory community) and that algorithms
tailored to work on specific graph classes make more sense if one can ensure that the graph indeed
belongs to the class.
Among the classes studied, many are defined by forbidden minors, as discussed after Conjec-

ture 1.1. But some of these classes are not closed under minors, and are better described by families
7Minimum spanning trees with polynomial weights have optimal certificate size Θ(log2 𝑛) [27], but one of the log𝑛’s
originates from the encoding of the weights, hence this is not very satisfactory.

of forbidden induced subgraphs. For example, the authors of [25] tackle the case of chordal graphs
(that are characterized by forbidding all induced cycles of length at least 4) and several other classes
whose subgraph characterizations are more cumbersome: interval graphs, circular arc graphs,
trapezoid graphs and permutation graphs. For all these classes, [25] establishes a 𝑂 (log𝑛)-bit
certification. This might come as a surprise, since in this paper all the certifications are in the
polynomial regime. The reason for this contrast is that all the classes we have just mentioned are
very structured, and in particular have geometric representations, which can be used for certi-
fication. Very recently, it was proved that some classes are hard to certify even though they do
have geometric representation: 1-planar graphs, unit disk graphs and other related classes require
(quasi)-linear-in-𝑛 certificates [10].

Techniques based on bucketing by degree. As said earlier, our layered maps are based on bucketing
the vertices by degree. This is a classic step in distributed subgraph detection. A classic canvas for
detection algorithm is to first process the high-degree nodes, either arguing that there are few of
them (see e.g. [21]) or that many nodes are close to high degree nodes (see e.g. [4]), and then to
process low-degree nodes, often using color coding (a large part of these algorithms is randomized).
Another technique consists in computing an expander (or conductance) decomposition, to separate
the graph into parts that are well-connected (where one can basically compute as if the cluster
would be a clique) and parts of low degree (see e.g. [6, 12]).

Our understanding is that only general intuitions can be transfered from these algorithms to
our setting, namely: inside a cluster one should use the fact that it is easy to move/distribute
information, whereas in low-degree parts one should enjoy the fact that there are fewer edges,
hence fewer information to spread.

2 MODEL AND DEFINITIONS
2.1 Graph theory notions
In this paper, the network is modeled by an undirected graph without loops or parallel edges. The
number of nodes is denoted by 𝑛 and the number of edges is denoted by𝑚. A graph is 𝑑-regular if
all its vertices have degree 𝑑 . A graph is regular if it is 𝑑-regular for some 𝑑 .

We call 𝐻 an induced subgraph of 𝐺 if 𝐻 is obtained from 𝐺 by deleting a subset of the vertices
of 𝐺 and the edges incident to them. We call a graph 𝐻 -free if it does not contain 𝐻 as an induced
subgraph. We call 𝐻 a subgraph (sometimes specified as non-necessarily induced) of 𝐺 if 𝐻 is
obtained from 𝐺 by deleting a subset of the vertices of 𝐺 , the edges incident to them, and an
arbitrary subset of edges of𝐺 . We let 𝑃𝑘 ,𝐶𝑘 denote the path and cycle on 𝑘 vertices respectively.
The length of a path or cycle is the number of its edges.

We say two disjoint sets of vertices 𝑋,𝑌 are complete to each other if all possible edges between
𝑋 and 𝑌 are present. If there are no edges between 𝑋 and 𝑌 we say they are anticomplete. A set of
edges 𝑀 of a bipartite graph 𝐺 is a perfect matching if all the vertices of the graph are adjacent
to exactly one edge of 𝑀 . A set of edges in a bipartite graph is an antimatching, if they form a
complete bipartite graph without a perfect matching.

2.2 Local certification
In the networks we consider, the vertices are equipped with unique identifiers on 𝑂 (log𝑛) bits.
Certificates are labels attached to the vertices. The view at distance 𝑑 of a vertex 𝑣 consists of: (1)
the vertices at distance at most 𝑑 from 𝑣 , (2) the identifiers and certificates of these vertices, and (3)
the edges between these vertices, except the ones between two vertices at distance exactly 𝑑 .

Definition 2.1. We say that there exists a local certification at distance 𝑑 of size 𝑠 for a property 𝑃 if
there exists a local algorithm (called the verification algorithm) taking as input on every node 𝑣 the
view at distance 𝑑 , and outputting accept/reject such that:

• For every graph that satisfies the property 𝑃 , there exists a certificate assignment, with certifi-
cates of size at most 𝑠 (𝑛), such that the verification algorithm accepts at every node.

• For every graph that does not satisfy the property 𝑃 , for all certificate assignments, there exists
at least one node where the verification algorithm rejects.

In order to facilitate the writing, we say that the certificates are given by a prover. We can specify
how the certificates are assigned by the prover on correct instances (i.e. graphs satisfying the
property 𝑃), but we cannot control what happens on incorrect instances.

As an example, let us describe a local certification at distance 1, with certificate size𝑂 (log𝑛), for
checking that the graph is acyclic. On a correct instance, the prover chooses a node to be the root,
and gives as a certificate to every node its distance to the root. The verification algorithm checks
that the distances are consistent (typically that one neighbor has been assigned a strictly smaller
distance, and the others a strictly larger distance). Now if the graph has a cycle, for any certificate
assignment, the vertex with the largest assigned distance in the cycle has at least two vertices with
distance smaller than or equal to its distance, hence it rejects.

3 LOWER BOUND FOR PATHS
In this section, we prove the following theorem.

Theorem 1.9. When the vertices can see at distance 𝑘 , at least Ω(𝑛
𝑘
) bits are needed to certify𝑇 -free

graphs, where 𝑇 is either 𝑃4𝑘+3 or a tree of diameter at least 4𝑘 + 2 without degree 2 vertices.

Discussion of the challenges and features of the proof. At first sight, the proof of this theorem is a
reduction from the problem of non-disjointness in non-deterministic communication complexity,
which is now a classic tool in the area. We would like to highlight several challenges and new
features. First, we actually do not use communication complexity: we use a simple counting
argument, avoiding defining all the non-deterministic Alice-Bob set-up, and demystifying the core
of the argument. Second, the construction itself is very delicate. In classic proofs of the same flavor
(e.g. [5, 18]), one usually deals with a radius 𝑘 view in a very simple way: just replacing every edge
with a path of length 𝑘 . This is no good for us since we want to control very precisely the path
structure of the graph. Also, we need to care about non-edges everywhere in the construction
and not only in the part “encoding the disjointness”. Indeed, non-edges are crucial, since we know
from Theorem 1.3 that for non-necessarily induced paths, such a lower bound cannot hold. These
difficulties translate into a construction that blends cliques, matchings and antimatchings, and a
proof that requires a careful case analysis to rule out unexpected paths.

Proof. Let 𝑘, 𝑛 ∈ N, and 𝑇 be either 𝑃4𝑘+3 or a tree of diameter at least 4𝑘 + 2 without degree 2
vertices. Let 𝐻,𝐻 ′ be two bipartite graphs on the same vertex set {0, 1} × {1, . . . , 𝑛}. To have lighter
notations, we denote an edge by (𝑖, 𝑗) instead of ((0, 𝑖), (1, 𝑗)). Assume moreover that 𝐻 satisfies
the two following properties:

(i) For all (𝑖, 𝑗) ∈ {1, . . . , 𝑛}2, (𝑖, 𝑗) ∈ 𝐻 if and only if (𝑗, 𝑖) ∈ 𝐻 (𝐻 is symmetric)
(ii) For all 𝑖 ∈ {1, . . . , 𝑛}, (𝑖, 𝑖) ∈ 𝐻 (𝐻 is reflexive)

and the same holds for 𝐻 ′. We will construct a graph𝐺𝑘,𝑛 (𝐻,𝐻 ′) on 4𝑘 (𝑛 − 1) + |𝑇 | vertices, which
is 𝑇 -free if and only if 𝐻 and 𝐻 ′ do not have a common non-edge. The construction is illustrated
on Figure 1.

Let us construct the graph 𝐺𝑘,𝑛 (𝐻,𝐻 ′) in the following way. We construct 4𝑘 cliques of size 𝑛,
denoted by 𝐾0

1 , . . . 𝐾
0
2𝑘 , 𝐾

1
1 , . . . 𝐾

1
2𝑘 . In each clique, we number the vertices from 1 to 𝑛.8 For every

clique 𝐾 and 𝑖 ∈ {1, . . . , 𝑛}, we denote by 𝐾 [𝑖] the vertex numbered by 𝑖 in 𝐾 . We add the following
edges in 𝐺𝑘,𝑛 (𝐻,𝐻 ′):

• We put the bipartite graph 𝐻 between 𝐾0
1 and 𝐾1

1 , and 𝐻
′ between 𝐾0

2𝑘 and 𝐾
1
2𝑘 .

9

• For every 𝑗 ∈ {2, . . . , 2𝑘 − 1}, we put the perfect matching {(𝐾0
𝑗 [𝑖], 𝐾1

𝑗 [𝑖])}1⩽𝑖⩽𝑛 .
• For every 𝑗 ∈ {1, . . . , 2𝑘 − 1} and for every pair of cliques 𝐾,𝐾 ′ with 𝐾 ∈ {𝐾0

𝑗 , 𝐾
1
𝑗 }, 𝐾 ′ ∈

{𝐾0
𝑗+1, 𝐾

1
𝑗+1}, we put the antimatching defined by the complement of {(𝐾 [𝑖], 𝐾 ′ [𝑖])}1⩽𝑖⩽𝑛

between 𝐾 and 𝐾 ′ (that is, all the edges but the matching {(𝐾 [𝑖], 𝐾 ′ [𝑖])}1⩽𝑖⩽𝑛).
Finally, if 𝑇 = 𝑃4𝑘+3, we add 3 more vertices 𝑣0, 𝑣1,𝑤 in the following way. The vertex 𝑣0 (resp.

𝑣1) is complete to 𝐾0
1 (resp. 𝐾1

1). The vertex𝑤 is complete to 𝐾0
2𝑘 and 𝐾

1
2𝑘 . Otherwise, we choose a

path 𝑃 of length 4𝑘 in 𝑇 containing no leaf, label its vertices by 𝑣01, . . . , 𝑣
0
2𝑘 ,𝑤, 𝑣

1
2𝑘 , . . . , 𝑣

1
1 , and for

each connected component𝐶 of𝑇 \ 𝑃 adjacent with vertex 𝑣𝑏𝑎 , we create a copy of𝐶 in𝐺𝑘,𝑛 (𝐻,𝐻 ′)
where the vertex adjacent with 𝑣𝑏𝑎 becomes complete to 𝐾𝑏𝑎 . Vertices in this copy are called pending
vertices of 𝐾𝑏𝑎 . We also add a copy of the connected component of𝑤 in 𝑇 \ 𝐸 (𝑃), and add all edges
between𝑤 and 𝐾0

2𝑘 ∪ 𝐾
1
2𝑘 .

Note that applying the latter construction to 𝑃4𝑘+3 yields the former graph, hence we may use
𝐺𝑘,𝑛 (𝐻,𝐻 ′) in both cases.

...

...

𝐻 𝐻 ′

2𝑘

𝑣0

𝑣1

𝑤

𝐾0
1 𝐾0

2 𝐾0
3 𝐾0

2𝑘

𝐾1
1 𝐾1

2 𝐾1
3 𝐾1

2𝑘

Fig. 1. The graph 𝐺𝑘,𝑛 (𝐻,𝐻 ′). Each blob is a clique on 𝑛 vertices. The double thick edges represent the
graphs 𝐻 and 𝐻 ′. The other double edges represent the matchings. The double dashed edges represent the
antimatchings.

We state the main property satisfied by this construction in Proposition 3.1 below. We prove
Proposition 3.1 by looking carefully at the structure of 𝐺𝑘,𝑛 (𝐻,𝐻 ′) at the end of this section.
Loosely speaking, the reason we require 𝐻 and 𝐻 ′ to be symmetric is because we want the

cliques 𝐾0
ℓ and 𝐾

1
ℓ to play the same “roles” in the graph for each ℓ ∈ {1, 2, . . . , 2𝑘}.

Proposition 3.1. The graph 𝐺𝑘,𝑛 (𝐻,𝐻 ′) is 𝑇 -free if and only if 𝐻 and 𝐻 ′ do not have a common
non-edge (𝑖, 𝑗) with 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}2.
8We leave the precise unique identifier assignment implicit, for simplicity, but it is easy to create one, having the vertices of
the first clique named 1 to 𝑛, then the second 𝑛 + 1 to 2𝑛 + 1, etc.
9That is, we identify the vertices of each side of the bipartite graph with the vertices of each blob, e.g. in increasing order of
identifiers.

Let us prove Theorem 1.9 using Proposition 3.1. Assume that𝑚 bits are sufficient to certify𝑇 -free
graphs when vertices can see at distance 𝑘 . For any𝐻,𝐻 ′, let𝑉 denote the vertex set of𝐺𝑘,𝑛 (𝐻,𝐻 ′).

We first define a family of positive instances. Let𝐻 denote the bipartite graph obtained from𝐻 by
replacing all edges (𝑖, 𝑗) of 𝐻 with non-edges and vice versa for any two distinct 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}.
That is 𝐸 (𝐻) = ({1, 2, . . . , 𝑛}2 \ 𝐸 (𝐻)) ∪ {(𝑖, 𝑖)}1⩽𝑖⩽𝑛 . Note that 𝐻 is symmetric and reflexive, and
that 𝐻 and 𝐻 have no common non-edge, by construction. Then, by Proposition 3.1, for every
bipartite graph 𝐻 which is symmetric and reflexive, the graph 𝐺𝑘,𝑛 (𝐻,𝐻) is 𝑇 -free. Therefore, by
hypothesis, there exists a certificate function 𝑐𝐻 : 𝑉 → {0, . . . , 2𝑚 − 1} such that all the vertices in
𝐺𝑘,𝑛 (𝐻,𝐻) accept.

Claim 3.2. For any two distinct symmetric and reflexive graphs 𝐻,𝐻 ′ on 𝑉 , 𝑐𝐻 ≠ 𝑐𝐻 ′

Proof. Suppose that there are two different bipartite graphs 𝐻 and 𝐻 ′ satisfying the conditions
above, such that 𝑐𝐻 = 𝑐𝐻 ′ . Since 𝐻 ≠ 𝐻 ′, we have either 𝐸 (𝐻) ⊈ 𝐸 (𝐻 ′) or 𝐸 (𝐻) ⊈ 𝐸 (𝐻 ′) or both.
By symmetry, assume that 𝐸 (𝐻) ⊈ 𝐸 (𝐻 ′). Then, the graph𝐺𝑘,𝑛 (𝐻 ′, 𝐻) is accepted with 𝑐𝐻 . Indeed,
the vertices in the cliques 𝐾𝑖𝑗 for 𝑖 ∈ {0, 1} and 𝑗 ∈ {1, . . . , 𝑘}, or pending from these cliques have
the same view as their view in 𝐺𝑘,𝑛 (𝐻 ′, 𝐻 ′) since the only part of the graph which has changed
between 𝐺𝑘,𝑛 (𝐻 ′, 𝐻 ′) and 𝐺𝑘,𝑛 (𝐻 ′, 𝐻 ′) is the bipartite graph between 𝐾0

2𝑘 and 𝐾1
2𝑘 , which is at

distance at least 𝑘 from them. Thus, these vertices accept in 𝐺𝑘,𝑛 (𝐻 ′, 𝐻 ′). Similarly, 𝑤 and the
vertices in the cliques 𝐾𝑖𝑗 for 𝑖 ∈ {0, 1} and 𝑗 ∈ {𝑘 + 1, . . . , 2𝑘} or pending from them have the same
view in 𝐺𝑘,𝑛 (𝐻,𝐻 ′) and 𝐺𝑘,𝑛 (𝐻 ′, 𝐻 ′), so they accept in the graph 𝐺𝑘,𝑛 (𝐻 ′, 𝐻 ′) as well. However,
since 𝐻 ⊈ 𝐻 ′, the graphs 𝐻 ′ and 𝐻 ′ have a common non-edge, hence𝐺𝑘,𝑛 (𝐻 ′, 𝐻 ′) is not𝑇 -free (by
Proposition 3.1), which is a contradiction. ■

There are 2
𝑛 (𝑛−1)

2 such symmetric and reflexive bipartite graphs 𝐻 on 𝑉 , and there are at most
2𝑚 (4𝑘𝑛+|𝑇 |) functions 𝑉 → {0, . . . , 2𝑚 − 1}. Thus, by Claim 3.2, we get 2

𝑛 (𝑛−1)
2 ⩽ 2𝑚 (4𝑘𝑛+|𝑇 |) , which

finally gives us𝑚 = Ω(𝑛
𝑘
). □

Let us now turn to the proof of Proposition 3.1. We will need the following result about the
shape of long paths in 𝐺𝑘,𝑛 (𝐻,𝐻 ′). For succinctness, we will call 𝐾0

1 , . . . 𝐾
0
2𝑘 , 𝐾

1
1 , . . . 𝐾

1
2𝑘 the cliques

(of 𝐺𝑘,𝑛 (𝐻,𝐻 ′)) throughout this section.

Lemma 3.3. Let 𝑇 be an induced tree in 𝐺𝑘,𝑛 (𝐻,𝐻 ′). Then, 𝑇 has at most 4𝑘 vertices in the cliques.

Proof of Lemma 3.3. The main ingredient of the proof of Lemma 3.3 is the following Claim 3.4.
In the following, two cliques are said to be antimatched if there is an antimatching between them
(that is, between the first and the second clique, there is a complete bipartite graph except for 𝑛
independent non-edges).

Claim 3.4. 𝑇 has at most two vertices in each clique and
(i) If 𝑇 has two vertices in a clique 𝐾 , then for all the cliques 𝐾 ′ antimatched with 𝐾 , 𝑇 has at

most one vertex in 𝐾 ′, and
(ii) If 𝑇 has two vertices in a clique 𝐾𝑖𝑗 , then 𝑇 has at most one vertex in 𝐾1−𝑖

𝑗 .

Proof. Since 𝑇 is triangle-free, it contains at most two vertices in each clique. Suppose there is
a clique 𝐾 := 𝐾𝑖𝑗 and two distinct integers 𝑥,𝑦 ∈ {1, 2, . . . , 𝑛} such that the vertices 𝐾 [𝑥] and 𝐾 [𝑦]
are both in 𝑇 . We prove (i) and (ii) separately:

• For (i), let 𝐾 ′ be a clique antimatched to 𝐾 . For each 𝑧 ∈ {1, 2, . . . , 𝑛}, 𝐾 ′ [𝑧] is adjacent to
𝐾 [𝑥] (if 𝑧 ≠ 𝑥) or to 𝐾 [𝑦] (if 𝑧 ≠ 𝑦). Thus, if there were at least two vertices in 𝑇 ∩ 𝐾 ′, 𝑇
would have either a 𝐶3 or a 𝐶4 as a subgraph, which is a contradiction with 𝑇 being a tree.

• We now prove property (ii). Let 𝐾 = 𝐾𝑖𝑗 and 𝐾
′ = 𝐾1−𝑖

𝑗 . Assume for a contradiction that
there exist two distinct 𝑠, 𝑡 ∈ {1, 2, . . . , 𝑛} such that 𝐾 ′ [𝑠] and 𝐾 ′ [𝑡] are both in 𝑇 . Note
that since 𝑇 is triangle-free, if 𝑗 = 1 then 𝑇 cannot contain 𝑣0 nor 𝑣1, and if 𝑗 = 2𝑘 , then 𝑇
cannot contain 𝑤 . Therefore, since 𝑇 has at least 5 vertices, it follows that there is some
𝐾 ′′ ∈ {𝐾0

𝑗−1, 𝐾
1
𝑗−1, 𝐾

0
𝑗+1, 𝐾

1
𝑗+1} such that 𝑇 contains 𝐾 ′′ [𝑧] for some 𝑧 ∈ {1, 2, . . . , 𝑛}. We

have 𝑥 = 𝑧 or 𝑦 = 𝑧 otherwise, 𝐾 [𝑥], 𝐾 [𝑦], 𝐾 ′′ [𝑧] would be a triangle in 𝑇 . Similarly, we
have 𝑠 = 𝑧 or 𝑡 = 𝑧. Without loss of generality, we may assume that 𝑥 = 𝑠 = 𝑧. But then
𝐾 [𝑧]-𝐾 [𝑦]-𝐾 ′′ [𝑧]-𝐾 ′ [𝑡]-𝐾 ′ [𝑧]-𝐾 [𝑧] is a 𝐶5 subgraph with vertex set in 𝑉 (𝑃), see Figure 2
for an illustration. (Note that the edge 𝐾 [𝑧]-𝐾 ′ [𝑧] arises even when 𝑗 ∈ {1, 2𝑘} since 𝐻 and
𝐻 ′ are reflexive.) This is a contradiction with the fact that 𝑇 is an induced tree. □

𝑧
𝑧

𝑧

𝐾

𝐾 ′

𝐾 ′′

Fig. 2. The case described in (ii) of Claim 3.4.

We are now ready to conclude the proof of Lemma 3.3. Assume by contradiction that 𝑇 has at
least 4𝑘 + 1 vertices in the cliques. By the pigeonhole principle, there exists 𝑗 ∈ {1, . . . , 𝑘} such
that 𝑇 has at least 5 vertices in the cliques 𝐾 := 𝐾0

2𝑗−1, 𝐾
′ := 𝐾1

2𝑗−1, 𝐾
′′ := 𝐾0

2𝑗 , 𝐾
′′′ := 𝐾1

2𝑗 . Again by
the pigeonhole principle, 𝑇 has at least 2 vertices in one of these four cliques, and by Claim 3.4,
exactly 2. By symmetry, assume that𝑇 has two vertices in 𝐾 (see Figure 3 for an illustration). Then,
by (i) and (ii) of Claim 3.4, 𝑇 has at most one vertex in each of the cliques 𝐾 ′, 𝐾 ′′, 𝐾 ′′′, so exactly
one in each (because 𝑇 contains five vertices in the union of these four cliques). Let us denote
by 𝐾 [𝑥], 𝐾 [𝑦] these two vertices in 𝐾 ∩ 𝑇 , and by 𝐾 ′ [𝑥 ′], 𝐾 ′′ [𝑥 ′′], 𝐾 ′′′ [𝑥 ′′′] the vertices of 𝑇 in
𝐾 ′, 𝐾 ′′, 𝐾 ′′′ respectively. Since𝑇 is an induced tree, we have 𝑥 ′′ = 𝑥 or 𝑥 ′′ = 𝑦 (else, {𝑥,𝑦, 𝑥 ′′} would
be a triangle, since 𝐾 ′′ is antimatched with 𝐾). By symmetry, we can assume that 𝑥 ′′ = 𝑥 . Similarly,
we have 𝑥 ′′′ = 𝑥 or 𝑥 ′′′ = 𝑦. In the former case, 𝐾 [𝑦]-𝐾 ′′ [𝑥]-𝐾 ′′′ [𝑥]-𝐾 [𝑦] is a triangle in 𝑇 . Hence,
we have 𝑥 ′′′ = 𝑦.

Finally, there are two cases, depicted in Figure 3, which are the following:
• If 𝑥 ′ ∈ {𝑥,𝑦}, assume by symmetry that 𝑥 ′ = 𝑥 . Then, 𝐾 [𝑥]-𝐾 ′ [𝑥]-𝐾 ′′′ [𝑦]-𝐾 [𝑥] is a triangle
in 𝑇 , a contradiction.

• If 𝑥 ′ ∉ {𝑥,𝑦}, then 𝑇 has a 𝐶5 as a subgraph. This is a contradiction. □

We are finally able to prove Proposition 3.1. We start by the case of paths, and then extend the
proof to handle the other case.

Proof of Proposition 3.1 for 𝑃4𝑘+3. Assume first that𝐻 and𝐻 ′ have a common non-edge. Let
(𝑖, 𝑗) be this common non-edge. By reflexivity of 𝐻 and 𝐻 ′, we have 𝑖 ≠ 𝑗 . Then, we can construct

𝑥

𝑦

𝑥

𝑦

𝑥

𝐾

𝐾 ′

𝐾 ′′

𝐾 ′′′

(a) The first case
(𝑥 ′ ∈ {𝑥,𝑦}).

𝑥

𝑦

𝑥

𝑦

𝑥 ′

𝐾

𝐾 ′

𝐾 ′′

𝐾 ′′′

(b) The second case
(𝑥 ′ ∉ {𝑥,𝑦}).

Fig. 3. The two cases described at the end of the proof of Lemma 3.3.

...

...
𝐻 𝐻 ′

𝑖 𝑖

𝑖

𝑗

𝑗 𝑗

𝑗

𝑖

𝑣0

𝑣1

𝑤

Fig. 4. The path on 4𝑘 + 3 vertices in 𝐺𝑘,𝑛 (𝐻,𝐻 ′) if 𝐻 and 𝐻 ′ have a common non-edge (𝑖, 𝑗).

an induced path of length 4𝑘 + 3 as follows: 𝑣0, 𝐾0
1 [𝑖], 𝐾0

2 [𝑗], 𝐾0
3 [𝑖], . . . , 𝐾0

2𝑘 [𝑗] (alternating between
𝑖 and 𝑗), 𝑤 , 𝐾1

2𝑘 [𝑖], 𝐾
1
2𝑘−1 [𝑗], 𝐾

1
2𝑘−2 [𝑖], . . . , 𝐾

1
1 [𝑗], 𝑣1. This path is depicted on Figure 4. Note that

since (𝑖, 𝑗) is a non-edge in 𝐻 ′ which is symmetric, then (𝑗, 𝑖) is also a non-edge in 𝐻 ′. Thus, it is
indeed an induced path.

Conversely, assume that there is an induced path 𝑃 on 4𝑘 + 3 vertices in 𝐺𝑛,𝑘 (𝐻,𝐻 ′), and let us
show that 𝐻,𝐻 ′ have a common non-edge. By Lemma 3.3, 𝑃 has at most 4𝑘 vertices in the cliques,
and since there are exactly 3 vertices outside the cliques, 𝑃 has exactly 4𝑘 vertices in the cliques,
and it uses all the vertices outside of the cliques, namely 𝑣0, 𝑣1,𝑤 . Note that the neighborhoods
of 𝑣0 and 𝑣1 in 𝐺𝑛,𝑘 (𝐻,𝐻 ′) are cliques, hence they must have degree 1 in 𝑃 so they are the two
endpoints of 𝑃 . So 𝑃 starts with 𝑣0, 𝑥1 ∈ 𝐾0

1 , and ends with 𝑣1, 𝑦1 ∈ 𝐾1
1 .

Since𝑤 ∈𝑉 (𝑃) is not an end of 𝑃 it must have degree two in 𝑃 . Hence, for some 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛},
𝐾0
2𝑘 [𝑗], 𝐾

1
2𝑘 [𝑖] are the neighbors of𝑤 in 𝑉 (𝑃). 𝐾0

2𝑘 [𝑖], 𝐾
1
2𝑘 [𝑗] must be non-adjacent, so (𝑗, 𝑖) is not

an edge of 𝐻 ′. Since 𝐻 is reflexive it follows that 𝑖 ≠ 𝑗 and since it is symmetric (𝑖, 𝑗) is not an edge
of 𝐻 ′.

Claim 3.5. For each ℓ ∈ {1, 2, . . . , 2𝑘} the vertices of 𝑃 in 𝐾0
ℓ ∪ 𝐾1

ℓ are exactly 𝐾
0
ℓ [𝑖], 𝐾1

ℓ [𝑗] or they
are exactly 𝐾0

ℓ [𝑗], 𝐾1
ℓ [𝑖].

Proof. Let ℓ ∈ {1, 2, . . . , 2𝑘−1} bemaximum such that the claim does not hold for ℓ . By symmetry,
we may assume that both 𝑥 := 𝐾0

ℓ+1 [𝑗], 𝑦 := 𝐾1
ℓ+1 [𝑖] are elements of𝑉 (𝑃). Since 𝑣0, 𝑣1 are the ends of

𝑃 , both 𝑥,𝑦 must have a neighbor in 𝐾0
ℓ ∪𝐾1

ℓ . In particular, there must be vertices 𝑥 ′, 𝑦′ ∈ 𝐾0
ℓ ∪𝐾1

ℓ so
that (𝑥, 𝑥 ′), (𝑦,𝑦′) and there are no further edges between vertices in {𝑥, 𝑥 ′, 𝑦,𝑦′}. By construction
for each 𝐾 ∈ {𝐾0

ℓ , 𝐾
1
ℓ } and 𝐾 ′ ∈ {𝐾0

ℓ+1, 𝐾
1
ℓ+1}, there is an antimatching between 𝐾 and 𝐾 ′. So in

particular, either 𝑥 ′ = 𝐾0
ℓ [𝑖] and 𝑦′ = 𝐾1

ℓ [𝑗] or 𝑥 ′ = 𝐾1
ℓ [𝑖] and 𝑦′ = 𝐾0

ℓ [𝑗]. ■

Thus by Claim 3.5 and since 𝐻 is symmetric, (𝑖, 𝑗) is a non-edge of 𝐻 . So 𝐻 and 𝐻 ′ have a
common non-edge as desired. □

We may now adapt this proof to handle the case of trees without vertices of degree 2.

Proof of the remaining case of Proposition 3.1. If 𝐻 and 𝐻 ′ share a common non-edge,
then by the previous proof, there is an induced path on 4𝑘 + 3 vertices in 𝐺𝑘,𝑛 (𝐻,𝐻 ′) as depicted
on Figure 4. Adding all the vertices outside of the cliques to this path yields a copy of 𝑇 .

Conversely, assume that there is an induced copy of 𝑇 in𝐺𝑛,𝑘 (𝐻,𝐻 ′), and let us show that 𝐻,𝐻 ′

have a common non-edge. By Lemma 3.3, 𝑇 has at most 4𝑘 vertices in the cliques, and since there
are exactly |𝑉 (𝑇) | − 4𝑘 vertices outside the cliques, 𝑇 has exactly 4𝑘 vertices in the cliques, and it
uses all the vertices outside of the cliques. In particular, by connectivity, 𝑇 must contain at least a
vertex in each clique (hence exactly once). Using this, we can show that Claim 3.5 still holds in this
case, which concludes. □

4 UPPER BOUND CORE TECHNIQUE: LAYERED MAPS
4.1 Spread universal certification and graphs of large minimum degree
We have described in Subsection 1.3 the general idea of layered maps, which are a refinement of the
technique of spreading the certificate of the universal scheme. We formalize the spread universal
scheme (introduced in [18]) in the following theorem.

Theorem 4.1. (i) Let 𝛿 < 1. Any property can be certified with certificates of size𝑂 (𝑛2−𝛿 log𝑛)
on graphs of minimum degree 𝑛𝛿 if vertices can see at distance 2.

(ii) Any property can be certified with certificates of size 𝑂 (𝑛 log2 𝑛) on regular graphs if vertices
can see at distance 2.

Before giving the proof, we give a short sketch for the case of the first item. On correct instances,
the prover computes the certificate of the universal scheme in the form of an adjacency matrix,
cuts it into 𝑛𝛿 pieces of size 𝑛2−𝛿 , and gives 𝑂 (log𝑛) pieces to every node, in such a way that each
vertex can see all the pieces in its neighborhood. Such an assignment of pieces is proved to exist
via probabilistic method and coupon collector. Note that we need the distance to be at least two,
only to ensure that every node can check that the graph it reconstructs is the same as its neighbors.
Before proving Theorem 4.1, we show the following Lemma 4.2 (inspired from the coupon

collector theorem), that we will use several times.

Lemma 4.2. Let𝐺 be a 𝑛-vertex graph and 0 < 𝑑 < 𝑛. Let P be a set of size 𝑑 , called the set of pieces.
Then, there exists a way to assign 3 log𝑛 pieces to every vertex of 𝐺 such that, for every vertex 𝑢 of
degree at least 𝑑 , each piece of P has been given to 𝑢 or one of its neighbors.

Proof. Let us consider a random assignation of the pieces to the vertices of 𝐺 , where each
vertex gets assigned a subset of P of size 3 log𝑛 pieces (uniformly at random, independently of all
the other vertices). Let us fix some piece 𝑝 ∈ P and some vertex 𝑢 of degree at least 𝑑 . Observe that

the probability that 𝑝 has not been given to 𝑢 not to its neighbors is at most:(
1 − 3 log𝑛

𝑑

)𝑑
⩽ 𝑒−3 log𝑛 ⩽

1
𝑛3
.

By union bound, the probability that such an event occurs for some vertex 𝑢 of degree at least 𝑑
and some piece 𝑝 ∈ P is at most 1

𝑛
. This is strictly smaller than 1 for all 𝑛 ⩾ 2. Thus, there exists

some correct assignment of the pieces. □

We may now proceed with the proof of Theorem 4.1.

Proof of Theorem 4.1. (i) Let us describe a certification scheme of size 𝑂 (𝑛2−𝛿 log𝑛) for
any property, in graphs of minimum degree𝑛𝛿 , if vertices can see at distance 2. Let𝐺 = (𝑉 , 𝐸)
be a graph with |𝑉 | = 𝑛, and minimum degree 𝑛𝛿 .

Certification. The prover assigns to each vertex 𝑢 a certificate divided in two fields: one
common to every node (denoted by SpanningTree), and another specific to 𝑢 (denoted by
Pieces(𝑢)).
• In SpanningTree, the prover writes a spanning tree T of 𝐺 , that is: the identifiers of
the vertices and of their parent in T . This uses 𝑂 (𝑛 log𝑛) bits.

• For Pieces, the prover cuts the adjacency matrix of𝐺 in 𝑛𝛿 parts, each of size 𝑛2−𝛿 , and
number these parts from 1 to 𝑛𝛿 . Then, using Lemma 4.2, since all the vertices have
degree at least 𝑛𝛿 , it may write 3 log𝑛 numbered pieces in each Pieces(𝑢) such that
every vertex sees each piece at least once in its closed neighborhood. This certificate
has size 𝑂 (𝑛2−𝛿 log𝑛).

Verification. The verification algorithm of each vertex 𝑢 is done in two steps.
• The first step is to check the correctness of SpanningTree. To do so, 𝑢 checks if
SpanningTree is the same in its certificate and the certificate of all its neighbors. Then,
it checks if it is indeed a tree, and if each of its neighbors in SpanningTree is also a
neighbor in 𝐺 . If it is not the case, 𝑢 rejects.
If no vertex rejects at this point, SpanningTree is a correct spanning tree known by all
the vertices. In particular, every vertex 𝑢 knows 𝑛, the number of vertices in 𝐺 .

• The second and main step of the verification is the following. Since 𝑢 knows 𝑛, 𝑢 knows
the number pieces (which is 𝑛𝛿). The vertex 𝑢 checks if it sees each numbered piece
appears in Pieces(𝑣) for some vertex 𝑣 in its closed neighborhood, and rejects if it is
not the case. If 𝑢 did not reject, it may thus reconstruct the whole graph 𝐺 , and can
also recover the graph reconstructed by every of its neighbors since it sees at distance
at least 2. If some of these reconstructed graphs are different, 𝑢 rejects. Then, 𝑢 checks
if its neighborhood is correctly written in its reconstructed graph. Finally, if 𝑢 did not
reject before, it accepts if and only if its reconstructed graph satisfies the property.

Correctness. If no vertex rejects in the verification procedure, all the vertices reconstructed
the same graph. Moreover, this reconstructed graph is equal to 𝐺 , because every vertex
checked that its neighborhood is correct in it. Since every vertex accepts if and only if this
graph satisfies the property, the scheme is correct.

(ii) Let us now describe a certification scheme of size 𝑂 (𝑛 log2 𝑛) for any property in regular
graphs, if vertices can see at distance 2. Let 𝐺 be an 𝑛-vertex 𝑑-regular graph.

Certification. The certification is similar to the proof of (i), except that since𝐺 is a 𝑑-regular
graph, it can be represented with 𝑂 (𝑑𝑛 log𝑛) bits using adjacency lists (instead of the
adjacency matrix). The prover cuts it in 𝑑 pieces, each of size 𝑂 (𝑛 log𝑛), numbers them

from 1 to 𝑑 , and applies Lemma 4.2 to assign 3 log𝑛 pieces in the certificate of every vertex.
This yields certificates of size 𝑂 (𝑛 log2 𝑛).

Verification. The verification algorithm is the following one. Every vertex 𝑢 knows its own
degree, which is equal to the number of pieces. So 𝑢 can check if it sees all the pieces in its
closed neighborhood. Then, as for (i), 𝑢 reconstructs the whole graph 𝐺 and checks if all
its neighbors reconstructed the same graph. Finally, 𝑢 checks if its own neighborhood is
correctly written, and if the property is satisfied.

Correctness. As for (i), if no vertex rejects in the verification procedure, all the vertices
computed the same graph, which is equal to 𝐺 and satisfies the property. □

4.2 Definitions: extended connected components, ECC table, and more
We now introduce formally the layered map, that we have informally described in the introduction,
along with other related notions.

4.2.1 Definitions.

Extended connected components. Let 𝜀 > 0 and 𝑁 = ⌈ 1
𝜀
⌉. We consider the following partition of the

vertices depending on their degrees: for every 𝑖 ∈ {1, . . . , 𝑁 }, let𝑉𝑖 := {𝑢 ∈𝑉 | 𝑛 (𝑖−1)𝜀 ⩽ 𝑑𝑒𝑔(𝑢) < 𝑛𝑖𝜀 }
(where 𝑑𝑒𝑔(𝑢) is the degree of the vertex 𝑢). Note that the sets 𝑉1, . . . ,𝑉𝑁 form a partition of 𝑉 . Let
𝐿𝑖 :=

⋃
𝑗⩽𝑖 𝑉𝑖 , that is, 𝐿𝑖 is the set of vertices having degree less than than 𝑛𝑖𝜀 . And let 𝐻𝑖 :=

⋃
𝑗⩾𝑖 𝑉𝑖 ,

that is,𝐻𝑖 is the set of vertices having degree at least𝑛 (𝑖−1)𝜀 (it is also𝑉 \𝐿𝑖−1). Note that𝐻1 = 𝐿𝑁 =𝑉 .
Let 𝑘 ⩾ 2, the distance up to which the vertices can see in the certification scheme. For each

𝑖 ∈ {1, . . . , 𝑁 }, we partition 𝐻𝑖 in subsets called extended connected components of 𝐻𝑖 (abbreviated
by ECC𝑖). For 𝑢, 𝑣 ∈ 𝐻𝑖 we say 𝑢, 𝑣 are 𝑖-linked if there is a 𝑢, 𝑣 path in𝐺 which does not have 2𝑘 − 2
consecutive vertices in 𝐿𝑖−1 (in other words, such a path should regularly contain vertices in 𝐻𝑖).
An ECC𝑖 is a maximal subset of vertices of 𝐻𝑖 which are pairwise 𝑖-linked. Note that being 𝑖-linked
is an equivalence relation. By definition, two vertices in two different ECC𝑖 ’s are at distance at least
2𝑘 − 1 from each other in 𝐺 .

Let us denote by E𝑖 the set of all ECC𝑖 ’s (which is a partition of 𝐻𝑖). For each 𝐶 ∈ E𝑖 , we define
the identifier of C, denoted by 𝑖𝑑 (𝐶), as the smallest identifier of a vertex in𝐶 . Finally, we denote by
𝐶 (𝑑) the set of vertices at distance exactly 𝑑 from 𝐶 (by convention, we set 𝐶 (0) := 𝐶). Note that
𝐶 (0) ⊆ 𝐻𝑖 , and for all 𝑑 ⩾ 1, we have 𝐶 (𝑑) ⊆ 𝐿𝑖−1 = 𝑉 (𝐺) \ 𝐻𝑖 .

Note that for every 𝑢 ∉ 𝐻𝑖 there is at most one 𝐸𝐶𝐶𝑖 𝐶 ∈ E𝑖 such that 𝑢 is at distance at most
𝑘 − 1 from 𝐶 .

ECC-table. Let 𝑇𝐺 be the following table, with 𝑛 rows and 𝑁 columns, called the ECC-table of 𝐺 .
The rows are indexed by the identifiers of the vertices, and the columns by {1, . . . , 𝑁 }. Let 𝑢 ∈ 𝑉
and 𝑖 ∈ {1, . . . , 𝑁 }. Let us describe the entry 𝑇𝐺 [𝑢, 𝑖].

• If 𝑢 is at distance at most 𝑘 − 1 from some ECC𝑖 𝐶𝑢 , we set 𝑇𝐺 [𝑢, 𝑖] as (𝑖𝑑 (𝐶𝑢), 𝑑𝑢) where
𝑑𝑢 is the distance from 𝑢 to 𝐶𝑢 . Note that 𝑢 ∈ 𝐻𝑖 if and only if 𝑑𝑢 = 0.

• Otherwise, we set 𝑇𝐺 [𝑢, 𝑖] = ⊥.
In other words, for each 𝑖 ∈ {1, . . . , 𝑁 }, the partition of 𝐻𝑖 in ECC𝑖 ’s is written in the table 𝑇𝐺 ,

and for every vertex 𝑢 ∈ 𝐿𝑖−1 "close" to some𝐶𝑢 ∈ E𝑖 , the distance from 𝑢 to𝐶𝑢 is also stored in𝑇𝐺 .

Witnessed graph. We define a relation ≼ on 𝑉 in the following way. Let 𝑢, 𝑣 ∈ 𝑉 . We say that
𝑣 ≼ 𝑢 if there exists 𝑖 ∈ {1, . . . , 𝑁 } such that 𝑣 ∈ 𝑉𝑖 , 𝑢 ∈ 𝐻𝑖 , and 𝑢, 𝑣 are in the same ECC𝑖 . Note that,
by definition, ≼ is transitive. For every 𝑢 ∈ 𝑉 , let 𝑉≼𝑢 be the set {𝑣 ∈ 𝑉 | 𝑣 ≼ 𝑢}, called the set of
vertices witnessed by 𝑢. Let 𝐺≼𝑢 be the subgraph of 𝐺 obtained by keeping only edges having at

least one endpoint in 𝑉≼𝑢 , which is called the graph witnessed by 𝑢. Intuitively, if 𝑣 ∈ 𝑉≼𝑢 , then 𝑢
can check all the adjacencies of 𝑣 thanks to the certificates (see Theorem 4.5).

Local computation scheme. Now, let us introduce the notion of local computation scheme. Infor-
mally, it is a tool allowing the vertices to perform a pre-computation at the beginning of their
verification in a certification scheme10. We will use it so that each vertex 𝑢 will pre-compute the
ECC-table 𝑇𝐺 and its witnessed graph 𝐺≼𝑢 .

Definition 4.3 (Local computation scheme). Let 𝑓 be a function taking as input a graph 𝐺 and a
vertex𝑢 of𝐺 . A local computation scheme for 𝑓 of size 𝑠 is a scheme where the prover gives certificates
of size 𝑠 to the vertices, and each vertex either rejects, or outputs something. We also require the two
following soundness conditions to be satisfied for every graph 𝐺 = (𝑉 , 𝐸):

(i) if no vertex rejects, then every vertex 𝑢 ∈ 𝑉 outputs 𝑓 (𝐺,𝑢);
(ii) there exists a certificate assignment such that no vertex rejects.

4.3 Technical results
We now design local computation schemes to compute the ECC-table and the witnessed graphs, as
stated in the following Theorems 4.4 and 4.5.

Theorem 4.4. There exists 𝑐 > 0 such that, for all 0 < 𝜀 < 1, there exists a local computation scheme
for 𝑓 (𝐺,𝑢) := 𝑇𝐺 of size 𝑐

𝜀
· 𝑛 log𝑛, if the vertices can see at distance 𝑘 .

Note that the output of the function 𝑓 in Theorem 4.4 does not depend on 𝑢, but only on𝐺 and 𝜀.

Proof. Let 0 < 𝜀 < 1 and 𝑁 = ⌈ 1
𝜀
⌉. Let us describe a local computation scheme for 𝑓 (𝐺,𝑢) = 𝑇𝐺

of size 𝑂 (𝑛
𝜀
log𝑛).

Certification. The certificates of the vertices consists of information stored in three fields, denoted
by SpanningTree, Table and Components. The certificate is the same for all the vertices.

• The prover chooses a spanning tree T of 𝐺 and writes it in SpanningTree. More precisely:
it writes the identifiers of all the vertices and of their parents in T using 𝑂 (𝑛 log𝑛) bits.

• In Table, the prover writes the table 𝑇𝐺 . Since it has 𝑛 rows, 𝑁 columns, and 𝑂 (log𝑛) bits
per cell, it has size 𝑂 (𝑁𝑛 log𝑛).

• In Components, the prover gives information to the nodes to check the correctness of the
partition in 𝐸𝐶𝐶𝑖 ’s written in Table. For each 𝑖 ∈ {1, . . . , 𝑁 }, and for each𝐶 ∈ E𝑖 , the prover
constructs the graph 𝐺𝐶 , where the vertices of 𝐺𝐶 are the vertices of 𝐶 , and there is an
edge between two vertices in 𝐺𝐶 if and only if they are at distance at most 2𝑘 − 2 in 𝐺 . By
definition of an ECC𝑖 , 𝐺𝐶 is connected. Then, the prover chooses a spanning tree T𝐶 of 𝐺𝐶
and writes its structure in Components, with the identifier of the corresponding vertices.
For each edge (𝑢, 𝑣) in T𝐶 , there exists a vertex𝑤 ∈ 𝑉 at distance at most 𝑘 − 1 from both 𝑢
and 𝑣 in𝐺 . The prover labels the edge (𝑢, 𝑣) in T𝐶 by the identifier of𝑤 . For a given𝐶 ∈ E𝑖 ,
𝑂 (|𝐶 | log𝑛) bits are required. In total, since the prover does this for each 𝐶 ∈ E𝑖 and every
𝑖 ∈ {1, . . . , 𝑁 }, it uses 𝑂 (𝑁𝑛 log𝑛) bits.

Since 𝑁 = ⌈ 1
𝜀
⌉, the overall size of the certificate is thus 𝑂 (𝑛

𝜀
log𝑛).

Verification. The vertices perform the following verification procedure.
(i) First, every vertex checks that its certificate is the same as the certificates of its neighbors,

and rejects if it is not the case.
10This new definition allows us to compose different computations using certificates, which is not possible in general with
the standard certification definition, because of its binary output.

(ii) To check the correctness of SpanningTree, every vertex checks if it is indeed a tree, and if
each of its neighbors written in SpanningTree is indeed a neighbor in 𝐺 . It rejects if it is
not the case.
If no vertex rejects at this point, the spanning tree of 𝐺 written in SpanningTree is correct.
In particular, all the vertices know 𝑛, and the whole set of the identifiers of vertices in 𝐺 .

(iii) The next two steps of the verification consist in checking if the partition in ECC𝑖 ’s written
in𝑇𝐺 is correct. Every vertex𝑢 checks that for all 𝑖 ∈ {1, . . . , 𝑁 }, and for all vertices 𝑣,𝑤 ∈ 𝐻𝑖
at distance at most 𝑘 − 1 from 𝑢, we have Table[𝑣, 𝑖] = Table[𝑤, 𝑖], and if this common value
is of the form (𝑖𝑑 (𝐶), 0). If it is not the case, 𝑢 rejects.
If no vertex rejects at this point, then for all 𝑖 ∈ {1, . . . , 𝑁 } and for every pair of vertices
𝑣,𝑤 ∈ 𝐻𝑖 which are at distance at most 2𝑘 − 2, 𝑣 and𝑤 are written to be in the same ECC𝑖
in Table. By transitivity: if two vertices are in the same ECC𝑖 in 𝐺 , then they appear in the
same ECC𝑖 in Table.

(iv) Every vertex 𝑢 ∈ 𝑉 determines the index 𝑗 ∈ {1, . . . , 𝑁 } such that 𝑢 ∈ 𝑉𝑗 . For every 𝑖 ⩽ 𝑗 , 𝑢
does the following. We have 𝑢 ∈ 𝐻𝑖 . Let 𝐶𝑢 ∈ E𝑖 be the ECC𝑖 of 𝑢. The vertex 𝑢 checks that
T𝐶𝑢

written in Components is indeed a tree. Moreover, for each edge (𝑢, 𝑣) in T𝐶𝑢
labeled

with the identifier of a vertex𝑤 , 𝑢 checks if it sees indeed𝑤 at distance at most 𝑘 − 1 (and
rejects if it is not the case).
If no vertex rejects at this point, for all vertices 𝑢, 𝑣 ∈ 𝑉 , if Table[𝑢, 𝑖] = Table[𝑣, 𝑖] and if
this value is of the form (𝑖𝑑 (𝐶), 0), then 𝑢 and 𝑣 are indeed two vertices of 𝐻𝑖 which are
in the same ECC𝑖 (indeed, T𝐶 is connected, so there exists a path from 𝑢 to 𝑣 in T𝐶 , which
corresponds to a path in 𝐺 which does not have 2𝑘 − 1 consecutive vertices in 𝐿𝑖−1).
Thus, together with step (iii) of the verification, the partition in ECC𝑖 ’s written in Table is
correct.

(v) The next step of the verification consists in checking if the distances written in Table are also
correct. To do so, every vertex𝑢 does the following. For each 𝑖 ∈ {1, . . . , 𝑛}, if𝑢 ∉𝐻𝑖 ,𝑢 checks
that Table[𝑢, 𝑖] = ⊥ if and only if 𝑢 does not see any vertex of 𝐻𝑖 at distance at most 𝑘 − 1.
And if𝑢 sees vertices in some𝐶𝑢 ∈ E𝑖 at distance 𝑑𝑢 ,𝑢 checks that Table[𝑢, 𝑖] = (𝑖𝑑 (𝐶𝑢), 𝑑𝑢).
If it is not the case, 𝑢 rejects.

Computation. If a vertex 𝑢 did not reject during the verification phase, it outputs Table. If no
vertex rejects, we have Table = 𝑇𝐺 (since both the partition in ECC𝑖 ’s and the distances to the
ECC𝑖 ’s written in Table are correct). Moreover, if the prover gives the certificates as described
above, no vertex will reject. Thus, the computation scheme is correct.

□

Theorem 4.5. There exists 𝑐 > 0 such that, for all 0 < 𝜀 < 1, there exists a local computation scheme
for 𝑓 (𝐺,𝑢) := 𝐺≼𝑢 of size 𝑐

𝜀
· 𝑛1+𝜀 · log2 𝑛, if the vertices can see at distance 2.

Proof of Theorem 4.5. Let 0 < 𝜀 < 1 and 𝑁 = ⌈ 1
𝜀
⌉. We describe the local computation scheme.11

Certification. Let us describe the certificates given by the prover to the vertices on correct
instances. First, it gives to every vertex𝑢 its certificate in the local computation scheme for𝑇𝐺 given
by Theorem 4.4, which has size 𝑂 (𝑛

𝜀
log𝑛). Then, the prover gives other additional information to

𝑢, denoted by Pieces(𝑢), which is the following. For every 𝑖 ∈ {1, . . . , 𝑁 }, the prover constructs the
graph 𝐺𝑖 obtained from 𝐺 by keeping only edges having at least one endpoint in 𝐿𝑖 . Since each
vertex in 𝐿𝑖 has degree at most 𝑛𝑖𝜀 , 𝐺𝑖 has at most 𝑛1+𝑖𝜀 edges. Then, the prover cuts the adjacency

11Note that in theorem the verification radius is 2, but this result is just a component of a scheme with radius 𝑘 ⩾ 2, hence
the ECC are still defined with respect to this general 𝑘 .

list of 𝐺𝑖 (which has size 𝑛1+𝑖𝜀 log𝑛) in 𝑛 (𝑖−1)𝜀 pieces of size 𝑛1+𝜀 log𝑛, and number them from 1
to 𝑛 (𝑖−1)𝜀 . Finally, for every vertex 𝑢, it writes 3 log𝑛 numbered pieces of 𝐺𝑖 in Pieces(𝑢) in such a
way: for each 𝑢 ∈ 𝐻𝑖 , 𝑢 sees every piece 𝑃 of 𝐺𝑖 in the certificate of at least one of its neighbors.
Since each vertex 𝑢 ∈ 𝐻𝑖 has degree at least 𝑛 (𝑖−1)𝜀 , and since there are 𝑛 (𝑖−1)𝜀 different pieces of
𝐺𝑖 , this is possible (see Lemma 4.2). In total, since the prover does this for every 𝑖 ∈ {1, . . . , 𝑁 },
Pieces(𝑢) has size 𝑂 (𝑁𝑛1+𝜀 log2 𝑛), so the size of the overall certificate is 𝑂 (𝑛1+𝜀

𝜀
log2 𝑛).

Verification. The vertices perform the following verification procedure.
(i) First, each vertex applies the verification of the local computation scheme for 𝑇𝐺 given by

Theorem 4.4.
(ii) To verify Pieces(𝑢), each vertex 𝑢 does the following: if it sees two numbered pieces

𝑃 ∈ Pieces(𝑣) and 𝑃 ′ ∈ Pieces(𝑤) for some 𝑣,𝑤 at distance at most 𝑘 − 1, such that 𝑃 and
𝑃 ′ are two pieces of 𝐺 𝑗 for some 𝑗 ∈ {1, . . . , 𝑁 } which are numbered the same, 𝑢 checks
that these two pieces are indeed the same. If it is not the case, 𝑢 rejects.

(iii) Finally, for every 𝑖 ∈ {1, . . . , 𝑁 }, each 𝑢 ∈ 𝑉𝑖 does the following verification. For every 𝑗 ⩽ 𝑖 ,
and for every numbered piece 𝑃 of 𝐺 𝑗 , 𝑢 checks if it sees 𝑃 in a certificate Pieces(𝑣) for
some 𝑣 in its closed neighborhood. If it is not the case, 𝑢 rejects. And if 𝑢 sees that its own
edges and non-edges are not correctly written in the piece 𝑃 of 𝐺𝑖 where it should be, it
rejects.

Computation. Let us describe the computation of every vertex 𝑢. If no vertex rejected at step (i),
𝑢 computed the ECC-table 𝑇𝐺 . In particular, 𝑢 knows the partition of 𝐻𝑖 in ECC𝑖 ’s for every
𝑖 ∈ {1, . . . , 𝑁 }. So 𝑢 can compute the set 𝑉≼𝑢 .
Claim 4.6. Let 𝑢, 𝑣 ∈ 𝑉 such that 𝑣 ≼ 𝑢. If no vertex rejected during the verification phase, then 𝑢 can
compute all the edges and non-edges having 𝑣 as an endpoint.

Proof. Let 𝑖 ∈ {1, . . . , 𝑁 } such that 𝑣 ∈ 𝑉𝑖 and 𝑢 ∈ 𝐻𝑖 . Because of step (iii) of the verification,
the vertex 𝑢 sees all the parts of 𝐺𝑖 in its certificate or in the certificate of some of its neighbors.
However, nothing ensures that these parts are correct. But thanks to step (ii), any two vertices in
𝐻𝑖 at distance at most 2𝑘 − 2 get the same pieces of 𝐺𝑖 in their neighborhoods. So by transitivity,
two vertices which are in the same ECC𝑖 have the same pieces of 𝐺𝑖 in their neighborhood. In
particular, since 𝑢 and 𝑣 are in the same ECC𝑖 , and since the edges and non-edges of 𝑣 are correctly
written in the pieces which are in the closed neighborhood of 𝑣 (otherwise it would have rejected
at step (iii)), then 𝑢 knows the edges and non-edges of 𝑣 . □

Thus, if no vertex rejects in the verification phase, thanks to Claim 4.6, every vertex 𝑢 is able
to reconstruct the graph 𝐺≼𝑢 thanks to the certificates Pieces it sees its neighborhood. Moreover,
if the prover gives the certificates as described above, no vertex will reject. So the computation
scheme is correct. □

Remark 4.7. Note that, with the certificates given in the certification scheme of Theorem 4.5, each
vertex 𝑣 can also output the witnessed graph 𝐺≼𝑢 of any vertex 𝑢 at distance at most 𝑘 − 1 from
itself. Indeed, 𝑣 can see all the pieces of 𝐺≼𝑢 which are spread in certificates of vertices in 𝑁 [𝑢].

5 OVERVIEW OF THE FORBIDDEN SUBGRAPH CERTIFICATIONS
In this section, we sketch how we use the layered maps for forbidden subgraphs certification. All
the formal proofs are in Section 6.
We start with Theorem 1.10, that we have already discussed in the introduction, but now with

the right notations, and more details. The statement is actually generalized in several ways later
on, but it is good to discuss it first, to introduce the techniques one by one.

Theorem 1.10. We can certify 𝑃4𝑘−1-free graphs by looking at distance 𝑘 with certificates of size
𝑂 (𝑛3/2 log2 𝑛).

What the prover does is the following: first, it uses the computation schemes of Theorems 4.4
and 4.5, with 𝜀 = 1

2 , that is 𝑁 = 2. Thus, 𝑉 is divided into 𝑉1 (the set of vertices having degree
less than

√
𝑛, the low-degree vertices) and 𝑉2 (the set of vertices having degree higher than

√
𝑛, the

high-degree vertices). Note that 𝐻1 = 𝑉 so there is only one ECC1 which is the whole set 𝑉 , and
𝐻2 = 𝑉2. With the local certification schemes of Theorems 4.4 and 4.5, every vertex 𝑢 will compute
its witnessed graph 𝐺≼𝑢 and the ECC-table 𝑇𝐺 . Let us recall that 𝑇𝐺 gives the partition of 𝑉2 in
ECC2’s, and also the distance from every vertex of 𝑉1 to its closest ECC2 (if it is at most 𝑘 − 1).

For every vertex 𝑣 ∈𝑉1 and𝑢 ∈𝑉 , we have 𝑣 ≼ 𝑢, hence𝑢 computes12 all the edges and non-edges
of 𝑣 . In other words: the adjacency of low-degree vertices is known by every vertex. In particular, if
𝐺 has an induced 𝑃4𝑘−1 which is made only of small-degree vertices in 𝐺 , it is detected by every
vertex. Note also that for all 𝑢, 𝑣 ∈ 𝑉2 which are in the same ECC2, we have 𝑣 ≼ 𝑢, so 𝑢 knows all
the edges and non-edges of 𝑣 . In particular, if there is an induced 𝑃4𝑘−1 in𝐺 containing high-degree
vertices from only one ECC2, any vertex 𝑢 in this ECC2 will detect it. So the difficult case is to
detect an induced 𝑃4𝑘−1 in 𝐺 containing high-degree vertices from at least two different ECC2’s.
Using the fact that two distinct ECC2’s are at distance at least 2𝑘 − 1 from each other, we will see
that it is in fact sufficient to consider the case of paths having big-degree vertices in exactly two
different ECC2’s.

To enable the vertices to detect the existence of paths of length 4𝑘 − 1 going through exactly two
distinct ECC2’s, the prover will add some information in the certificates, which is the following.
For each 𝑣 ∈ 𝑉 , if 𝑣 is close to an ECC2 denoted by 𝐶𝑣 , let us denote by 𝑃𝑣 the longest induced path
which starts at 𝑣 and has all its other vertices strictly closer from 𝐶𝑣 than 𝑣 . For every 𝑣 ∈ 𝑉 , the
prover will give the length of 𝑃𝑣 to all the vertices. Then, to verify the certificates, for every𝐶 ∈ E2,
every vertex 𝑢 ∈ 𝐶 will do the following: 𝑢 checks if there exists a path in𝐺≼𝑢 which starts from 𝑢,
ends in some vertex 𝑣 close to some ECC2 𝐶𝑣 ≠ 𝐶 , and can be extended into a path of length 4𝑘 − 1
using the path 𝑃𝑣 . We prove that if a 𝑃4𝑘−1 path exists in the graph, touching two 𝐸𝐶𝐶2, then such
a pair 𝑢, 𝑣 exists.

A first extension of this theorem is to certify any forbidden subgraph on 4𝑘 − 1 vertices.

Theorem 1.11. For every𝑘 ⩾ 2, we can certify𝐻 -free graphs by looking at distance𝑘 with certificates
of size 𝑂 (𝑛3/2 log2 𝑛) for every 𝐻 of size at most 4𝑘 − 1.

To prove this, we will have to certify more information than the lengths of longest paths 𝑃𝑣 we
had before. Informally speaking, for every vertex 𝑣 , we will need to determine, for every possible
node ℎ in 𝐻 , if 𝑣 can be node ℎ of a copy of 𝐻 that is in between two 𝐸𝐶𝐶2’s.

Then we push the technique to get quasi-linear size certificates.

Theorem 1.12. For every 𝑘 ⩾ 2, we can certify 𝑃3𝑘−1-free graphs by looking at distance 𝑘 with
certificates of size 𝑂 (𝑛 log3 𝑛).

To prove this, we will use the whole power of the witnessed graphs and layered maps since we
will use it with an arbitrary number of layers (while the previous bounds only used two layers).
Doing it introduces technicalities that did not appear in the previous cases (and that explain why
we were only able to get 𝑃3𝑘 -freeness instead of 𝑃4𝑘−1-freeness).

Finally, we achieve to increase the length of the path, keeping the same size as in Theorem 1.10.

12In the sense of Definition 4.3.

Theorem 1.13. For every 𝑘 ⩾ 2, we can certify 𝑃⌈ 14
3 𝑘⌉−1-free graphs by looking at distance 𝑘 with

certificates of size 𝑂 (𝑛3/2 log2 𝑛).

Again the proof is inspired by the proof of Theorem 1.10. However, in order to get the result,
we need to add different information in the certificate of each vertex. Indeed, so far, the certificate
where almost global in the sense that, except in order to certify the graph 𝐺≼𝑢 for every 𝑢 in
Theorem 4.5, the certificate given to vertices where the same. In that proof, we need to add local
certificate on each node and then we will have to be more careful on which vertex can detect the
existence of a path if a path exists. Very informally speaking, the information we will be able to
store is, for every vertex 𝑣 , what happens if only two vertices of a path belong to 𝐶 (𝑑) (assuming
that 𝑣 is in 𝐶 (𝑑)).

6 FORMAL PROOFS OF THE FORBIDDEN SUBGRAPH CERTIFICATIONS
In this section, we prove all our upper bounds: Theorem 1.10, Theorem 1.11, Theorem 1.12 and
Theorem 1.13. These are presented by increasing level of technicality.

6.1 Upper bound for 𝑃4𝑘−1 in �̃� (𝑛3/2)
Theorem 1.10. We can certify 𝑃4𝑘−1-free graphs by looking at distance 𝑘 with certificates of size

𝑂 (𝑛3/2 log2 𝑛).

Proof of Theorem 1.10. Let 𝐺 = (𝑉 , 𝐸) be an 𝑛-vertex graph.

Certification. The certification of the prover is the following. First, it gives to each vertex its
certificates in the local computation schemes given by Theorems 4.4 and 4.5, with 𝜀 = 1

2 , so that
each vertex 𝑢 can compute 𝑇𝐺 and 𝐺≼𝑢 . These certificates have size 𝑂 (𝑛3/2 log2 𝑛).
Then, the prover adds some additional information in the certificates, in another field, which

will be identical in the certificates of all the vertices. We will denote this field by LongestPaths, and
it is defined as follows (note that it has size 𝑂 (𝑛 log𝑛)).

Definition 6.1 (𝑃𝑣, LongestPaths). For every vertex 𝑣 ∈ 𝑉1 such that𝑇𝐺 [𝑣, 2] = (𝑖𝑑 (𝐶𝑣), 𝑑𝑣), let 𝑃𝑣 be
a longest induced path starting from 𝑣 and having all its other vertices in

⋃
0⩽𝑑<𝑑𝑣 𝐶𝑣 (𝑑), and let ℓ (𝑃𝑣)

be its length. We define LongestPaths as being the array indexed by the identifiers of the vertices, such
that LongestPaths[𝑣] = ℓ (𝑃𝑣) for every 𝑣 ∈

⋃
𝐶∈E2

⋃
1⩽𝑑⩽𝑘−1𝐶 (𝑑).

Verification. We define for each𝑚 ⩾ 1 a protocol we call𝑚-pathcheck below. (We define the
𝑚-pathcheck for arbitrary𝑚, because we will use it again when we prove Theorem 1.13.) In our
verification phase each vertex runs the𝑚-pathcheck for𝑚 = 4𝑘 − 1.

Definition 6.2 (𝑚-pathcheck). Each vertex 𝑢 ∈ 𝑉 takes as input its view at distance 𝑘 (with the
certificates described above) and peforms the following steps:

(i) First, 𝑢 applies the verification of the local computation schemes of Theorems 4.4 and 4.5. If no
vertex rejects during this verification phase, then every vertex 𝑢 computed 𝑇𝐺 and 𝐺≼𝑢 .

(ii) Then, 𝑢 checks that LongestPaths is the same in its certificate and the certificates of all its
neighbors. If it is not the case, 𝑢 rejects. If no vertex rejects at this point, then LongestPaths is
the same in the certificates of all vertices in 𝐺 .

(iii) Suppose𝑢 ∈𝑉2. Let𝐶𝑢 denote the ECC2 containing𝑢. By definition, of ECC and𝑉≼𝑢 ,
⋃

1⩽𝑑⩽𝑘−1𝐶𝑢 (𝑑) ⊆
𝑉1 ⊆ 𝑉≼𝑢 Since 𝑢 computed 𝐺≼𝑢 in Step (i), for each 𝑣 ∈ ⋃

1⩽𝑑⩽𝑘−1𝐶𝑢 (𝑑), 𝑢 can compute the
length of the path 𝑃𝑣 , and check if it is correctly written in LongestPaths. If this verification
fails, 𝑢 rejects. If no vertex rejects at this point, then LongestPaths is correct in the certificate
of every vertex.

We may assume no vertex has rejected during steps (i) to (iii), and thus every vertex 𝑢 has access to
a (correct) 𝑇𝐺 , 𝐺≼𝑢 and LongestPaths.

(iv) If 𝐺≼𝑢 has an induced path 𝑃 on𝑚 vertices, such that all the vertices in 𝑃 \𝑉≼𝑢 are in distinct
ECC2’s, then 𝑢 rejects.

(v) If 𝑢 ∈ 𝑉2, let us denote by 𝐶𝑢 its ECC2. By definition, 𝑉≼𝑢 = 𝑉1 ∪𝐶𝑢 so by step (i) 𝑢 knows the
graph induced by 𝑉1 ∪𝐶𝑢 . It rejects if it sees an induced path 𝑃start in 𝐺 [𝐶𝑢 ∪𝑉1] satisfying
all of the following:
• 𝑃start contains at least one vertex from 𝐶𝑢
• 𝑃start ends in a vertex 𝑣 , such that 𝑇𝐺 [𝑣, 2] = (𝑖𝑑 (𝐶𝑣), 𝑑𝑣) with 𝑖𝑑 (𝐶𝑣) ≠ 𝑖𝑑 (𝐶𝑢). This
implies that 𝑣 is at distance 𝑑𝑣 ⩽ 𝑘 − 1 from 𝐶𝑣 ∈ E2 \𝐶𝑢 . (Recall we assumed that no
vertex rejected at step (i) and so 𝑢 has access to 𝑇𝐺 .)

• 𝑣 is the unique vertex in 𝑃start that is at distance at most 𝑑𝑣 from 𝐶𝑣 . (again 𝑢 can check
this because it has access to 𝑇𝐺 .)

• |𝑉 (𝑃start) | + (LongestPaths[𝑣]) ⩾ 𝑚
This case corresponds to the case represented on Figure 5.

Properties of the𝑚-pathcheck. We begin with some observations about the𝑚-pathcheck.

Lemma 6.3. Suppose𝐺 contains an induced path 𝑃 on𝑚 vertices. If there is at most one 𝐶 ∈ E2 such
that |𝐶 ∩ 𝑃 | ⩾ 2, some vertex rejects during the𝑚-pathcheck.

Proof. We may assume that no vertex rejects during the first three steps of the𝑚-pathcheck. If
𝑃 ⊆ 𝑉1, then every vertex 𝑢 ∈ 𝑃 rejects at step (iv). Else, we have 𝑃 ∩𝑉2 ≠ ∅, and let 𝐶 ∈ E2 such
that |𝑃 ∩𝐶 | is maximized. By assumption, for every𝐶′ ∈ E2 such that𝐶′ ≠ 𝐶 , we have |𝑃 ∩𝐶′ | ⩽ 1,
so every 𝑢 ∈ 𝐶 rejects at step (iv). □

Lemma 6.4. Suppose 𝐺 contains an induced path 𝑃 on𝑚 vertices with the following properties:
• there are exactly two distinct ECC2’s 𝐶𝑢,𝐶𝑣 ∈ E2 which contain vertices of 𝑃
• for some 𝑑 ∈ {1, 2, . . . , 𝑘 − 1}, there is a unique vertex 𝑣 at distance exactly 𝑑 from 𝐶𝑣

Then some vertex rejects during the𝑚-pathcheck.

Proof. As depicted in Figure 5, we can decompose 𝑃 in two consecutive parts 𝑃start, 𝑃end such
that:

• 𝑃start ∩ 𝑃end = {𝑣};
• 𝑃start ⊆ 𝐶𝑢 ∪𝑉1;
• 𝑃end \ {𝑣} ⊆

⋃
0⩽𝑑<𝑑𝑣 𝐶𝑣 (𝑑).

We may assume that no vertex rejects during the first four steps of the𝑚-pathcheck. We claim that
every 𝑢 ∈ 𝑃 ∩𝐶𝑢 will reject at step (v).

By definition, |𝑉 (𝑃start) | =𝑚 − |𝑉 (𝑃end) | − 1. Let 𝑃𝑣 denote the the longest induced path starting
at 𝑣 and having all its other vertices strictly closer from 𝐶𝑣 than 𝑣 . Hence, |𝑉 (𝑃𝑣) | ⩾ |𝑉 (𝑃end) |, so
ℓ (𝑃start) + LongestPaths[𝑣] ⩾ 𝑚. 𝑃start is an induced path of 𝐺≼𝑢 , included in 𝑉≼𝑢 , which satisfies
the conditions making 𝑢 reject at step (v). □

Correctness. Let us show that this certification scheme is correct. Assume first by contradiction
that 𝐺 contains an induced path 𝑃 of length 4𝑘 − 1. Let us show that for every assignment of
certificates, at least one vertex rejects. If no vertex rejects at step (i) of the verification, then every
vertex 𝑢 knows its witnessed graph𝐺≼𝑢 and the ECC-table𝑇𝐺 (note that 𝑢 also knows𝑉≼𝑢 , because
it can be computed directly from 𝑇𝐺). If no vertex rejects in step (iii), then LongestPaths is also
correct. Then, let us prove the two following Claims 6.5 and 6.3.

𝐶𝑣 = 𝐶𝑣 (0)

𝐶𝑢 = 𝐶𝑢 (0)

𝐶𝑣 (1)
𝐶𝑣 (2)

𝐶𝑢 (1)
𝐶𝑢 (2)

𝑉1

𝐶𝑣 (𝑑𝑣)

𝑃end

𝑃start

𝑣

𝑢

𝑉≼𝑢

Fig. 5. The decomposition of an induced path in two consecutive paths 𝑃start and 𝑃end with the properties
mentioned in the proof of Theorem 1.10.

Claim 6.5. There are at most two 𝐶 ∈ E2 such that |𝐶 ∩ 𝑃 | ⩾ 2. And if there are exactly two, then 𝑃
does not contain any vertex from any other ECC2.

Proof. This simply follows from the fact that 𝑃 has length 4𝑘 − 1, and two different ECC2’s are
at distance at least 2𝑘 − 1. □

Applying Claim 6.5 and Lemma 6.3, we can assume that there are exactly two different ECC2’s
which intersect 𝑃 , and both on at least two vertices. Let us denote them by 𝐶𝑢 and 𝐶𝑣 . Since 𝑃
is a path going through 𝐶𝑢 and 𝐶𝑣 which are at distance at least 2𝑘 − 1 from each other, for all
𝑑 ∈ {1, . . . , 𝑘 − 1}, we have 𝑃 ∩𝐶𝑢 (𝑑) ≠ ∅, and 𝑃 ∩𝐶𝑣 (𝑑) ≠ ∅. Moreover, since 𝑃 has length 4𝑘 − 1,
and since 𝑃 ∩𝐶𝑢 (0), 𝑃 ∩𝐶𝑣 (0) both contain at least two vertices, there exists a set 𝑃 ∩𝐶𝑢 (𝑑) or
𝑃∩𝐶𝑣 (𝑑) which contains only one vertex, for some 𝑑 ∈ {1, . . . , 𝑘−1}. Hence, by applying Lemma 6.4
for𝑚 = 4𝑘 − 1 we obtain that a some vertex rejects during our verification protocol as desired.
Conversely, assume that 𝐺 does not have an induced path of length 4𝑘 − 1. Let us show that

there exists an assignment of the certificates such that every vertex accepts. This assignment is
the following one: the prover attributes the certificates such that no vertex reject in the local
computation schemes of Theorems 4.4 and 4.5, and gives the correct value of LongestPaths to
every vertex. With such a certificate, it is straightforward that a vertex can not reject at steps (i),
(ii) and (iii).

Assume by contradiction that a vertex 𝑢 rejects at step (iv). Then, there exists an induced path 𝑃
of length 4𝑘 − 1 in 𝐺≼𝑢 , such that the vertices in 𝑃 \𝑉≼𝑢 are in distinct ECC2’s. Since 𝐺 does not
have an induced path of length 4𝑘 − 1, 𝑃 is not induced in 𝐺 . It implies that there are two vertices
of 𝑃 linked by an edge in𝐺 , an a non-edge in𝐺≼𝑢 . Thus, these two vertices are in𝑉 \𝑉≼𝑢 (because
edges having an endpoint in 𝑉≼𝑢 are in 𝐺≼𝑢). So by definition of step (iv), these two vertices are in
distinct ECC2’s. In particular, they can not be neighbors in 𝐺 , which is a contradiction.
Finally, assume by contradiction that a vertex 𝑢 rejects at step (v). It means that there exists an

induced path 𝑃start in 𝐺≼𝑢 , included in 𝑉≼𝑢 , ending in some vertex 𝑣 satisfying the conditions of
step (v). Since 𝑃start ⊆ 𝑉≼𝑢 , it is also induced in 𝐺 . Moreover, there exists an induced path 𝑃𝑣 in 𝐺

of length ℓ (𝑃𝑣) starting in 𝑣 and having all its other vertices in
⋃
𝑑<𝑑𝑣

𝐶𝑣 (𝑑). Since 𝑣 is the only
vertex in 𝑃start ∩ (⋃𝑑⩽𝑑𝑣 𝐶𝑣 (𝑑)), then the concatenation of 𝑃start and 𝑃𝑣 is still an induced path in𝐺 .
Moreover, it has length ℓ (𝑃start) + ℓ (𝑃𝑣) − 1 ⩾ 4𝑘 − 1. It is a contradiction. Thus, no vertex rejects at
step (v), so all the vertices accept at step (vi), which concludes the proof. □

6.2 Upper bound for general graphs of size 4𝑘 − 1 in �̃� (𝑛3/2)
Theorem 1.11. For every𝑘 ⩾ 2, we can certify𝐻 -free graphs by looking at distance𝑘 with certificates

of size 𝑂 (𝑛3/2 log2 𝑛) for every 𝐻 of size at most 4𝑘 − 1.

Before proving Theorem 1.11, let us give some informal intuition on the proof. The general idea
is the same as in the proof of Theorem 1.10: first, the prover uses the local computation schemes
of Theorems 4.4 and 4.5 with 𝜀 = 1

2 (such that each vertex 𝑢 computes 𝐺≼𝑢 and 𝑇𝐺), and then it
adds some additional information in the certificates. The main difference is the following one.
Theorem 1.10 is the particular case where the graph 𝐻 is a path. In this case, the information the
prover adds in the certificates is, for each vertex 𝑣 ∈ 𝑉 close to some 𝐶𝑣 ∈ E2, the length of the
longest induced path 𝑃𝑣 starting from 𝑣 and having all its other vertices closer from 𝐶𝑣 than 𝑣 .
This enables a vertex 𝑢 in an ECC2 𝐶𝑢 ≠ 𝐶𝑣 to check, for every induced path 𝑃 in 𝐺≼𝑢 , if it can be
extended into a path of length 4𝑘 − 1 using 𝑃𝑣 . Here, for an arbitrary graph 𝐻 , we generalize it:
the information the prover will add is, intuitively, for each vertex 𝑣 close from an ECC2 𝐶𝑣 , and
for every induced subgraph 𝐻 ′ of 𝐻 , if 𝐻 ′ is induced in the part of 𝐺 consisting in 𝑣 and all the
vertices closer from 𝐶𝑣 than 𝑣 . With this information, every vertex 𝑢 in an ECC2 𝐶𝑢 ≠ 𝐶𝑣 will be
able to detect if some induced graph in 𝐺≼𝑢 can be extended into 𝐻 using 𝐻 ′.

Pointed graphs. Let us introduce some definitions about pointed graphs that will be useful in
the proof of Theorem 1.11. A pointed graph is a tuple (𝐻, 𝑆) where 𝐻 is a graph and 𝑆 ⊆ 𝑉 (𝐻)
is a set of pointed vertices. If (𝐻1, 𝑆1), (𝐻2, 𝑆2) are two pointed graphs, their disjoint union is the
pointed graph (𝐻1 ∪𝐻2, 𝑆1 ∪ 𝑆2), where 𝐻1 ∪𝐻2 is the graph obtained by taking a copy of 𝐻1 and a
copy of 𝐻2, and no edge between them. Finally, let 𝐺 be a graph, 𝐻 an induced subgraph of 𝐺 and
𝑆 ⊆ 𝑉 (𝐻). The complement of (𝐻, 𝑆) in 𝐺 is the pointed subgraph (𝐻, 𝑆) where 𝐻 is the subgraph
of 𝐺 induced by (𝑉 (𝐺) \𝑉 (𝐻)) ∪ 𝑆 .

Proof of Theorem 1.11. Let 𝐻 be a graph with 4𝑘 − 1 vertices. Let us describe a certification
scheme for𝐻 -free graphs with certificates of size𝑂 (𝑘 · 24𝑘 · 𝑛 + 𝑛3/2 log2 𝑛), by looking at distance𝑘 .

Certification. The certification of the prover is the following. First, it gives to each vertex its
certificates in the local computation schemes given by Theorems 4.4 and 4.5, with 𝜀 = 1

2 . This part
of the certificate has size 𝑂 (𝑛3/2 log2 𝑛).
Then, the prover adds some additional information in the certificates, in a field which will be

identical in the certificates of all the vertices. We will denote this field byHTable, and it is defined as
follows. Let P(𝐻) be the set containing all the pointed graphs (𝐻 ′, {ℎ}), where ℎ ∈ 𝑉 (𝐻), and 𝐻 ′ is
a subgraph of 𝐻 induced by {ℎ} and an union of connected components of 𝐻 \ {ℎ}. An example is
shown on Figure 6. The field HTable contains a table which has at most 𝑛 rows and (4𝑘 − 1) · 24𝑘−1
columns. The rows are indexed by the identifier of the vertices which are at distance at most 𝑘 − 1
from𝑉2, and the columns are indexed by the pointed graphs (𝐻 ′, {ℎ}) ∈ P(𝐻). Let 𝑣 ∈ 𝑉 , such that
𝑣 is at distance 𝑑𝑣 ⩽ 𝑘 − 1 from some𝐶𝑣 ∈ E2. HTable[𝑣, (𝐻 ′, {ℎ})] is equal to 1 if 𝐻 ′ is an induced
subgraph of

⋃
𝑑⩽𝑑𝑣 𝐶𝑣 (𝑑), where all the vertices in 𝐻 ′ \ {ℎ} are mapped in

⋃
𝑑<𝑑𝑣

𝐶𝑣 (𝑑), and ℎ is
mapped to 𝑣 . Otherwise, HTable[𝑣, (𝐻, {ℎ})] is equal to 0. An example with the pointed graph 𝐻 ′

of Figure 6 is shown on Figure 7.

𝐻 𝐻 ′

ℎℎ

Fig. 6. An example of a graph 𝐻 and a pointed graph (𝐻 ′, {ℎ}) ∈ P(𝐻).

𝑣
𝐶𝑣

𝐶𝑣 (𝑑𝑣)

Fig. 7. The illustration of HTable[𝑣, (𝐻 ′, {ℎ})] = 1, where (𝐻 ′, {ℎ}) is the pointed graph of Figure 6.

Since the tableHTable has at most𝑛 rows and (4𝑘−1) ·24𝑘−1 columns, with each entry of constant
size, its has size 𝑂 (𝑘 · 24𝑘 · 𝑛). The overall size of the certificate is thus 𝑂 (𝑘 · 24𝑘 · 𝑛 + 𝑛3/2 log2 𝑛).

Verification. The verification of each vertex 𝑢 ∈ 𝑉 consists in the following.
(i) First, 𝑢 applies the verification of the local computation schemes of Theorems 4.4 and 4.5.

If no vertex rejects during this first verification phase, then every vertex 𝑢 computed 𝑇𝐺
and 𝐺≼𝑢 .

(ii) Then, 𝑢 checks that HTable is the same in its certificate and in the certificate of all its
neighbors. If it is not the case, 𝑢 rejects.
If no vertex rejects, HTable is the same in the certificates of all the vertices in 𝐺 . The next
step will consist in checking its correctness.

(iii) If𝑢 ∈𝑉2, it does the following. Let𝐶𝑢 be its ECC2. We have
⋃

0⩽𝑑⩽𝑘−1𝐶𝑢 (𝑑) ⊆ 𝑉≼𝑢 . Thus, for
every 𝑣 ∈ ⋃

0⩽𝑑⩽𝑘−1𝐶𝑢 (𝑑) and every (𝐻, {ℎ}) ∈ P(𝐻), 𝑢 can check if HTable[𝑣, (𝐻 ′, {ℎ})]
is correct. If it is not correct, 𝑢 rejects.
If no vertex rejects at this point, then HTable is correct.

(iv) If 𝐺≼𝑢 has an induced 𝐻 , such that all the vertices in 𝐻 \𝑉≼𝑢 are in distinct ECC2’s, then 𝑢
rejects (in particular, this is the case if 𝐻 ⊆ 𝑉≼𝑢).
The last steps are similar to step (v) in the verification of Theorem 1.10: 𝑢 will check that it
can not obtain a graph 𝐻 by extending a subgraph of𝐺≼𝑢 into 𝐻 , using a subgraph 𝐻 ′ such
that HTable[𝑣, (𝐻 ′, {ℎ})] = 1 for some vertices 𝑣 and ℎ.

(v) If 𝑢 ∈ 𝑉2, let𝐶𝑢 ∈ E2 such that 𝑢 ∈ 𝐶𝑢 . The vertex𝑢 rejects if there exists two pointed graphs
(𝐻start, {ℎ}), (𝐻end, {ℎ}) ∈ P(𝐻) which are complementary of each other in 𝐻 , and a vertex
𝑣 ∈ 𝐶𝑣 (𝑑𝑣) for some 𝐶𝑣 ≠ 𝐶𝑢 , 𝑑𝑣 ⩽ 𝑘 − 1, such that the following conditions are satisfied:

𝑣

𝐶𝑣

𝐶𝑣 (𝑑𝑣) 𝐶𝑢𝑢

𝐻start
𝐻end

Fig. 8. Illustration of the condition making 𝑢 reject at step (v) of the verification. Here, the graph 𝐻 is the one
of Figure 6. The pointed graph (𝐻end, {ℎ}) is the pointed graph (𝐻 ′, {ℎ}) of Figure 6. .

• 𝐻start is an induced subgraph of𝐺≼𝑢 , included in𝑉≼𝑢 , which contains at least one vertex
from 𝐶𝑢

• ℎ is mapped to 𝑣 , and it is the only vertex in 𝐻start ∩ (⋃𝑑⩽𝑑𝑣 𝐶𝑣 (𝑑))
• HTable[𝑣, (𝐻end, {ℎ})] = 1, where (𝐻end, {ℎ}) is the complementary of (𝐻start, {ℎ}) in𝐻

An illustration is shown on Figure 8.
(vi) If𝑢 ∈𝑉2, let𝐶𝑢 ∈ E2 such that 𝑐 ∈𝐶𝑢 . The vertex𝑢 rejects if there exists three pointed graphs

(𝐻start, {ℎ1, ℎ2}), (𝐻 (1)
end, {ℎ1}), (𝐻

(2)
end, {ℎ2}), and two vertices 𝑣1 ∈ 𝐶𝑣1 (𝑑𝑣1), 𝑣2 ∈ 𝐶𝑣2 (𝑑𝑣2) for

some 𝑑𝑣1 , 𝑑𝑣2 ⩽ 𝑘 − 1 where 𝐶𝑣1 ,𝐶𝑣2 are two different ECC2’s different from 𝐶𝑢 , such that
the following conditions are satisfied:
• 𝐻

(1)
end, 𝐻

(2)
end are two disjoint induced subgraphs of 𝐻

• (𝐻start, {ℎ1, ℎ2}) is the complementary in 𝐻 of the disjoint union of (𝐻 (1)
end, {ℎ1}) and

(𝐻 (2)
end, {ℎ2})

• 𝐻start is an induced subgraph of 𝐺≼𝑢 , included in 𝑉≼𝑢 , which contains at least vertex
from 𝐶𝑢

• ℎ1 (resp.ℎ2) is mapped to 𝑣1 (resp. 𝑣2), and it is the only vertex in𝐻start∩(⋃𝑑⩽𝑑𝑣1
𝐶𝑣1 (𝑑))

(resp. in 𝐻start ∩ (⋃𝑑⩽𝑑𝑣2
𝐶𝑣2 (𝑑)))

• HTable[𝑣1, (𝐻 (1)
end)] = 1 and HTable[𝑣2, (𝐻 (2)

end)] = 1
An illustration is shown on Figure 9.

(vii) If 𝑢 did not reject at this point, it accepts.

Correctness. Let us show that this certification scheme is correct. First, assume that 𝐺 contains
an induced 𝐻 , ant let us show that for every assignment of certificates, at least one vertex rejects.
If no vertex rejects at step (i) of the verification, then every vertex 𝑢 computed the ECC-table 𝑇𝐺
and its witnessed graph 𝐺≼𝑢 (𝑢 knows also 𝑉≼𝑢 because it can be computed directly from 𝑇𝐺). If no
vertex rejects at step (iii), then HTable is also correct. Then, we have the following Claim 6.6, and
its proof is analogous as proofs of Claims 6.5 and 6.3.

Claim 6.6. (1) There are at most three 𝐶 ∈ E2 such that 𝐶 ∩ 𝐻 ≠ ∅.
(2) If there is at most one 𝐶 ∈ E2 such that |𝐶 ∩𝐻 | ⩾ 2, then there exists a vertex which rejects at

step (iv) of the verification.

By Claim 6.6, we can assume that there are at least two𝐶 ∈ E2 such that |𝐶 ∩𝐻 | ⩾ 2. Now, there
are two cases.

𝑣1
𝐶𝑣1

𝐶𝑣1 (𝑑𝑣1)

𝐶𝑢

𝑢

𝐻start

𝐻
(1)
end

𝑣2

𝐶𝑣2 (𝑑𝑣2)

𝐶𝑣2

𝐻
(2)
end

Fig. 9. Illustration of the condition making 𝑢 reject at step (vi) of the verification. The graph 𝐻 is the one of
Figure 6. The graph 𝐻 (1)

end is a path on two vertices and the graph 𝐻 (2)
end is a triangle.

• If there are exactly two ECC2’s intersecting 𝐻 , denoted by 𝐶1 and 𝐶2, since 𝐻 has 4𝑘 − 1
vertices and that, by assumption, we have |𝐶𝑖 ∩𝐻 | ⩾ 2 for 𝑖 ∈ {1, 2}, there exists 1 ⩽ 𝑑 ⩽ 𝑘−1
and 𝑖 ∈ {1, 2} such that |𝐶𝑖 (𝑑) | = 1. Without loss of generality, assume that 𝑖 = 1, and let us
denote by 𝑣 the unique vertex in𝐶1 (𝑑). Let 𝑢 ∈ 𝐶2. Then, we can decompose 𝐻 in two parts
𝐻start and 𝐻end satisfying the conditions making 𝑢 reject at step (v).

• If there are exactly three ECC2’s intersecting 𝐻 , denoted by 𝐶1, 𝐶2 and 𝐶3, there is at most
one 𝑖 ∈ {1, 2, 3} such that, for all 𝑑 ∈ {1, . . . , 𝑘 − 1}, |𝐶𝑖 (𝑑) | ⩾ 2. Without loss of generality,
assume that there exists 𝑑1, 𝑑2 ∈ {1, . . . , 𝑘 − 1} such that |𝐶𝑖 (𝑑𝑖) | = 1 for all 𝑖 ∈ {1, 2}. Let us
denote by 𝑣1 (resp. by 𝑣2) the only vertex in 𝐶1 (𝑑1) (resp. in 𝐶2 (𝑑2)). Let 𝑢 ∈ 𝐶3. Then, we
can decompose 𝐻 in three parts 𝐻start, 𝐻 (1)

end, 𝐻
(2)
end satisfying the conditions making 𝑢 reject

at step (vi).
Conversely, assume that 𝐺 does not have an induced 𝐻 , and let us show that there exists an

assignment of the certificates such that every vertex accepts. This assignment is the following one:
the prover attributes the certificates such that no vertex rejects in the local computation schemes of
Theorems 4.4 and 4.5, and gives the correct value of HTable to every vertex. With such a certificate,
a vertex can not reject at steps (i), (ii) and (iii). With exactly the same argument as in the proof of
Theorem 1.11, a vertex can not reject at step (iv).

By contradiction, assume that a vertex 𝑢 rejects at step (v). Then, there exists two pointed graphs
(𝐻start, {ℎ}), (𝐻end, {ℎ}) satisfying the conditions making 𝑢 reject at step (v). By the properties they
satisfy, we can glue them in ℎ to obtain a graph 𝐻 , which is still induced in𝐺 , which is a contradic-
tion. Similarly, if a vertex 𝑢 rejects at step (vi), there exists three pointed graphs (𝐻start, {ℎ1, ℎ2}),
(𝐻 (1)

end, ℎ1), (𝐻
(2)
end, ℎ2) satisfying the conditions making 𝑢 reject at step (vi). We can again glue them

on ℎ1, ℎ2 to obtain an induced 𝐻 in 𝐺 , which is a contradiction. Thus, all the vertices accept at
step (vii), which concludes the proof. □

We stated Theorem 1.11 with an induced subgraph perspective but one can easily remark
that the proof technique is general enough to be directly extended to subgraphs rather than

induced subgraphs. Indeed, we simply have to change the definition of HTable in such a way
HTable[𝑣, (𝐻 ′, {ℎ})] is equal to 1 if𝐻 ′ is a subgraph of

⋃
𝑑⩽𝑑𝑣 𝐶𝑣 (𝑑) instead of an induced subgraph

in order to get the same result. We actually think that our proof technique can be used more
generally to get subquadratic bounds in the polynomial regime.

6.3 Upper bound for paths of length at most 3𝑘 − 1 in �̃� (𝑛)
Theorem 1.12. For every 𝑘 ⩾ 2, we can certify 𝑃3𝑘−1-free graphs by looking at distance 𝑘 with

certificates of size 𝑂 (𝑛 log3 𝑛).

To prove this result, we will in fact prove the following Proposition 6.7, and Theorem 1.12 will
be a simple corollary. While, until now, all the results where based on 𝜀 = 1

2 and the partition of the
vertex set into two parts, we will use the whole power of our machinery in this proof by choosing
an arbitrarily small value of 𝜀; this leads to new technicalities we have to deal with in the proof.

Proposition 6.7. There exists 𝑐 > 0 such that, for all 0 < 𝜀 < 1, there exists a certification scheme for
𝑃3𝑘−1-free graphs using at most 𝑐

𝜀
· log2 𝑛 · 𝑛1+𝜀 bits.

Proof of Theorem 1.12 assuming Proposition 6.7. The certification in size 𝑂 (𝑛 log3 𝑛) is the
following one. Let 𝑛 be the number of vertices in the graph. The prover writes 𝑛 in the certificate
of every vertex of the graph, and certifies the correctness of this information with 𝑂 (𝑛 log𝑛) bits
(by coding a spanning tree). Then, it uses the certification scheme given by Proposition 6.7, with
𝜀 = 1/log𝑛. This uses 𝑂 (𝑛 log3 𝑛) bits in total, since 𝑛1/log𝑛 is a constant. □

Proof of Proposition 6.7. Let 0 < 𝜀 < 1 and 𝑁 =
⌈ 1
𝜀

⌉
. Let us describe a certification scheme

for 𝑃3𝑘−1-free graphs. We will show that it is correct and uses at most 𝑐
𝜀
· log2 𝑛 · 𝑛1+𝜀 bits, where 𝑐

is a constant independent of 𝜀. Let 𝐺 = (𝑉 , 𝐸) be a graph and 𝑛 = |𝑉 |.

Certification. Let us describe the certificates given by the prover to the vertices. First, the prover
gives to every vertex its certificates in the local computation schemes of Theorems 4.4 and 4.5, so
that each vertex 𝑢 can compute 𝑇𝐺 and 𝐺≼𝑢 . These certificates have size 𝑂 (𝑛1+𝜀

𝜀
log2 𝑛). Then, as

in the certification scheme of Theorem 1.10, the prover adds some information in the certificates,
in another field, denoted by LongestPaths, which is identical in the certificates of all the vertices.
In LongestPaths, the prover writes a table which has 𝑛 rows and 𝑁 columns. The rows are indexed
with the identifiers of the vertices, and the columns by {1, . . . , 𝑁 }. Let 𝑣 ∈ 𝑉 and 𝑖 ∈ {1, . . . , 𝑁 }. If
𝑣 ∉

⋃
𝐶∈E𝑖

⋃
0⩽𝑑⩽𝑘−1𝐶 (𝑑), we set LongestPaths[𝑣, 𝑖] := ⊥. Else, there exists a unique 𝐶𝑣 ∈ E𝑖 and

𝑑𝑣 ⩽ 𝑘 − 1 such that 𝑣 ∈ 𝐶𝑣 (𝑑𝑣). In this case, let 𝑃𝑣 denote the longest induced path starting from
𝑣 and having all its other vertices in

⋃
0⩽𝑑<𝑑𝑣 𝐶𝑣 (𝑑), and let us denote its length by ℓ (𝑃𝑣). We set

LongestPaths[𝑣, 𝑖] := ℓ (𝑃𝑣).
Since LongestPaths has 𝑛 rows, 𝑁 columns, and each entry is written on at most log𝑛 bits, its

size it 𝑂 (𝑁𝑛 log𝑛). Thus, the overall size of each certificate remains 𝑂 (𝑛1+𝜀
𝜀

log2 𝑛).

Verification. The verification of each vertex 𝑢 ∈ 𝑉 consists in the following steps:
(i) First, 𝑢 applies the verification of the local computation schemes given by Theorems 4.4

and 4.5.
If no vertex rejects, then every vertex𝑢 computed its witnessed graph𝐺≼𝑢 and the ECC-table
𝑇𝐺 of 𝐺 .

(ii) Then, 𝑢 checks that the field LongestPaths is written the same in its certificate and the
certificates of all its neighbors. If it is not the case, 𝑢 rejects.
If no vertex rejects, LongestPaths is the same in the certificates of all the vertices in 𝐺 . The
next step will consist in checking its correctness.

𝑃1 𝑃2 𝑃3

𝑥1 𝑥2 𝑥3

𝑘 𝑘 − 1 𝑘

𝑃

Fig. 10. The decomposition of 𝑃 in three consecutive parts 𝑃1, 𝑃2, 𝑃3. For each 𝑖 ∈ {1, 2, 3}, 𝑥𝑖 is the vertex of
maximum degree in 𝑃𝑖 .

(iii) Let 𝑖𝑢 ∈ {1, . . . , 𝑁 } be such that 𝑢 ∈ 𝑉𝑖𝑢 . For each 𝑖 ∈ {1, . . . , 𝑖𝑢}, 𝑢 does the following. We
have 𝑢 ∈ 𝐻𝑖 . Let us denote by 𝐶𝑢 its ECC𝑖 . Let 𝑑 ∈ {1, . . . , 𝑘 − 1}, and let 𝑣 ∈ 𝐶𝑢 (𝑑). Since
𝑣 ∉ 𝐶𝑢 , we have 𝑣 ∈ 𝐿𝑖−1 (indeed, if 𝑣 ∈ 𝐻𝑖 , it would imply 𝑣 ∈ 𝐶𝑢 because 𝑣 is at distance at
most 𝑘 − 1 from 𝐶𝑢). Let 𝑖𝑣 ∈ {1, . . . , 𝑖 − 1} be such that 𝑣 ∈ 𝑉𝑖𝑣 . We have 𝐶𝑢 ⊆ 𝐻𝑖 ⊆ 𝐻𝑖𝑣 , so
𝑢, 𝑣 are in the same ECC𝑖𝑣 . Thus, we have 𝑣 ≼ 𝑢. Since this true for all 𝑑 ∈ {1, . . . , 𝑘 − 1} and
𝑣 ∈ 𝐶𝑢 (𝑑), we have

⋃
1⩽𝑑⩽𝑘−1𝐶𝑢 (𝑑) ⊆ 𝑉≼𝑢 . Thus, for all 𝑣 ∈

⋃
1⩽𝑑⩽𝑘−1𝐶𝑢 (𝑑), 𝑢 can check

if LongestPaths[𝑣, 𝑖] is correct, and rejects if it is not the case.
If no vertex rejects at this point, then LongestPaths is correct.

(iv) If 𝐺≼𝑢 has an induced path 𝑃 of length 3𝑘 − 1, which is included in 𝑉≼𝑢 , then 𝑢 rejects.
(v) Finally, 𝑢 rejects if it sees, in its view at distance 𝑘 , an induced path 𝑃 of some length ℓ (𝑃),

which goes from a vertex 𝑣1 to a vertex 𝑣2, such that the following conditions are satisfied:
• at most one vertex in 𝑃 is at distance exactly 𝑘 from 𝑢

• there exists 𝑖 ∈ {1, . . . , 𝑁 } and two distinct 𝐶𝑣1 ,𝐶𝑣2 ∈ E𝑖 and 𝑑𝑣1 , 𝑑𝑣2 ∈ {0, . . . , 𝑘 − 1}
such that 𝑣1 ∈ 𝐶𝑣1 (𝑑𝑣1) and 𝑣2 ∈ 𝐶𝑣2 (𝑑𝑣2)

• 𝑣1 (resp. 𝑣2) is the only vertex in 𝑃 ∩ (⋃0⩽𝑑⩽𝑑𝑣1 𝐶𝑣1 (𝑑)) (resp. in 𝑃 ∩ (⋃0⩽𝑑⩽𝑑𝑣2 𝐶𝑣2 (𝑑)))
• ℓ (𝑃) + (LongestPaths[𝑣1, 𝑖] − 1) + (LongestPaths[𝑣2, 𝑖] − 1) ⩾ 3𝑘 − 1

(vi) If 𝑢 did not reject previously, it accepts.

Correctness. Let us show that this certification scheme is correct. First, assume that 𝐺 has an
induced path 𝑃 of length 3𝑘 − 1, and let us show that for every assignment of certificates, at least
one vertex rejects. If no vertex rejects at step (i), then every vertex 𝑢 knows the ECC-table 𝑇𝐺 , and
its witnessed graph 𝐺≼𝑢 . If no vertex rejects in steps (ii) and (iii), then LongestPaths is correctly
written in the certificates.

Let us decompose 𝑃 in three consecutive parts 𝑃1, 𝑃2, 𝑃3, having respectively 𝑘, 𝑘 − 1, 𝑘 vertices.
Let 𝑥1 (resp. 𝑥2, 𝑥3) be the vertex of maximum degree in 𝑃1 (resp. in 𝑃2, 𝑃3). Let 𝑖1, 𝑖2, 𝑖3 ∈ {1, . . . , 𝑁 }
be such that 𝑥1 ∈ 𝑉𝑖1 , 𝑥2 ∈ 𝑉𝑖2 and 𝑥3 ∈ 𝑉𝑖3 (see Figure 10 for an illustration). Note that the distance
between 𝑥1 and 𝑥2 is at most 2𝑘 − 2. Similarly, the distance between 𝑥2 and 𝑥3 is at most 2𝑘 − 2.
The two following Claims 6.8 and 6.9 show that, in all cases, at least one vertex rejects.

Claim 6.8. If 𝑖2 ⩾ min(𝑖1, 𝑖3), then at least one vertex reject at step (iv) of the verification.

Proof. Assume that 𝑖2 ⩾ 𝑖1. Then, we have 𝑥2 ∈ 𝐻𝑖1 . Since 𝑥1 and 𝑥2 are at distance at most
2𝑘 − 2, there are in the same ECC𝑖1 . Thus, we have 𝑥1 ≼ 𝑥2. Note also that, since 𝑥1 is the vertex of
maximum degree in 𝑃1, we have 𝑃1 ⊆ 𝑉≼𝑥1 . Thus, by transitivity, we have 𝑃1 ⊆ 𝑉≼𝑥2 . Moreover, we
also have 𝑃2 ⊆ 𝑉≼𝑥2 . Finally, there are two cases:

• If 𝑖2 ⩾ 𝑖3, by the same argument, we have 𝑃3 ⊆ 𝑉≼𝑥2 . So 𝑃 is included in 𝑉≼𝑥2 , and 𝑥2 rejects
at step (iv).

• If 𝑖3 > 𝑖2, we have 𝑥2 ≼ 𝑥3. By transitivity we have 𝑃1 ⊆ 𝑉≼𝑥3 and 𝑃2 ⊆ 𝑉≼𝑥3 . Since we also
have 𝑃3 ⊆ 𝑉≼𝑥3 , 𝑃 is included in 𝑉≼𝑥3 and 𝑥3 rejects at step (iv). □

Claim 6.9. If 𝑖2 ⩽ min(𝑖1, 𝑖3), then at least one vertex rejects.

𝑥1 𝑥2 𝑥3𝑢1 𝑢3𝑢

⩽ 𝑘 − 1⩽ 𝑘

𝑃 ′

𝑃

︷ ︸︸ ︷
Fig. 11. The vertex 𝑢1 (resp. 𝑢3) is the only vertex in 𝑃 ∩𝐶𝑥1 (𝑑1) (resp. in 𝑃 ∩𝐶𝑥3 (𝑑3)). The vertices 𝑢1 and 𝑢3
are at distance at most 2𝑘 − 1 from each other. The vertex 𝑢 is such that its distance to 𝑢1 is at most 𝑘 , and its
distance to 𝑢3 is at most 𝑘 − 1.

Proof. Without loss of generality, assume that 𝑖2 ⩽ 𝑖3 ⩽ 𝑖1. We have 𝑥1 ∈ 𝐻𝑖3 . There are two
cases, depending on whether 𝑥1 and 𝑥3 are in the same ECC𝑖3 or not.

• If 𝑥1 and 𝑥3 are in the same ECC𝑖3 , we have 𝑥3 ≼ 𝑥1. Thus, by transitivity, 𝑃3 ⊆ 𝑉≼𝑥1 . Since
we also have 𝑃1 ⊆ 𝑃≼𝑥1 and 𝑃2 ∈ 𝑉≼𝑥1 (because 𝑖2 ⩽ 𝑖1), then 𝑃 is included in 𝑉≼𝑥1 so 𝑥1
rejects at step (iv).

• If 𝑥1 and 𝑥3 are not in the same ECC𝑖3 , let us prove that some vertex rejects at step (v).
Let 𝐶𝑥1 ,𝐶𝑥3 ∈ E𝑖3 be such that 𝑥1 ∈ 𝐶𝑥1 and 𝑥3 ∈ 𝐶𝑥3 . Since 𝑃 passes through 𝐶𝑥1 and
𝐶𝑥3 , in the part between 𝑥1 and 𝑥3, it passes also through 𝐶𝑥1 (𝑑) and 𝐶𝑥3 (𝑑) for all 𝑑 ∈
{0, . . . , 𝑘 − 1}. Moreover, since 𝑃 has length 3𝑘 − 1, there exists at least 𝑘 + 1 sets among
{𝐶𝑥1 (0), . . . ,𝐶𝑥1 (𝑘 − 1),𝐶𝑥3 (0), . . . ,𝐶𝑥3 (𝑘 − 1)} through which 𝑃 passes only once. Thus,
in the part of 𝑃 between 𝑥1 and 𝑥3, there exists 𝑑1, 𝑑3 ∈ {0, . . . , 𝑘 − 1} such that 𝑃 passes
only once through 𝐶𝑥1 (𝑑1) and 𝐶𝑥3 (𝑑3), in some vertices denoted by 𝑢1, 𝑢3, and 𝑢1, 𝑢3 are at
distance at most 2𝑘 − 1 from each other. Let 𝑃 ′ denote the part of 𝑃 between 𝑢1 and 𝑢3. Let
𝑢 ∈ 𝑃 ′ such that 𝑢 is at distance at most 𝑘 − 1 from every vertex in 𝑃 ′, except 𝑢1, and 𝑢,𝑢1
are at distance at most 𝑘 . This is depicted on Figure 11.
So 𝑃 ′ is an induced path in the view of 𝑢 at distance 𝑘 . Let us denote its length by ℓ (𝑃 ′).
Since 𝑃 has length 3𝑘 − 1, by definition of LongestPaths, we have:

(LongestPaths[𝑢1, 𝑖3] − 1) + ℓ (𝑃 ′) + (LongestPaths[𝑢3, 𝑖3] − 1) ⩾ 3𝑘 − 1

Thus, the vertex 𝑢 rejects at step (vi). □

Conversely, assume that there is no induced 𝑃3𝑘−1 in𝐺 . Then, let us prove that with the certificates
described above, no vertex rejects. It is straightforward that no vertex rejects at steps (i), (ii) and (iii).
By contradiction, assume that a vertex 𝑢 rejects at step (iv). Then, there exists an induced path 𝑃 of
length 3𝑘 − 1 in 𝐺≼𝑢 which is included in 𝑉≼𝑢 . So 𝑃 is also induced in 𝐺 , which is a contradiction.
Finally, assume that a vertex 𝑢 rejects at step (v). Then, there is a path 𝑃 induced in the view
of 𝑢 at distance 𝑘 and two vertices 𝑣1, 𝑣2 satisfying the conditions making 𝑢 reject at step (v). Let
𝑖 ∈ {1, . . . , 𝑁 } be such that 𝑣1 and 𝑣2 are at distance at most 𝑘 − 1 from two distinct ECC𝑖 ’s, denoted
by 𝐶𝑣1 and 𝐶𝑣2 . Let 𝑑𝑣1 (resp. 𝑑𝑣2) be such that 𝑣1 ∈ 𝐶𝑣1 (𝑑𝑣1) (resp. 𝑣2 ∈ 𝐶𝑣2 (𝑑𝑣2)). By definition of
LongestPaths, there exists a path 𝑃𝑣1 (resp. 𝑃𝑣2) which starts in 𝑣1 (resp. 𝑣2), which has all its other
vertices in

⋃
0⩽𝑑<𝑑𝑣1 𝐶𝑣1 (𝑑) (resp. in

⋃
0⩽𝑑<𝑑𝑣2 𝐶𝑣2 (𝑑)), and such that ℓ (𝑃)+(ℓ (𝑃𝑣1)−1)+(ℓ (𝑃𝑣2)−1) ⩾

3𝑘 − 1. So we can glue the paths 𝑃𝑣1 , 𝑃 and 𝑃𝑣2 to obtain a path of length 3𝑘 − 1 in 𝐺 , which is still
induced. This is a contradiction. Thus, all the vertices accept at step (vi). □

6.4 Upper bound for paths of length 14
3 𝑘 − 2 in �̃� (𝑛3/2)

In this subsection we prove the following theorem.

Theorem 1.13. For every 𝑘 ⩾ 2, we can certify 𝑃⌈ 14
3 𝑘⌉−1-free graphs by looking at distance 𝑘 with

certificates of size 𝑂 (𝑛3/2 log2 𝑛).

Proof. Let𝑚 =
⌈ 14
3 𝑘

⌉
− 1. Note that𝑚 < 14

3 𝑘 . Let us describe a certification scheme for 𝑃𝑚-free
graphs, with certificates of size𝑂 (𝑛3/2 log2 𝑛). Let𝐺 = (𝑉 , 𝐸) be a graph and 𝑛 = |𝑉 |. Let 𝜀 = 1

2 . We
will use the definitions of Section 4.2.1 with respect to 𝜀. We remind the reader of the following key
pieces of notation.

• 𝑉1 is the set of vertices with degree less than
√
𝑛. 𝑉2 = 𝑉 \𝑉1.

• 𝐻1 = 𝑉 , 𝐻2 = 𝑉2.
• E2 is the partition of 𝐻2 into ECC2’s. By definition all of 𝑉 is in one ECC1.
• For 𝐶 ∈ E2, we denote by 𝐶 (𝑑) the set of vertices at distance exactly 𝑑 from 𝐶

• If 𝑢 is at distance at most 𝑘 − 1 from some ECC2 𝐶𝑢 , 𝑇𝐺 [𝑢, 2] is (𝑖𝑑 (𝐶𝑢), 𝑑𝑢) where 𝑑𝑢 is the
distance from 𝑢 to 𝐶𝑢 . (Recall, 𝐶𝑢 is uniquely defined.) Otherwise, 𝑇𝐺 [𝑢, 2] = ⊥.

• For each 𝑢 ∈ 𝑉1, by definition 𝑉≼𝑢 = 𝑉1. For each 𝑢 ∈ 𝑉2, by definition 𝑉≼𝑢 = 𝑉1 ∪𝐶𝑢 where
𝐶𝑢 denotes the ECC2 containing 𝑢.

• 𝐺≼𝑢 is the graph obtained from𝐺 by deleting all edges that do not have at least one endpoint
in 𝑉≼𝑢 .

• For every vertex 𝑣 ∈ 𝑉1 such that 𝑣 is at distance at most 𝑘 − 1 from a (unique) ECC2 𝐶𝑣 , we
let 𝑃𝑣 be the longest induced path starting from 𝑣 with other vertices in 𝑃𝑣 strictly closer to
𝐶𝑣 than 𝑣 . Let ℓ (𝑃𝑣) be the length of 𝑃 .

• Wedefine LongestPaths to be an array indexed by identifiers of vertices, such that LongestPaths[𝑣] =
ℓ (𝑃𝑣) for every vertex 𝑣 ∈ ⋃

𝐶∈E2

⋃
1⩽𝑑⩽𝑘−1𝐶 (𝑑), and it is ⊥ otherwise.

Certification. Let us describe the certificates given by the prover to the vertices.
We give every vertex 𝑣 the certificates of Theorem 1.10 and some additional information denoted

by LongestConstrainedPath. We repeat the definition of the certificates of Theorem 1.10 for the
readers convenience: First, it gives to every vertex its certificates in the local computation schemes
of Theorems 4.4 and 4.5, with 𝜀, so that each vertex 𝑢 can compute 𝑇𝐺 and 𝐺≼𝑢 . This part of the
certificate has size 𝑂 (𝑛3/2 log2 𝑛). Then the prover adds the field LongestPaths to each vertex. It
has size 𝑂 (𝑛 log𝑛).

For every 𝑣 ∈𝑉 , let us describewhat information is stored in LongestConstrainedPath(𝑣). If 𝑣 ∈𝑉2
or 𝑣 ∈𝑉1 and 𝑣 has distance at least 𝑘 from every ECC2, then we set LongestConstrainedPath(𝑣) =⊥.
Otherwise, LongestConstrainedPath(𝑣) consists in a table having at most 𝑛 rows, and 4 columns.
The rows are indexed by vertices of𝐺 . The content of each cell is the following. Let 𝑣 ′ ∈𝐶𝑣 (𝑑𝑣) \ {𝑣}.
Let 𝑄 denote the set

⋃
0⩽𝑑<𝑑𝑣 𝐶𝑣 (𝑑). In other words, 𝑄 is the set of vertices in 𝐺 with that are

strictly closer to 𝐶𝑣 than 𝑣 .

• In LongestConstrainedPath(𝑣) [𝑣 ′, 1], the prover writes the length of the longest induced
path starting from 𝑣 and having all the other vertices in 𝑄 ∪ {𝑣 ′}.

• In LongestConstrainedPath(𝑣) [𝑣 ′, 2], the prover writes the length of the longest induced
path starting from 𝑣 ′ and having all the other vertices in 𝑄 \ 𝑁 [𝑣].

• In LongestConstrainedPath(𝑣) [𝑣 ′, 3], the prover writes the length of the longest induced
path starting at 𝑣 , ending in 𝑣 ′, and having all the other vertices in 𝑄 .

• In LongestConstrainedPath(𝑣) [𝑣 ′, 3], the prover writes the maximum sum of the lengths
of two disjoint induced paths, which are anti-complete one to each other, which start
respectively at 𝑣 and 𝑣 ′, and which have all the other vertices in 𝑄 .

Note that LongestPaths and LongestConstrainedPath both have size𝑂 (𝑛 log𝑛). Thus, the overall
size of each certificate is 𝑂 (𝑛3/2 log2 𝑛).

Verification. The verification of each vertex𝑢 ∈ 𝑉 consists in the following steps. First 𝑢 performs
the𝑚-pathcheck as described in Definition 6.2. (Recall𝑚 = ⌈14𝑘/3⌉ − 1.) We will refer to the steps
of Definition 6.2 as step (i) - step (v).

Then 𝑢 performs the following additional steps:
(vi) 𝑢 checks the correctness of LongestConstrainedPath(𝑢).

• Since𝑉1,𝑉2 are defined only by the degrees of vertices,𝑢 knows whether it is in𝑉1 or𝑉2.
If𝑢 ∈𝑉2, and𝑇𝐺 [𝑢, 2] ≠⊥,𝑢 rejects. If𝑢 ∈𝑉1,𝑢 checkswhether LongestConstrainedPath(𝑢) =
⊥ if and only if 𝑇𝐺 [𝑢, 2] = ⊥. If not 𝑢, rejects.

• Suppose LongestConstrainedPath(𝑢) ≠⊥. Then by the previous item and the definition
of𝑇𝑢 , there is a (unique)𝐶𝑢 ∈ E2 and 𝑑𝑢 ∈ {1, . . . , 𝑘−1} such that𝑢 is at distance exactly
𝑑𝑢 from 𝐶𝑢 . Let 𝑢′ ∈ 𝐶𝑢 at distance 𝑑𝑢 from 𝑢. By Remark 4.7, 𝑢 can compute 𝐺≼𝑢′ .
In particular, 𝑢 knows the subgraph of 𝐺 induced by

⋃
0⩽𝑑⩽𝑘−1𝐶𝑢 (𝑑). and this is

sufficient for 𝑢 to check the correctness of LongestConstrainedPath(𝑢) by definition
of LongestConstrainedPath (and 𝑢 rejects if it is not correct.)

We may assume no vertex has rejected at this point, and thus 𝑢 has access to a (correct) 𝑇𝐺 , 𝐺≼𝑢 ,
LongestPaths and LongestConstrainedPath(𝑢).
(vii) If𝑢 ∈ 𝑉2, let us denote by𝐶𝑢 its ECC2. It rejects if it sees an induced path 𝑃start in𝐺 [𝐶𝑢 ∪𝑉1],

and such that the following conditions are satisfied:
• 𝑃start contains at least one vertex from 𝐶𝑢
• 𝑃start goes from a vertex 𝑣 to a vertex 𝑤 , such that 𝑇𝐺 [𝑣, 2] = (𝑖𝑑 (𝐶𝑣), 𝑑𝑣), 𝑇𝐺 [𝑤, 2] =

(𝑖𝑑 (𝐶𝑤), 𝑑𝑤), and Id(𝐶𝑢), Id(𝐶𝑣), Id(𝐶𝑤) are all distinct. Since 𝑇𝐺 is correct by step (i),
𝐶𝑢,𝐶𝑣,𝐶𝑤 are all distinct, 𝑣 is at distance at most 𝑑𝑣 ⩽ 𝑘 −1 from𝐶𝑣 and𝑤 is at distance
at most 𝑑𝑤 ⩽ 𝑘 − 1 from 𝐶𝑤 .

• 𝑣 is the only vertex in 𝑃start ∩ (⋃𝑑⩽𝑑𝑣 𝐶𝑣 (𝑑)), and 𝑤 is the only vertex in 𝑃start ∩
(⋃𝑑⩽𝑑𝑤 𝐶𝑤 (𝑑)). In other words all other vertices of 𝑃start are further from𝐶𝑣 (resp.𝐶𝑤)
than 𝑣 (resp.𝑤). 𝑢 checks this by looking at the entries of 𝑇𝐺 for the vertices in 𝑃 .

• ℓ (𝑃start) + (LongestPaths[𝑣] − 1) + (LongestPaths[𝑤] − 1) ⩾ 𝑚
This case is represented on Figure 12.

(viii) Finally, if 𝑢 ∈ 𝑉1 and 𝑢 is at distance 𝑑𝑢 ∈ {1, . . . , 𝑘 − 1} from some vertex 𝑢′ in some ECC2
𝐶𝑢 we perform the following (recall 𝑢 can check this condition because 𝑢 has access to 𝑇𝐺).
The vertex𝑢 computes𝐺≼𝑢′ (this is possible by Remark 4.7), so𝑢 knows the graph𝐺 [𝐶𝑢∪𝑉1].
Then, 𝑢 rejects if there exists an induced path 𝑃start in 𝐺 [𝐶𝑢

⋃
𝑉1], 𝐶𝑣 ∈ E2 \ {𝐶𝑢}, 𝑑𝑣 ∈

{1, . . . , 𝑘 − 1} and two vertices 𝑣, 𝑣 ′ ∈ 𝐶𝑣 (𝑑𝑣), with 𝑣 at distance at most 𝑘 from 𝑢, such that
any of the following set of conditions is satisfied (see Figure 13 for an illustration):
(a) • 𝑃start ends in 𝑣 and is anti-complete to 𝑣 ′

• 𝑣 is the only vertex in 𝑃start ∩
(⋃

𝑑⩽𝑑𝑣 𝐶𝑣 (𝑑)
)

• ℓ (𝑃start) + (LongestConstrainedPath(𝑣) [𝑣 ′, 1] − 1) ⩾ 𝑚

(b) • 𝑃start ends in 𝑣 ′ and passes through 𝑣
• 𝑣, 𝑣 ′ are the only vertices in 𝑃start ∩

(⋃
𝑑⩽𝑑𝑣 𝐶𝑣 (𝑑)

)
• ℓ (𝑃start) + (LongestConstrainedPath(𝑣) [𝑣 ′, 2] − 1) ⩾ 𝑚

(c) • 𝑃start ends in 𝑣 , and there exists an induced path in 𝐺 [𝐶𝑢 ∪𝑉1], denoted by 𝑃end,
which starts in 𝑣 ′ and is anti-complete to 𝑃start

• 𝑣, 𝑣 ′ are the only vertices in (𝑃start ∪ 𝑃end) ∩
(⋃

𝑑⩽𝑑𝑣 𝐶𝑣 (𝑑)
)

• ℓ (𝑃start) + (LongestConstrainedPath(𝑣) [𝑣 ′, 3] − 2) + ℓ (𝑃end) ⩾ 𝑚

(d) • 𝑃start starts in 𝑣 and ends in 𝑣 ′
• 𝑣, 𝑣 ′ are the only vertices in 𝑃start ∩

(⋃
𝑑⩽𝑑𝑣 𝐶𝑣 (𝑑)

)

𝐶𝑣

𝐶𝑢

𝐶𝑣 (1)
𝐶𝑣 (2)

𝐶𝑢 (1)
𝐶𝑢 (2)𝐶𝑣 (𝑑𝑣)

𝑃𝑣
𝑃𝑤

𝑃start

𝑣

𝑢

𝑤

𝐶𝑤 (𝑑𝑤)

𝐶𝑤 (1)
𝐶𝑤 (2)

𝐶𝑤

Fig. 12. The case making 𝑢 reject at step (vii) in the certification scheme of Theorem 1.13

• ℓ (𝑃start) + (LongestConstrainedPath(𝑣) [𝑣 ′, 4] − 2) ⩾ 𝑚

𝑃start

𝑣

𝑢

𝐶𝑢

𝐶𝑣

𝐶𝑣 (𝑑𝑣)

𝑣′

𝐶𝑢 (𝑑𝑢)

(a)

𝑃start

𝑣

𝑢

𝐶𝑢

𝐶𝑣

𝐶𝑣 (𝑑𝑣)

𝑣′

𝐶𝑢 (𝑑𝑢)

(b)

𝑃start
𝑃end

𝑣

𝑢

𝐶𝑢

𝐶𝑣

𝐶𝑣 (𝑑𝑣)

𝑣′

𝐶𝑢 (𝑑𝑢)

(c)

𝑃start

𝑣

𝑢

𝐶𝑢

𝐶𝑣

𝐶𝑣 (𝑑𝑣)

𝑣′

𝐶𝑢 (𝑑𝑢)

(d)

Fig. 13. The four cases making 𝑢 reject at step (viii) of the verification algorithm in Theorem 1.13. In each of
these cases, the vertices 𝑢 and 𝑣 are at distance at most 𝑘 (which enables 𝑢 to see the certificate of 𝑣).

(ix) If 𝑢 did not reject in the previous steps, it accepts.

Correctness. Let us prove that this certification scheme is correct. First let us assume for a
contradiction, that 𝐺 contains an induced path 𝑃 of length𝑚 and that every vertex accepts. Using
the 𝑚-pathcheck, every vertex 𝑢 can correctly compute 𝑇𝐺 , 𝐺≼𝑢 , and knows that the values of

LongestPaths and LongestConstrainedPath(𝑢) written by the prover in the certificates are correct.
Then, let us prove the following Claims 6.10, 6.12 and 6.13.

Claim 6.10. There are three subpaths 𝑃1, 𝑃2, 𝑃3 of 𝑃 such that 𝑃 = 𝑃1∪𝑃2∪𝑃3 and for each 𝑖 ∈ {1, 2, 3}
there is a 𝐶𝑖 ∈ E2 such that every vertex of 𝑉 (𝑃𝑖) ⊆ 𝐶𝑖 ∪𝑉1.

Proof. This simply follows from the fact that 𝑃 has length𝑚 < 14
3 𝑘 and that two distinct ECC2’s

are at distance at least 2𝑘 from each other by definition of extended connected component. ■

It follows from Claim 6.10 that there are at most three distinct 𝐶 ∈ E2 such that 𝑃 ∩𝐶 ≠ ∅.

Claim 6.11. 𝑃 ∩𝑉2 ≠ ∅

Proof. Recall 𝑉1 ⊆ 𝑉≼𝑢 for every vertex 𝑢 ∈ 𝑉 . In step (iv) of the𝑚-pathcheck, every vertex
checks whether there is an induced path of length𝑚 with vertex set in 𝑉≼𝑢 . ■

By applying Lemma 6.3 for𝑚, we obtain that:

Claim 6.12. There are at least two distinct 𝐶 ∈ E2 such that |𝑃 ∩𝐶 | ⩾ 2.

Claim 6.13. If there are exactly three 𝐶 ∈ E2 such that 𝑃 ∩𝐶 ≠ ∅, at least one vertex rejects.

Proof. Assume that there are exactly three 𝐶 ∈ E2 such that 𝑃 ∩ 𝐶 ≠ ∅. Let us denote these
three ECC2’s by 𝐶1, 𝐶2, 𝐶3. By Claim 6.12, we can can also assume that 𝑃 has at least 5 vertices in
𝐶1 ∪𝐶2 ∪𝐶3. Without loss of generality, there is a subpath of 𝑃 passing through 𝐶1,𝐶3,𝐶2, in that
order. For 𝑥 ∈ {1, 2, 3}, let 𝐵𝑥 denote the set of vertices of 𝑉 (𝑃) in ⋃

1⩽𝑑⩽𝑘−1𝐶𝑥 (𝑑). Since any two
distinct ECC2’s are at distance at least 2𝑘−1 from each other, |𝐵1 |, |𝐵2 | ⩾ 𝑘 − 1 and |𝐵3 | ⩾ 2𝑘 − 2.
By definition of ECC, 𝐵1, 𝐵2, 𝐵3 are pairwise disjoint. By Claim 6.12, we can can also assume that 𝑃
has at least 5 vertices in𝐶1 ∪𝐶2 ∪𝐶3. And by definition,𝐶1 ∪𝐶2 ∪𝐶3 is disjoint from 𝐵1 ∪ 𝐵2 ∪ 𝐵3.
By definition, |𝑉 (𝑃) | =𝑚 ⩽ 14

3 𝑘 . So by combining these observations we obtain:

|𝐵1 |, |𝐵2 | ⩽ 𝑉 (𝑃) − 3𝑘+3 − 5 < 2𝑘 − 2 (1)

Let 𝑖 ∈ {1, 2}. From the definition of ECC, there must be a vertex at distance at 𝑘 − 1 from 𝐶𝑖 in 𝐵𝑖 .
Since 𝑃 contains a vertex of𝐶𝑖 it follows that for each 𝑑 ∈ {1, 2, . . . , 𝑘−1} there is some vertex 𝑏 ∈ 𝐵𝑖
at distance exactly 𝑑 from 𝐶𝑖 . Hence, it follows from (1) that there exists some 𝑑𝑖 ∈ {1, . . . , 𝑘 − 1}
such that |𝑃 ∩ 𝐶𝑖 (𝑑𝑖) | = 1. Let 𝑣𝑖 denote the unique element of 𝑃 ∩ 𝐶𝑖 (𝑑𝑖). Let 𝑃start denote the
𝑣1𝑣2-path of 𝑃 .

Let 𝑢 ∈ 𝐶3 be arbitrary. We will show that 𝑢 rejects at step (vii). By definition of ECC2, the only
vertices of 𝑉2 in 𝑃start are contained in 𝐶3. So in particular, 𝑉 (𝑃start) ⊆ 𝑃≼𝑢 Hence, 𝑢 will consider
𝑃start in step (vii) and it will reject if ℓ (𝑃start) + (LongestPaths[𝑣1] −1) + (LongestPaths[𝑣2] −1) ⩾𝑚.

By definition, there the graph obtained from 𝑃 by deleting all vertices of 𝑃start except for 𝑣1, 𝑣2
consists of two paths 𝑃1, 𝑃2 such that 𝑣1 is an end of 𝑃1 and 𝑣2 is an end of 𝑃2. Let 𝑖 ∈ {1, 2}.
By Claim 6.10 we have that 𝑃𝑖 ⊆ 𝑉𝑖 ∪ 𝐶𝑖 . Since 𝑃𝑖 contains a vertex of 𝐶𝑖 , by the definition of
distance, there can be no vertex 𝑉 (𝑃𝑖) at distance strictly greater than 𝑑𝑖 from 𝑣𝑖 . It follows that
𝑉 (𝑃𝑖) \ {𝑣𝑖 } ⊆

⋃
0⩽𝑑<𝑑𝑖 𝐶𝑖 (𝑑). Hence by definition, LongestPaths(𝑣𝑖) ⩾ |𝑉 (𝑃𝑖) | − 1.

Since 𝑃 = 𝑃1∪𝑃2∪𝑃3, it follows that ℓ (𝑃start)+(LongestPaths[𝑣1]−1)+(LongestPaths[𝑣2]−1) ⩾𝑚
and therefore 𝑢 rejects in step (vii).

□

Applying Claims 6.10, 6.12 and 6.13, we can assume that there exactly two ECC2’s which inter-
sect 𝑃 , both on at least two vertices. Let us denote these two ECC2’s by 𝐶𝑢 and 𝐶𝑣 .

Claim 6.14. For all 𝑑 ∈ {1, . . . , 𝑘 − 1}, we have |𝑃 ∩𝐶𝑣 (𝑑) | ⩾ 2, and similarly |𝑃 ∩𝐶𝑢 (𝑑) | ⩾ 2.

Proof. Since 𝐶1,𝐶2 both meet 𝑉 (𝑃), by definition of ECC for each 𝐶 ∈ {𝐶𝑣,𝐶𝑢} there is at least
one vertex in 𝑃 at distance exactly 𝑑 from 𝐶 . If there exists 𝑑 ∈ {1, . . . , 𝑘 − 1} and 𝑥 ∈ {𝑢, 𝑣} such
that |𝑃 ∩𝐶𝑥 (𝑑) | = 1, then some vertex will reject by Lemma 6.4. ■

For brevity, let B𝑢 :=
⋃

0⩽𝑑⩽𝑘−1𝐶𝑢 (𝑑) and let B𝑣 :=
⋃

0⩽𝑑⩽𝑘−1𝐶𝑣 (𝑑). Let us denote by 𝛼 the
number of vertices in 𝑃 \ (B𝑢 ∪ B𝑣). In other words, 𝛼 denotes the number of vertices in 𝑃 that are
not “close” (at most 𝑘 − 1 away from) 𝐶𝑢 or 𝐶𝑣 . Thus by Claim 6.14,

𝛼 ⩽ 𝑚 − 4(𝑘 − 1) ⩽ 14
3
𝑘 − 4𝑘 − 4 <

2
3
𝑘. (2)

Recall, that by definition B𝑢 and B𝑣 are disjoint. So, |𝑉 (𝑃) | = ⌈14𝑘/3⌉ − 1 = 𝛼 + |𝑃 ∩B𝑢 | + |𝑃 ∩B𝑣 |.
Hence, by the pigeonhole principle and the symmetry between 𝐶𝑢 and 𝐶𝑣 we may assume that

|𝑃 ∩ B𝑣 | <
7
3
𝑘 − 𝛼

2
(3)

Let us prove the following:

Claim 6.15. There exists 𝑢 ∈ 𝐶𝑢 (𝑘 − 1), 𝑑𝑣 ∈ {1, . . . , 𝑘 − 1} and 𝑣 ∈ 𝑃 ∩ 𝐶𝑣 (𝑑𝑣) such that 𝑣 is at
distance at most 𝑘 from 𝑢, and |𝑃 ∩𝐶𝑣 (𝑑𝑣) | = 2.

Proof. Since 𝑃 passes through 𝐶𝑢 and 𝐶𝑣 , let us consider a connected subgraph of 𝑃 , which is a
path denoted by 𝑃 ′, such that 𝑃 ′ starts in𝐶𝑢 and ends in𝐶𝑣 . Let𝑢 be the last vertex in 𝑃 ′∩𝐶𝑢 (𝑘 −1)
before 𝑃 ′ passes through 𝐶𝑣 . Since 𝑃 ′ goes from 𝑢 ∈ 𝐶𝑢 (𝑘 − 1) to 𝐶𝑣 , then it contains at least 𝑘
other vertices after 𝑢 (at least one in 𝐶𝑣 (𝑑) for each 𝑑 ∈ {0, . . . , 𝑘 − 1}). Let us denote by 𝑋 the
set of the 𝑘 vertices following 𝑢 in 𝑃 ′. All the vertices in 𝑋 are at distance at most 𝑘 from 𝑢. By
definition of 𝑢, we have 𝑋 ∩

(⋃
0⩽𝑑⩽𝑘−1𝐶𝑢 (𝑑)

)
= ∅. And since 𝛼 < 2

3𝑘 and |𝑋 | = 𝑘 , we have that
𝑋 ∩

(⋃
1⩽𝑑⩽𝑘−1𝐶𝑣 (𝑑)

)
≠ ∅. We may assume that for each vertex 𝑥1 ∈ 𝑋 ∩ B𝑣 there are at least two

other distinct vertices 𝑥2, 𝑥3 ∈ 𝑉 (𝑃) ∩ B𝑣 such that 𝑥1, 𝑥2, 𝑥3 are all the same distance from 𝐶𝑣 .
Let 𝐷 be the set of distances 𝑑 ∈ {1, 2, . . . , 𝑘} for which some 𝑥 ∈ 𝑋 is at distance 𝑑 from 𝐶𝑣 (i.e.

𝑥 ∈ 𝐶𝑣 (𝑑)). For each 𝑑 ∈ 𝐷 , we have |𝑃 ∩𝐶𝑣 (𝑑) | ⩾ 3. And, by definition of 𝑋 , 𝐷 and 𝛼 , we also have
| (⋃𝑑∈𝐷 𝐶𝑣 (𝑑)) ∩ 𝑋 | ⩾ |𝑋 |−|𝑋\(B𝑢∪B𝑣) | ⩾ 𝑘−𝛼 . Hence, | (

⋃
𝑑∈𝐷 𝐶𝑣 (𝑑)) ∩𝑉 (𝑃) | ⩾max(3|𝐷 |, 𝑘−𝛼)

Moreover for all 𝑑 ∉ 𝐷 , we have |𝑉 (𝑃) ∩𝐶𝑣 (𝑑) | ⩾ 2. Thus, we get:

|𝑉 (𝑃) ∩ B𝑣 | =
�����⋃
𝑑∈𝐷

𝐶𝑣 (𝑑) ∩𝑉 (𝑃)
����� +

�����⋃
𝑑∉𝐷

𝐶𝑣 (𝑑) ∩𝑉 (𝑃)
����� ⩾ max(3|𝐷 |, 𝑘 − 𝛼) + 2(𝑘 − |𝐷 |) (4)

There are two cases:
• if |𝐷 | ⩾ 𝑘

3 −
𝛼
2 , then we have:

|B𝑣 ∩𝑉 (𝑃) | ⩾ 3|𝐷 | + 2(𝑘 − |𝐷 |)
= 2𝑘 + |𝐷 |

⩾
7
3
𝑘 − 𝛼

2
which contradicts (3).

• if |𝐷 | ⩽ 𝑘
3 −

𝛼
2 , then we have:

|𝑉 (𝑃) ∩ B𝑣 | ⩾ (𝑘 − 𝛼) + 2(𝑘 − |𝐷 |)

⩾ (𝑘 − 𝛼) + 2
(
2𝑘
3

+ 𝛼
2

)
⩾

7
3
𝑘

which also contradicts (3).
In all cases, we get a contradiction. Thus, there exists 𝑑𝑣 ∈ {1, . . . , 𝑘 − 1} and a vertex 𝑣 ∈ 𝑋 ∩𝐶𝑣 (𝑑𝑣)
such that |𝑃 ∩𝐶𝑣 (𝑑𝑣) | = 2. ■

Using Claim 6.15, let us finish the proof by showing that 𝑢 rejects at step (viii).
Let 𝑢 ∈ 𝐶𝑢 (𝑘 − 1), 𝑑𝑣 ∈ {1, . . . , 𝑘 − 1} and 𝑣 ∈ 𝑃 ∩ 𝐶𝑣 (𝑑𝑣) at distance at most 𝑘 from 𝑢 such

that |𝑃 ∩𝐶𝑣 (𝑑𝑣) | = 2. Let 𝑣 ′ be the other vertex in 𝑃 ∩𝐶𝑣 (𝑑𝑣). Then, 𝑢 rejects at step (viii) of the
verification. Indeed, there are several cases (see Figure 13 for an illustration):

• If 𝑃 has both endpoints in 𝑉 \
(⋃

𝑑⩽𝑑𝑣 𝐶𝑣 (𝑑)
)
, the set of conditions (c) is satisfied.

• If 𝑃 has both endpoints in
⋃
𝑑⩽𝑑𝑣 𝐶𝑣 (𝑑), the set of conditions (d) is satisfied.

• If 𝑃 has exactly one endpoint in
⋃
𝑑⩽𝑑𝑣 𝐶𝑣 (𝑑), one of the sets of conditions (a) or (b) is

satisfied. Indeed, Claim 6.15 proves more precisely that 𝑢 ∈ 𝑃 ∩ 𝐶𝑢 (𝑘 − 1), and that 𝑣 is
among the𝑘 next vertices after𝑢 in 𝑃 . Let𝑤 be the vertex after 𝑣 in 𝑃 (which exists, otherwise
𝑣 is an endpoint of 𝑃 which would have both endpoints in

⋃
𝑑⩽𝑑𝑣 𝐶𝑣 (𝑑)). If𝑤 ∈ ⋃

𝑑⩽𝑑𝑣 𝐶𝑣 (𝑑),
then we are in case (a), else we are in case (b).

Conversely, let us show that if𝐺 is 𝑃𝑚-free, then no vertex rejects with the certificates described
above. By definition, no vertex will reject in steps (i), (ii), (iii) and (vi). By contradiction, assume
that there exists 𝑢 ∈ 𝑉 which (iv), (v), (vii) or (viii).

• If 𝑢 rejects at (iv), there exists an induced path 𝑃 of length𝑚 in𝐺≼𝑢 such that all the vertices
in 𝑃 \𝑉≼𝑢 are in distinct ECC2’s. So 𝑃 is also induced in 𝐺 .

• If 𝑢 rejects at step (v), with the same proof as in Theorem 1.10, we can reconstruct an
induced path 𝑃 of length𝑚 in 𝐺 , which is a contradiction.

• If 𝑢 rejects at step (vii), we can also reconstruct an induced path of length𝑚 in𝐺 . Indeed, let
𝑃𝑣 (resp. 𝑃𝑤) be the path of length LongestPaths[𝑣] (resp. LongestPaths[𝑤]) which starts
at 𝑣 (resp.𝑤) and has all its other vertices in

⋃
𝑑<𝑑𝑣

𝐶𝑣 (𝑑) (resp. in
⋃
𝑑<𝑑𝑤

𝐶𝑤 (𝑑)). Then, we
obtain an induced path of length𝑚 by gluing 𝑃𝑣 , 𝑃start and 𝑃𝑤 .

• Finally, if 𝑢 rejects at step (viii), we can also construct an induced path 𝑃 of length𝑚 in𝐺 , as
depicted on Figure 13. In each case, the definition of LongestConstrainedPath[𝑣] ensures
that the path obtained by gluing the parts is still induced in 𝐺 .

In all cases, we obtain an induced path 𝑃 of length𝑚 in 𝐺 , which is a contradiction. Thus, if 𝐺 is
𝑃𝑚-free, all vertices accept with the certificates described above. □

ACKNOWLEDGMENTS
L. Feuilloley thanks the participants of the PODC-DISC zulip chat for references about high-low
degree techniques. This work was supported by ANR project GrR (ANR-18-CE40-0032). L. Cook
was supported by the Institute for Basic Science (IBS-R029-C1).

REFERENCES
[1] Nicolas Bousquet, Laurent Feuilloley, and Théo Pierron. 2021. Local Certification of Graph Decompositions and

Applications to Minor-Free Classes. In 25th International Conference on Principles of Distributed Systems, Vol. 217.
22:1–22:17. https://doi.org/10.4230/LIPICS.OPODIS.2021.22

[2] Nicolas Bousquet, Laurent Feuilloley, and Sébastien Zeitoun. 2024. Local certification of local properties: tight bounds,
trade-offs and new parameters. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS
2024), Vol. To appear.

[3] Keren Censor-Hillel. 2022. Distributed Subgraph Finding: Progress and Challenges. CoRR abs/2203.06597 (2022).
https://doi.org/10.48550/ARXIV.2203.06597

[4] Keren Censor-Hillel, Orr Fischer, Tzlil Gonen, François Le Gall, Dean Leitersdorf, and Rotem Oshman. 2020. Fast
Distributed Algorithms for Girth, Cycles and Small Subgraphs. In 34th International Symposium on Distributed
Computing, DISC 2020 (LIPIcs, Vol. 179). 33:1–33:17. https://doi.org/10.4230/LIPICS.DISC.2020.33

[5] Keren Censor-Hillel, Ami Paz, and Mor Perry. 2020. Approximate proof-labeling schemes. Theor. Comput. Sci. 811
(2020), 112–124. https://doi.org/10.1016/J.TCS.2018.08.020

[6] Yi-Jun Chang, Seth Pettie, and Hengjie Zhang. 2019. Distributed Triangle Detection via Expander Decomposition.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019. 821–840. https:
//doi.org/10.1137/1.9781611975482.51

[7] Yi-Jun Chang and Thatchaphol Saranurak. 2020. Deterministic Distributed Expander Decomposition and Routing with
Applications in Distributed Derandomization. In 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Sandy Irani (Ed.). 377–388. https://doi.org/10.1109/FOCS46700.2020.00043

[8] Aristotelis Chaniotis, Linda Cook, Sepehr Hajebi, and Sophie Spirkl. 2024. Personal Communication.
[9] Pierluigi Crescenzi, Pierre Fraigniaud, and Ami Paz. 2019. Trade-Offs in Distributed Interactive Proofs. In 33rd

International Symposium on Distributed Computing, DISC 2019, Jukka Suomela (Ed.), Vol. 146. 13:1–13:17. https:
//doi.org/10.4230/LIPICS.DISC.2019.13

[10] Oscar Defrain, Louis Esperet, Aurélie Lagoutte, Pat Morin, and Jean-Florent Raymond. 2023. Local certification of
geometric graph classes. CoRR abs/2311.16953 (2023). https://doi.org/10.48550/ARXIV.2311.16953

[11] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. 2014. On the power of the congested clique model. In ACM
Symposium on Principles of Distributed Computing, PODC ’14, Magnús M. Halldórsson and Shlomi Dolev (Eds.). 367–376.
https://doi.org/10.1145/2611462.2611493

[12] Talya Eden, Nimrod Fiat, Orr Fischer, Fabian Kuhn, and Rotem Oshman. 2022. Sublinear-time distributed algorithms
for detecting small cliques and even cycles. Distributed Comput. 35, 3 (2022), 207–234. https://doi.org/10.1007/S00446-
021-00409-3

[13] Louis Esperet and Benjamin Lévêque. 2022. Local certification of graphs on surfaces. Theor. Comput. Sci. 909 (2022),
68–75. https://doi.org/10.1016/J.TCS.2022.01.023

[14] Louis Esperet and Sergey Norin. 2022. Testability and Local Certification of Monotone Properties in Minor-Closed
Classes. In 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, Vol. 229. 58:1–58:15.
https://doi.org/10.4230/LIPICS.ICALP.2022.58

[15] Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Medina, Pedro Montealegre, Dennis Olivetti,
Rotem Oshman, Ivan Rapaport, and Ioan Todinca. 2017. Three Notes on Distributed Property Testing. In 31st
International Symposium on Distributed Computing, DISC 2017, Vol. 91. 15:1–15:30. https://doi.org/10.4230/LIPICS.
DISC.2017.15

[16] Laurent Feuilloley. 2021. Introduction to local certification. Discret. Math. Theor. Comput. Sci. 23, 3 (2021). https:
//doi.org/10.46298/DMTCS.6280

[17] Laurent Feuilloley, Nicolas Bousquet, and Théo Pierron. 2022. What Can Be Certified Compactly? Compact local
certification of MSO properties in tree-like graphs. In PODC ’22: ACM Symposium on Principles of Distributed Computing.
ACM, 131–140. https://doi.org/10.1145/3519270.3538416

[18] Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, and Mor Perry. 2021. Redundancy in distributed proofs.
Distributed Comput. 34, 2 (2021), 113–132. https://doi.org/10.1007/S00446-020-00386-Z

[19] Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Éric Rémila, and Ioan Todinca. 2021. Compact
Distributed Certification of Planar Graphs. Algorithmica 83, 7 (2021), 2215–2244. https://doi.org/10.1007/S00453-021-
00823-W

[20] Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Éric Rémila, and Ioan Todinca. 2023. Local
certification of graphs with bounded genus. Discret. Appl. Math. 325 (2023), 9–36. https://doi.org/10.1016/J.DAM.2022.
10.004

[21] Orr Fischer, Tzlil Gonen, Fabian Kuhn, and Rotem Oshman. 2018. Possibilities and Impossibilities for Distributed
Subgraph Detection. In Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures, Christian
Scheideler and Jeremy T. Fineman (Eds.). 153–162. https://doi.org/10.1145/3210377.3210401

https://doi.org/10.4230/LIPICS.OPODIS.2021.22
https://doi.org/10.48550/ARXIV.2203.06597
https://doi.org/10.4230/LIPICS.DISC.2020.33
https://doi.org/10.1016/J.TCS.2018.08.020
https://doi.org/10.1137/1.9781611975482.51
https://doi.org/10.1137/1.9781611975482.51
https://doi.org/10.1109/FOCS46700.2020.00043
https://doi.org/10.4230/LIPICS.DISC.2019.13
https://doi.org/10.4230/LIPICS.DISC.2019.13
https://doi.org/10.48550/ARXIV.2311.16953
https://doi.org/10.1145/2611462.2611493
https://doi.org/10.1007/S00446-021-00409-3
https://doi.org/10.1007/S00446-021-00409-3
https://doi.org/10.1016/J.TCS.2022.01.023
https://doi.org/10.4230/LIPICS.ICALP.2022.58
https://doi.org/10.4230/LIPICS.DISC.2017.15
https://doi.org/10.4230/LIPICS.DISC.2017.15
https://doi.org/10.46298/DMTCS.6280
https://doi.org/10.46298/DMTCS.6280
https://doi.org/10.1145/3519270.3538416
https://doi.org/10.1007/S00446-020-00386-Z
https://doi.org/10.1007/S00453-021-00823-W
https://doi.org/10.1007/S00453-021-00823-W
https://doi.org/10.1016/J.DAM.2022.10.004
https://doi.org/10.1016/J.DAM.2022.10.004
https://doi.org/10.1145/3210377.3210401

[22] Pierre Fraigniaud, Frédéric Mazoit, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. 2023. Distributed Certification
for Classes of Dense Graphs. In 37th International Symposium on Distributed Computing, DISC 2023 (LIPIcs, Vol. 281).
20:1–20:17. https://doi.org/10.4230/LIPICS.DISC.2023.20

[23] Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. 2022. A Meta-Theorem for Distributed
Certification. In Structural Information and Communication Complexity - 29th International Colloquium, SIROCCO 2022,
Merav Parter (Ed.), Vol. 13298. 116–134. https://doi.org/10.1007/978-3-031-09993-9_7

[24] Mika Göös and Jukka Suomela. 2016. Locally Checkable Proofs in Distributed Computing. Theory of Computing 12, 19
(2016), 1–33. https://doi.org/10.4086/toc.2016.v012a019

[25] Benjamin Jauregui, Pedro Montealegre, Diego Ramírez-Romero, and Ivan Rapaport. 2023. Local Certification of Some
Geometric Intersection Graph Classes. CoRR abs/2309.04789 (2023). https://doi.org/10.48550/ARXIV.2309.04789

[26] Janne H. Korhonen and Joel Rybicki. 2017. Deterministic Subgraph Detection in Broadcast CONGEST. In 21st
International Conference on Principles of Distributed Systems, OPODIS 2017, Vol. 95. 4:1–4:16. https://doi.org/10.4230/
LIPICS.OPODIS.2017.4

[27] Amos Korman, Shay Kutten, and David Peleg. 2010. Proof labeling schemes. Distributed Comput. 22, 4 (2010), 215–233.
https://doi.org/10.1007/S00446-010-0095-3

[28] Amir Nikabadi and Janne H. Korhonen. 2021. Beyond Distributed Subgraph Detection: Induced Subgraphs, Multicolored
Problems and Graph Parameters. In 25th International Conference on Principles of Distributed Systems, OPODIS 2021,
Vol. 217. 15:1–15:18. https://doi.org/10.4230/LIPICS.OPODIS.2021.15

[29] Rafail Ostrovsky, Mor Perry, and Will Rosenbaum. 2017. Space-Time Tradeoffs for Distributed Verification. In
Structural Information and Communication Complexity - 24th International Colloquium, SIROCCO 2017, Vol. 10641.
53–70. https://doi.org/10.1007/978-3-319-72050-0_4

[30] Boaz Patt-Shamir and Mor Perry. 2022. Proof-labeling schemes: Broadcast, unicast and in between. Theor. Comput. Sci.
923 (2022), 179–195. https://doi.org/10.1016/J.TCS.2022.05.006

[31] Jukka Suomela. 2020. Landscape of Locality (Invited Talk). In 17th Scandinavian Symposium andWorkshops on Algorithm
Theory, SWAT 2020 (LIPIcs, Vol. 162), Susanne Albers (Ed.). 2:1–2:1. https://doi.org/10.4230/LIPICS.SWAT.2020.2

https://doi.org/10.4230/LIPICS.DISC.2023.20
https://doi.org/10.1007/978-3-031-09993-9_7
https://doi.org/10.4086/toc.2016.v012a019
https://doi.org/10.48550/ARXIV.2309.04789
https://doi.org/10.4230/LIPICS.OPODIS.2017.4
https://doi.org/10.4230/LIPICS.OPODIS.2017.4
https://doi.org/10.1007/S00446-010-0095-3
https://doi.org/10.4230/LIPICS.OPODIS.2021.15
https://doi.org/10.1007/978-3-319-72050-0_4
https://doi.org/10.1016/J.TCS.2022.05.006
https://doi.org/10.4230/LIPICS.SWAT.2020.2

	1 Introduction
	1.1 Context
	1.2 Discussion of previous work and refinement of the question
	1.3 Our results and techniques
	1.4 Additional related work and discussions

	2 Model and definitions
	2.1 Graph theory notions
	2.2 Local certification

	3 Lower bound for paths
	4 Upper bound core technique: layered maps
	4.1 Spread universal certification and graphs of large minimum degree
	4.2 Definitions: extended connected components, ECC table, and more
	4.3 Technical results

	5 Overview of the forbidden subgraph certifications
	6 Formal proofs of the forbidden subgraph certifications
	6.1 Upper bound for P4k-1 in (n3/2)
	6.2 Upper bound for general graphs of size 4k-1 in (n3/2)
	6.3 Upper bound for paths of length at most 3k-1 in (n)
	6.4 Upper bound for paths of length 143k-2 in (n3/2)

	Acknowledgments
	References

