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ABSTRACT

Adversarial patch attacks, where a small patch is placed in the scene to fool neural
networks, have been studied for numerous applications. Focusing on image classi-
fication, we consider the setting of a black-box transfer attack where an attacker
does not know the target model. Instead of forcing corrupted image representa-
tions to cross the nearest decision boundaries or converge to a particular point, we
propose a distribution-oriented approach. We rely on optimal transport to push the
feature distribution of attacked images towards an already modeled distribution.
We show that this new distribution-oriented approach leads to better transferable
patches. Through digital experiments conducted on ImageNet-1K, we provide
evidence that our new patches are the only ones that can simultaneously influence
multiple Transformer models and Convolutional Neural Networks. Physical world
experiments demonstrate that our patch can affect systems in deployment without
explicit knowledge.

1 INTRODUCTION

Deep neural networks have shown vulnerability to adversarial examples, i.e., norm-bounded perturba-
tions of their inputs designed to fool them (Szegedy et al., 2013; Biggio, 2013). Such vulnerability has
motivated researchers to develop empirical robustification methods (Madry et al., 2017) or to provide
some theoretical robustness guarantees (Cohen, 2019). Other research is dedicated to designing more
powerful attacks (Kurakin et al., 2016). These attacks are invisible patterns added to the whole image
– a pixel array – which, therefore, has to be accessible: a strong practical limitation.

Adversarial patch attacks (APA) are a more realistic type of attack expected to be realizable in
the physical world. They rely on adding a small textured patch to the scene. Since such a patch
can be easily printed and localized on an object or in the environment, it poses a serious threat in
various contexts and related tasks. For example, Brown et al. (2017) produce a patch capable of
fooling multiple ImageNet-1K classification models. Patch attacks can also threaten other visual
tasks (Thys et al., 2019; Lee & Kolter, 2019; Saha et al., 2020; Hu et al., 2022; Nesti et al., 2022).
Saha et al. (2020) design a patch which, when placed on a stop sign or the roadway, may result in
the missed detection of a pedestrian crossing the road. Another APA for a semantic segmentation
task is proposed in (Nesti et al., 2022), which reduces the baseline model accuracy. Despite the good
attacking performance of current APA in whitebox configuration (applied on the same model that they
have been learned), their effectiveness is mitigated when transferring to unseen models (blackbox
configuration). Prior works focus either on studying the whitebox performance of their patch against
Transformer architecture (Fu et al., 2022; Lovisotto et al., 2022) or on studying the whitebox and/or
the blackbox performance of their patch against classical CNNs (Brown et al., 2017; Karmon et al.,
2018; Liu et al., 2019; Doan et al., 2022; Casper et al., 2022). Focusing on image classification, we
propose a new attack perspective to improve the transfer of patch attacks to unseen models.

Most previous work on APA for classification influence the network to output a target class with
high confidence (Brown et al., 2017; Karmon et al., 2018; Liu et al., 2019; Doan et al., 2022; Casper
et al., 2022). This strategy involves pushing the deep representation of images to cross the nearest
decision boundary of the source model. The strategy has two drawbacks: it is highly dependent on
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Figure 1: Three different strategies for designing patch attacks. Left: The attack pushes multiple
samples to the other side of a decision boundary defined for a particular model. Middle: The attack
matches a given point in the feature space that is expected to represent a sample from a different
class. Right: Our strategy narrows the distribution gap between the samples corrupted by the patch
and another misleading distribution in feature space. It does not depend on the decision boundaries,
nor on the choice of a specific target point in the feature space.

the model on which the attack is based, and the patch may push the corrupted image representations
into unknown regions of the representation space. Instead of blindly maximizing the probability of
a target class, research on invisible adversarial examples suggests considering the feature space of
deep networks (Zhou et al., 2018; Rozsa et al., 2017; Inkawhich et al., 2019; 2020). For example,
Inkawhich et al. (2019) propose optimizing the adversarial examples to match the deep feature
representations of an existing target image.

To overcome the dependence of the attack on a single decision boundary of the source model and to
relax the specificity of the selection of the target feature point, we propose a distribution-oriented
approach. The learning principle of our patch attack is to globally alter the feature distribution of a set
of images from a particular class to match another known distribution to be taken from another class.
To do so, we propose to optimize with respect to the Wasserstein loss which has several practical
and theoretical advantages (Peyré et al., 2019; Frogner et al., 2015; Arjovsky et al., 2017). The
role of the patch, when placed in the scene, is to push the feature distribution towards this known
misleading class distribution (Fig 1). Such a global strategy in feature space is expected to allow
a better transferability capability, as it is independent of the decision boundary constructed by the
classifier and the choice of the target point (as proposed by Inkawhich et al. (2019)). By conducting
extensive experiments on ImageNet-1K (Deng et al., 2009), we indeed show that our APA is more
model transferable and is more physically feasible than previous APAs for a large ensemble of
network architectures, including classical CNNs (Simonyan & Zisserman, 2014; Szegedy et al., 2016;
He et al., 2016; Huang et al., 2017), recent CNNs (Tan & Le, 2019; Liu et al., 2022) and Vision
Transformers (Touvron et al., 2021; Liu et al., 2021).

The main contributions of this work are to:

• introduce a new framework based on optimal transport for creating patch attacks that are
highly transferable to unknown networks. This framework is based on the idea of attacking
feature distributions, which is independent to the classifier decision boundaries and more
robust to optimization artifacts than the feature point method;

• show that our attack works for the most extensive spectrum of deep networks considered in
the patch attack literature: we deal with various versions of Convolutional Neural Networks,
Transformers, and adversarially trained models and show transferability superiority through
extensive experiments on ImageNet-1K;

• provide digital and physical experiments demonstrating that our patch is potentially harmful
in the physical world (including against state of the art defense).
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2 RELATED WORK

2.1 TRANSFERABLE INVISIBLE ADVERSARIAL EXAMPLES

After discovering adversarial examples, some works studied whether these invisible adversarial attacks
were transferable from one model to another. To enhance the adversarial examples transferability,
Inkawhich et al. (2019) consider the feature space of deep networks rather than their decision space.
The rationale for such a strategy is that the feature space is expected to capture the useful information
in an image more universally, allowing better attack transferability between models. They propose to
build the attack to push the corrupted image features close to a single specific feature point (feature
representation of a chosen sample of a pre-chosen class). To strengthen the transferability Inkawhich
et al. (2020) train offline multiple specific auxiliary classifiers. Rather than independently train each
adversarial examples by iterative methods, Poursaeed et al. (2018); Naseer et al. (2019a; 2021);
Zhao et al. (2023) train a Generative Adversarial Network (GAN) to transform clean images to
adversarial examples. Naseer et al. (2021) (called TTP method) learn their GAN by minimizing
the Kullback-Leibler divergence between the probability-class distribution of adversarial examples
and the probability-class distribution of target class images. From a generalization error bound for
black-box targeted attacks, Zhao et al. (2023) derive an algorithm to train their GAN to minimize the
maximum model discrepancy (M3D method) between two models. However, all these previously
presented works study only the transferability of invisible adversarial examples, and, it is not clear
that they work for APA.

2.2 ADVERSARIAL PATCH ATTACK

APAs were first introduced for image classification by Brown et al. (2017). Rather than finding a
small additive adversarial noise, they instead constrain the optimization procedure to a small part of
the image while also allowing the optimization to be unconstrained in magnitude. They design a patch
(called GAP) by maximizing, under patch transformations, the log Softmax of a selected target class.

Table 1: Typology of Adversarial Patch Attacks (APA) pa-
pers and transferable invisible adversarial examples works
depending on the requirement to illustrate a transferable
physical APA. Each column represents a essential character-
istic to demonstrate the real-world criticality of an APA. The
symbols ✓, ≈ and ∅ represent ”measured”, ”ambiguous”
and ”not evaluated”, respectively.

Transfer Defended APANarrow Broad networks
GAP (Brown et al., 2017) ✓ ∅ ∅ ✓
LaVAN (Karmon et al., 2018) ∅ ∅ ∅ ✓
PS-GAN (Liu et al., 2019) ≈ ∅ ∅ ✓
TnT (Doan et al., 2022) ✓ ∅ ✓ ✓
Casper et al. (2022) ≈ ∅ ≈ ✓
Inkawhich et al. (2019) ✓ ∅ ✓ ∅
TTP Naseer et al. (2021) ✓ ∅ ✓ ∅
M3D Zhao et al. (2023) ✓ ∅ ✓ ∅
Ours ✓ ✓ ✓ ✓

The resulting patch was capable of
fooling five ImageNet-1K classifica-
tion models. To increase the fooling ef-
fectiveness of the patch, Karmon et al.
(2018) (LaVAN method) add a new
term to the loss criterion initially pro-
posed by Brown et al. (2017). By
minimizing the log Softmax of image
ground truth, this new term ensures
the misclassification of the attacked
image. Other methods propose to use
generative-based approaches: Liu et al.
(2019) (PS-GAN method) train a GAN
to generate a background-harmonious
patch that enhances both the visual fi-
delity and attacking ability of the patch.
Instead of training a GAN, Doan et al.
(2022) and Casper et al. (2022) use a
pre-trained GAN directly. To change the generated flower to an adversarial flower, Doan et al. (2022)
(TnT method) modify the latent representation of the generator. Casper et al. (2022) perturb the latent
representation at some chosen generator layer. All the above works optimize their patch to maximize
the log Softmax of some classifiers.

2.3 TRANSFERABILITY EVALUATION

The previously presented APAs Brown et al. (2017); Karmon et al. (2018); Liu et al. (2019); Doan
et al. (2022); Casper et al. (2022) use different evaluation settings in their experimentation. Some
of these works measure the transferability of their patch to unknown models. Brown et al. (2017)
and Doan et al. (2022) measure their patch transferability but only consider dated CNNs like ResNet
trained with a less generalizing learning policy than recent ones. The GAP patch is also applied at
random locations in these images, giving rise to possible occlusion of the main object. The PS-GAN
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generated patch (Liu et al., 2019) shows transferability among unseen models. However, the evaluated
models are not state-of-the-art, and the experiments are conducted on the small GTRSB dataset
(Stallkamp et al., 2011). Focused on the interpretability of decision-making of deep networks, Casper
et al. (2022) do not provide quantitative results on network transferability. Table 1 contextualizes our
approach with respect to others.

Our work bridges the gap between the transferability studies of invisible adversarial examples
and adversarial patch attacks. We follow the principle that the attack should be designed with an
optimization metric defined in the feature space rather than in the decision space (Inkawhich et al.,
2019). Moreover, we generalize the point-wise strategy proposed by Inkawhich et al. (2019), which
presents several drawbacks. First, optimizing when the objective is to push multiple points to a unique
point is likely to fail. When the optimization succeeds, the power of the attack depends highly on the
choice of the target point (see Appendix B). Furthermore, a single feature point can be well-classified
by one network but misclassified by another, thus limiting the transferability of the attack to multiple
networks. We propose to avoid target point selection and to broaden the range of features under attack
by considering target point distributions instead. This is done through optimal transport for the loss
to be optimized.

3 METHODOLOGY

3.1 BACKGROUND

The theory of optimal transport (Peyré et al., 2019; Villani et al., 2009) provides several techniques
for efficient computation of distances between distributions. It has been shown that optimizing with
respect to the Wasserstein loss has various practical benefits over the KL-divergence loss (Peyré
et al., 2012; Frogner et al., 2015; Arjovsky et al., 2017; Gulrajani et al., 2017). Unlike the KL-
divergence and its related dissimilarity measures (e.g. Jensen-Shannon divergence), the Wasserstein
distance can provide a meaningful notion of closeness (i.e. distance) for distributions supported on
non-overlapping low dimensional manifolds.

Let Pp(Rd) = {µ ∈ P(Rd) :
∫
R ||x||pdµ(x) < ∞} be the set of probability measures on Rd with

finite moment of order p, with p ∈ [1,+∞). The p-Wasserstein distance is defined as

Wp
p(µ, ν) = inf

π∈Π(µ,ν)

∫
Rd×Rd

||x− y||pdπ(x, y), (1)

where µ, ν ∈ Pp(Rd), ||.|| is the Euclidean norm and Π(µ, ν) is the set of probability measures
on Rd × Rd whose marginals with respect to the first and second variables are given by µ and ν
respectively. The quantity Wp(µ, ν) in not analytically avaible in general. To solve Eq 1, the standard
methods are linear programs and have a worst-case computational complexity in O(n3 log(n)) where
n is the number of samples (Peyré et al., 2019).

To leverage the computational efficiency of Eq 1 ,Rabin et al. (2012); Bonneel et al. (2015) define
a new metric named Sliced-Wasserstein distance. This new metric is based on the fact that for
one-dimensional probability measure the p-Wasserstein distance (1) has the following closed-form

Wp
p(µ, ν) =

∫ 1

0

|Qµ(s)−Qν(s)|pds, (2)

where Qµ and Qν are the quantile functions of µ and ν respectively. Let Sd−1 be the d-dimensional
unit sphere and σ the uniform distribution on Sd−1. For θ ∈ Sd−1, we define the linear form for all
x ∈ Rd by θ∗(x) = ⟨θ, x⟩. The Sliced-Wasserstein distance is then defined by

SWp
p(µ, ν) =

∫
Sd−1

Wp
p(θ

∗
♯µ, θ

∗
♯ ν)dσ(θ), (3)

where µ, ν ∈ Pp(Rd), p ∈ [1,+∞) and θ∗♯µ and θ∗♯ ν are the push-forward by θ∗ of µ and ν
respectively. In practise, Eq 3 is approximated with a standard Monte Carlo method. We denote by
SWp

p(µ, ν)K its numerical approximation where K is the number of random projections. Since θ∗♯µ
and θ∗♯ ν are univariate distributions, the resulting complexity of the approximation is general more
efficient than resolving Eq 1. The corresponding computational complexity is O(Kdn+Kn log(n)).
We show also in section A of Appendix that the empirical computation time of our approach remains
similar to other methods.
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3.2 OPTIMAL TRANSPORT BASED LOSS

We consider the standard notation where (xi, yi) ∈ X × Y , i = 1, ..., n, are samples drawn from a
joint distribution of random variables X and Y . We are considering an image classification problem,
where the input is sampled from X = Rh×w×c, where h × w are the image dimensions and c is
the number of channels and where the output Y is sampled from a set of M labels {y1, ..., yM}.
Let F : X → Y be a given pre-trained neural network that we wish to attack. We assume that the
functional architecture of F follows a classical encoder-decoder schema. We denote by f the encoder
part of F , where f is composed by a set of J layers; L = {l1, ..., lJ}. Except for the last layer which
usually directly result from an average pooling layer, we apply an average pooling layer to obtain
a feature vector. For all l ∈ L, f (l) maps x ∈ X to the feature space S(l) = Rcl , where cl is the
number of channels.

For a given target class y, we denote by ν
(l)
y the multivariate target distribution of f (l)(X) when the

class of X is y. The principle of our proposed method is to design a patch by moving the corrupted
image distribution towards the target ν(l)y and solve:

δ∗ = argmin
δ

EX

[∑
l∈L

OT (µ
(l)
Xδ

, ν(l)y )

]
, (4)

where µXδ
is the estimated feature distribution of the corrupted source images and OT could be Wp

p

or SWp
p.

In practice, we solve a regularized version of Eq 4 using Expectation over Transformations (EoT)
from Athalye et al. (2018). This regularization makes patches more physically realizable. Let T be a
distribution over transformation (e.g., rotations, scaling, blur, ...) and E a distribution over locations.
Following Brown et al. (2017); Casper et al. (2022) we denote by A(δ, x, e, t) the patch applicator
operator in an image x where δ is the patch, t are patch transformations and e is the patch location in
the image x. Our patch is therefore trained to optimize the following objective:

δ∗ = argmin
δ

EX,t∼T ,e∼E

[∑
l∈L

OT (µ
(l)
A(δ,X,e,t), ν

(l)
y ) + TV (δ)

]
, (5)

where TV is the total variation loss discouraging high-frequency patterns. We will denote by
(Wp

p)
(N) and (SWp

p)
(N) when we attack N layers by solving the standard or the sliced version of

the Wasserstein distance respectively. We choose by convention that for N = 1, l = lJ , i.e., we are
attacking the last layer of f .

4 EXPERIMENTS

This section evaluates our APA through digital, hybrid and physical world experiments. In all
experiments, the objective is to craft an APA with a high targeted success rate (tSuc).

We consider the single-source model setting and test attacking transferability to other models.
Transferability is tested between ImageNet-1K (Deng et al., 2009) models; ResNet 18/34/50-
V1/50-V2 (He et al., 2016), DenseNet 121/161/169/201 (Huang et al., 2017), EfficientNet
B0/B1/B2/B3/B4 (Tan & Le, 2019), ConvNext Tiny/Small (Liu et al., 2022), VGG19 (Deng et al.,
2009), Inception-V3 (Szegedy et al., 2016) and Swin Tiny/Small/Base (T/S/B) (Liu et al., 2021)
from Pytorch Model Zoo, DeiT T/S/B from Timm Model Zoo, ResNet50 ReLU Adv and DeiT
S Adv, adversarially trained models (trained against invisible adversarial examples) from Bai
et al. (2021) and finally ResNet50 self-supervised learned from Caron et al. (2020). We regroup
these models into the following categories depending on their architecture and their training
recipes: CNNs-V1 = {ResNet 18/34/50-V1, DenseNet 121/161/169/201, VGG19, Inception-V3},
CNNs-V2 = {ResNet 50-V2/50-self}, ENet = {EfficientNet B0/B1/B2/B3/B4},
CNext = {ConvNext T/S}, DeiT = {DeiT T/S/B}, Swin = {Swin T/S/B} and
AT = {ResNet50 ReLU Adv and DeiT S Adv}, where AT stands for Adversarially trained.

Evaluated methods. We consider GAP (Brown et al., 2017), LaVAN (Karmon et al., 2018), TnT
(Doan et al., 2022), Casper et al. (2022) and Logit (Zhao et al., 2021) as decision boundary-based
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baselines. Because of its ease of computation compared to Inkawhich et al. (2020), which requires
off-line training of multiple specific auxiliary models, we choose to adapt the proposed method by
Inkawhich et al. (2019) as a baseline (we name it L2) to craft an APA based on attacking the feature
space. We also adapt the recent state-of-the-art works on transferable invisible adversarial examples
(Naseer et al., 2021; Zhao et al., 2023) to craft an APA. To do so, we convert generative methods
(Naseer et al., 2021; Zhao et al., 2023) to iterative ones: the objective is to create one universal APA
and not one for each image.

Experimental setup. For the sake of comparison, baselines and our method are crafted using the
same training recipes. To control the balance between the adversarial loss and the total variation loss,
the gradient of each loss is computed individually, normalized, and combined using a weighted sum.
Patch values are clipped into the image range at each iteration. Following prior works Brown et al.
(2017); Lee & Kolter (2019); Casper et al. (2022), we choose and fix the sampling distributions from
EoT (Eykholt et al., 2018) for all the methods. During training and evaluation, patches are randomly
placed to the side of images (to avoid occluding the object of interest), and transformations and
noises are applied to the patch to mimic real-world situations. Appendix E evaluates the robustness
of models according to the patch position in the image. We randomly choose nine targeted classes
(see Appendix A for details) and design a patch to fool the network targeting each of these classes.
We split the ImageNet-1K validation set into a training set of 40000 images on which we train
patches and a test set of 10000 images on which we evaluate their impact. The patch optimization is
performed using 100 epochs (1 epoch equals 1000 iterations) with a batch size of 50 images and for
three different learning rates (0.1, 0.5, 1). We choose for our method p = 2 and K = 500 (reasons
are explained in Appendix I). We evaluate the APA with the best loss among the three learning rates,
leading to one patch per method and per class. Finally, reported tSuc are the average over the classes
and patch sizes (from 70 × 70 to 90 × 90 which is the standard setting consider in the literature
(Brown et al., 2017; Poursaeed et al., 2018; Doan et al., 2022; Casper et al., 2022)).

4.1 DIGITAL EXPERIMENTS

4.1.1 TRANSFERABILITY AMONG NETWORKS

We select from the previously defined families the following models: ResNet34, ResNet50-
V1, ResNet50-V2, ResNet50-self, EfficientNet-B0, ConvNext-S, DeiT-S, Swin-T, Swin-S, Swin-
B. We design patches to attack one of these source models. Then we measure the attacking
transferability when the resulting patch is used to fool the remaining models (target models).

Table 2: Best transfer results from a single model to all
others obtained for each method (tSuc (%) higher is better
for an attack).

Method min mean max
GAP (Brown et al., 2017) 2.22 15.46 37.33
LaVAN (Karmon et al., 2018) 2.26 8.67 31.4
L2 (Inkawhich et al., 2019) 4.44 13.6 32.78
TnT (Doan et al., 2022) 0.67 2.11 5.84
Casper et al. (2022) 0.33 3.81 14.85
Logit Zhao et al. (2021) 2.22 7.55 26.55
TTP Naseer et al. (2021) 2.33 13.77 31.87
M3D Zhao et al. (2023) 0.84 5.19 17.11
Ours (SW2

2)
(1)
500 8.93 22.56 45.31

Ours (W2
2)

(1) 8.09 21.14 49.1

For example, patches trained and tested
on the Swin family provide three patches.
Each one is trained individually on Swin-
T, Swin-S or Swin-B, and is evaluated
against the two other Swin models. Ta-
ble 2 summarizes, for each method, the
best transferring attack performance. We
select and report the results of the source
family producing the highest mean tar-
geted success rate (tSuc, rate at which
the attacked images are classified as
the patch target label) according to the
method. Our method shows the best
transferability capacity: highest mean,
min and max tSuc.

Table 3 details transferability results for
all source families. From this table, we can make several conclusions: Networks trained with older
training recipes (CNNs-v1) seem more vulnerable to attacks regardless of the attacking procedures.
These networks are more sensitive to salient patches present in the image. As presented in Bai et al.
(2021), new training recipes (scheduler, augmenting training data like RandAug and Mixup, ...)
appear to robustify models for convolutional networks and transformers. Baseline methods were not
able to create a patch that can strongly transfer to CNext and Swin models even when these patches
are learned using the same model category. This indicates that rather than catch the useful common
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information in deep networks, baseline methods produce a patch that tends to overfit on the specific
weights of the model. This is particularly the case for decision boundaries-based APAs (GAP (Brown
et al., 2017), LaVAN (Karmon et al., 2018), TnT (Doan et al., 2022) and Casper et al. (2022)). Naseer
et al. (2021) method seems to create a patch that better captures the overall source model decision
boundaries. This method leads to better results than decision boundaries-based APAs on the DeiT
family of networks (networks with more complex representations than CNNs-V1 networks). Creating
a patch that minimizes the maximum discrepancy between two models (Zhao et al., 2023) is unstable
and generally results in a patch that is not transferable. A possible explanation is that APA induces a
higher shift in the feature space than invisible adversarial examples.

A patch resulting from an optimization defined in the feature space reduces the patch overfitting and
increases the transferability to other networks. This suggests that the patch has learned more about the
common information to model the different classes rather than trying to cross the decision boundaries.
However, the L2 methodology (Inkawhich et al., 2019) is unstable and is highly dependent on the
choice of the target point, resulting in lower performance than our method (see Appendix B). Our two
methods (exact and sliced version) outperform the previous methods on transferability. We remark
that patches learned using Swin or CNext seem more universal as they can transfer to multiple models.
When crafted on Swin models, we produce a patch capable of transferring uniformly well to all the
models. We show in Appendix F that an ensemble of CNNs-v1 models can not reach the level of
transferability obtained by our method when targeting Swin models. These results indicate that our
method allows the patch to learn more about the common information shared across networks. The
following experiments are performed on Swin patches as they lead to a more uniform transferability
across networks.

4.1.2 EFFECTIVENESS AGAINST ROBUSTIFIED NETWORKS

We now consider a more realistic scenario in which the attacked system uses a de-
fense mechanism. We propose to use Local Gradients Smoothing (LGS) (Naseer
et al., 2019b), as it is one of the strongest defense mechanism against patch attacks.

Table 5: Transfer results of digital, scanned and scanned
defended patches (mean tSuc (%)). Patches are designed
on Swin models and for class bird house.

Digital Scan Scan
Defended

Clean 0.1 0.1 0.1
GAP Brown et al. (2017) 1.3 1.1 0.92
LaVAN Karmon et al. (2018) 1.53 1.05 0.88
L2 Inkawhich et al. (2019) 8.65 4.54 4.26
TnT (Doan et al., 2022) 0.78 0.43 0.37
Casper et al. (2022) 1.13 0.49 0.39
TTP (Naseer et al., 2021) 1.06 0.73 0.52
M3D (Zhao et al., 2023) 1.84 1.08 0.68
Ours(SW2

2)
(1)
500 19 12.41 12.11

Ours(W2
2)

(1) 20.04 12.59 12.41

LGS smooths salient regions in images
before feeding them to the network.
We reproduce the previous experiments
for three different smoothing factors
λ ∈ {1.5, 1.9, 2.3} for LGS while fix-
ing other parameters as in the article (we
report here results for λ = 1.5, see K
for other results). For each method, we
evaluate their Swin patches against net-
works robustified by LGS. Our method
achieves the best transfer results demon-
strating the criticality of our attack even
for robustified networks (Table 4). We
now suppose the target network has been
adversarially trained (AT) against invis-
ible adversarial examples. The patch at-
tacks which are not learned on AT models could reduce their accuracy when transferred to these
models. However, the AT models do not get fooled by the patch to predict the targeted class. (clean
accuracy: 65.44, attacked accuracy: 57.65, tsuc: 0.72). AT models seem to have different class
representations and are hard to force to predict a chosen class. When designed on one AT model and
transferred to another model, our patches and GAP patches produce the best transfer performances
(see Appendix G).

4.2 HYBRID EXPERIMENTS

In this section, we propose to measure the physicality of patches through a hybrid experiment and to
simulate the potential effect of patches in the real world. We consider the following steps: printing
and digitalization. Scanned patches are placed numerically in images using the same procedure as
in the previous section (physical transformations are applied to them). We use patches designed
on Swin-T and the results for three different settings (i.e., digital, scan and scan with defense) are

7
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Table 3: Transfer results (tSuc (%), higher is better attack) between categories of models. Results
are averaged over classes, over patch sizes and over networks within a category. Patches are placed
randomly in the image without object overlapping. Physical transformations (e.g., noise, rotations)
are applied to patches. Control stands for inserting a real object of the corresponding class as a patch.

Target mean / stdCNNs-v1 CNNs-v2 ENet CNext DeiT Swin

Method
Source

Clean
0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

Control 2.85 1.59 0.86 0.54 1.57 0.93 1.39 / 0.75

GAP (Brown et al., 2017)

CNNs-v1 36.61 9.64 5.54 2.43 4.03 3.05 10.22 / 12.04
CNNs-v2 15.6 9.57 3.66 2.74 3.51 2.49 6.26 / 4.82

ENet 37.33 10.11 29.88 2.22 8.91 4.3 15.46 / 13.28
CNext 0.33 0.77 0.23 0.97 0.43 0.8 0.59 / 0.27
DeiT 1.43 1.97 0.46 1.25 11.54 3.58 3.37 / 3.78
Swin 1.46 1.54 0.66 1.33 1.58 6.15 2.12 / 1.83

LaVAN (Karmon et al., 2018)

CNNs-v1 31.4 8.56 4.32 2.26 2.49 3.01 8.67 / 10.38
CNNs-v2 11.08 9.68 2.33 2.45 2.24 2.13 4.98 / 3.84

ENet 8.74 4.76 11.31 1.08 3.33 2.58 5.3 / 3.59
CNext 0.45 0.63 0.26 0.44 0.47 0.87 0.52 / 0.19
DeiT 2.1 1.53 0.93 0.61 5.84 2.45 2.24 / 1.73
Swin 1.45 1.41 0.57 1.31 1.29 9.44 2.58 / 3.08

L2 (Inkawhich et al., 2019)

CNNs-v1 14.76 5.06 2.69 0.88 1.78 1.08 4.37 / 4.85
CNNs-v2 3.25 3.5 0.64 1.44 0.57 1.04 1.74 / 1.19

ENet 14.33 4.12 13.35 0.79 3.02 1.88 6.25 / 5.47
CNext 2.46 9.66 0.92 20.2 1.73 10.67 7.6 / 6.81
DeiT 17.88 10.23 8.15 4.44 32.78 8.1 13.6 / 9.5
Swin 8.2 8.54 3.22 7.24 5.38 23.24 9.3 / 6.49

TnT (Doan et al., 2022)

CNNs-v1 5.84 1.5 2.12 0.67 1.43 1.08 2.11 / 1.73
CNNs-v2 1.82 0.69 0.59 0.37 0.52 0.6 0.77 / 0.48

ENet 2.13 0.92 1.4 0.43 0.71 0.64 1.04 / 0.57
CNext 0.48 0.49 0.24 0.32 0.3 0.4 0.37 / 0.09
DeiT 1.12 0.85 0.61 0.58 2.43 1.03 1.1 / 0.63
Swin 1.41 1.03 0.55 0.81 1.61 1.68 1.18 / 0.42

Casper et al. (2022)

CNNs-v1 12.87 1.62 1.2 0.28 0.33 0.19 2.75 / 4.56
CNNs-v2 7.8 7.44 1.26 0.83 0.95 0.78 3.17 / 3.15

ENet 5.37 0.85 14.85 0.33 0.68 0.78 3.81 / 5.23
CNext 0.42 0.28 0.22 0.45 0.15 0.22 0.29 / 0.11
DeiT 2.86 1.38 0.98 0.91 10.19 2.22 3.09 / 3.25
Swin 0.56 0.4 0.35 0.52 0.32 1.87 0.67 / 0.54

TTP (Naseer et al., 2021)

CNNs-v1 35.4 8.41 5.43 1.58 3.46 2.29 9.43 / 11.83
CNNs-v2 17.55 9.67 3.3 3.87 3.66 3.87 6.99 / 5.21

ENet 31.87 8.88 27.16 2.33 8.75 3.65 13.77 / 11.47
CNext 0.49 3.39 0.22 7.87 0.48 2.71 2.53 / 2.67
DeiT 3.87 3.24 1.51 1.64 13.75 3.85 4.64 / 4.18
Swin 1.53 1.22 0.53 0.98 1.18 5.54 1.83 / 1.69

Zhao et al. (2023)

CNNs-v1 17.11 6.18 3.59 0.84 1.98 1.43 5.19 / 5.61
CNNs-v2 7.45 11.77 1.77 2.13 1.51 2.33 4.49 / 3.84

ENet 11.21 1.97 3.34 0.54 1.0 0.88 3.16 / 3.72
CNext 0.34 0.36 0.16 0.21 1.78 0.28 0.52 / 0.57
DeiT 2.39 1.59 0.81 1.07 7.7 2.9 2.74 / 2.33
Swin 1.85 1.63 0.71 0.82 1.55 3.6 1.69 / 0.95

Ours (SW2
2)

(1)
500

CNNs-v1 25.25 6.15 4.73 1.7 5.15 2.61 7.6 / 8.04
CNNs-v2 16.93 8.67 4.02 4.08 5.77 3.56 7.17 / 4.69

ENet 22.53 5.83 18.8 2.07 8.49 3.03 10.13 / 7.8
CNext 3.97 11.62 1.1 29.97 3.14 14.75 10.76 / 9.86
DeiT 23.65 12.16 7.27 5.21 32.39 9.35 15.01 / 9.77
Swin 25.2 20.21 8.93 19.54 16.16 45.31 22.56 / 11.3

Ours (W2
2)

(1)

CNNs-v1 39.65 13.01 8.27 2.44 4.89 3.16 11.9 / 12.91
CNNs-v2 19.0 11.35 3.82 4.51 3.74 4.19 7.77 / 5.69

ENet 35.12 10.45 32.0 2.27 7.8 3.79 15.24 / 13.25
CNext 3.47 12.2 0.92 25.14 2.04 15.12 9.82 / 8.64
DeiT 22.26 11.43 10.18 5.29 39.51 9.25 16.32 / 11.59
Swin 20.55 17.89 8.09 17.7 13.55 49.1 21.14 / 13.12

reported. Our patch obtains the best transfer results and performs well in a complex setting: scan
with defense (see Table 5). This result confirms the potentially harmful behavior of our patch in the
real-world.

4.3 QUALITATIVE PHYSICAL EXPERIMENTS

In this section, we give some qualitative results concerning the physicality of our attack. We select
three objects present in ImageNet-1K (banana, cup, keyboard) and record videos of them when
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Table 4: Transfer results on robustified models by LGS defense (Naseer et al., 2019b) (tSuc (%)).
Patches are designed on Swin models.

Target mean / stdCNNs-v1 CNNs-v2 ENet CNext DeiT Swin

λ = 1.5

Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0
GAP (Brown et al., 2017) 0.72 0.87 0.35 0.78 1.13 2.34 1.03 / 0.63

LaVAN (Karmon et al., 2018) 0.56 0.69 0.3 0.69 0.82 2.65 0.95 / 0.78
L2 (Inkawhich et al., 2019) 4.79 6.44 1.72 7.79 4.79 13.85 6.56 / 3.75

TnT (Doan et al., 2022) 0.84 0.59 0.52 0.53 0.7 0.85 0.67 / 0.13
Casper et al. (2022) 0.37 0.4 0.2 0.32 0.25 0.59 0.36 / 0.13

TTP (Naseer et al., 2021) 0.68 0.77 0.28 0.68 0.76 1.98 0.86 / 0.53
M3D (Zhao et al., 2023) 0.83 0.81 0.36 0.77 1.17 1.17 0.85 / 0.27

Ours (SW2
2)

(1)
500 10.56 11.86 3.81 18.9 11.67 31.68 14.75 / 8.75

Ours (W2
2)

(1) 13.23 13.4 4.37 21.42 13.84 32.08 16.39 / 8.58

one patch is placed or not next to the object. During the video, patches are moved around the
object. Figure 2 shows examples of our patch near objects. In conducted experimentations, all the
patches were not able to transfer (tSuc lower than 2%), except for L2 and our patches. The transfer
results for the L2 method, our first ((SW2

2)
(1)
500) and second ((W2

2)
(1)
500) methods are 9.3%, 23.4% and

29.3% respectively. These results confirm that real-world classifiers can be swayed without explicit
knowledge of their architecture or their weights.

Figure 2: Examples of frame of our APA close to different objects. Our patch is designed to sway
networks to output the class bird house.

4.4 ABLATION STUDIES

We study the impact of the choice of the targeted layers on the patch transferability. We apply our
attack ((W2

2) version) on different layers for Swin models and report results in Table 6. The last
layer of the encoder (l = lJ ) seems essential to model and close the gap between the corrupted image
distribution and the target distribution. It is coherent since this layer is expected to model and separate
classes before linear classification. We observe that the multi-layer objective leads to better results as
it helps the optimization to converge to a better local minimum, leading to a stronger patch. However,
most layers fail to model the targeted distribution correctly. In Appendix I, we propose to study the
effect of the power p and the number of slices K.

Table 6: Transfer results of digital patches when varying the choice of the targeted layers (tSuc (%)).
Patches are designed on Swin models. See Appendix I for details concerning layers.

L {lJ−8, lJ−2, lJ} {lJ−2, lJ} {lJ−2} {lJ}
mean 14.66 23.47 17.31 21.14

5 DISCUSSION AND CONCLUSION

This paper presents a distribution-oriented method based on optimal transport for designing APAs.
This new method reduces patch overfitting to the source architecture and strengthens its transferability
to Convolutional Neural Networks and Transformer architectures. When designed on Swin models,
our patch is the only one capable of strongly fooling multiple architectures from different model
families, even when the model robustness has been enhanced by a defense mechanism. Hybrid
and physical experiments illustrate that our attack can disturb real-world classifiers without any
knowledge of the system.
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6 ETHICS STATEMENT

This paper presents how to make attacks potentially harmful to real-life deep networks. Ignoring the
existence of attacks like the one presented in this work leaves systems with a false sense of security
and may be disastrous to numerous applications like autonomous vehicles. Research promotes
transparency and fosters a proactive approach to addressing potential vulnerabilities. We hope that
our work empowers individuals and organizations to take necessary precautions, ultimately leading
to a safer and more secure AI landscape.

Although this paper is just one snapshot of the attack/defense race, we want to summarize some
recommendations based on our experiments.

• Despite Swin being a state-of-the-art model, we advise against relying on it for critical
computer vision functions. Indeed, an attacker using our method would design its patch on
Swin models to maximize its transferability across the different network families. However,
as we show, patches designed on Swin models are the most critical for Swin models.

• Conversely, using either of ConvNext or AT model seems a good shot: AT models combined
with defense are quite resilient to patch not designed on them with the drawback of a
moderate initial performance, and, ConvNext are the best trade-off today (good initial
performance and moderate loss of performance against an attack even when designed on
ConvNext).
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Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pp. 10347–10357. PMLR, 2021.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Anqi Zhao, Tong Chu, Yahao Liu, Wen Li, Jingjing Li, and Lixin Duan. Minimizing maximum
model discrepancy for transferable black-box targeted attacks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8153–8162, 2023.

12



Published as a conference paper at ICLR 2024

Zhengyu Zhao, Zhuoran Liu, and Martha Larson. On success and simplicity: A second look at
transferable targeted attacks. Advances in Neural Information Processing Systems, 34:6115–6128,
2021.

Wen Zhou et al. Transferable adversarial perturbations. In ECCV, 2018.

13



Published as a conference paper at ICLR 2024

Appendices

A Implementation details 14

B Feature point method instability 15

C Feature point method generalization 19

D Benefits of Optimal Transport 19

E Model robustness and patch position 20

F Ensemble methods 21

G Transferability on adversarially trained models 21

H Robustness according to physical transformations 22

I Ablation studies 23

J Decision boundary-based methods overfitting 24

K Complementary tables 27

L Printable patches 28

A IMPLEMENTATION DETAILS

Our method training routine uses the PyTorch library (Paszke et al., 2019). For the training of each
patch on medium and large models we consider a single NVIDIA V100-32G or a single NVIDIA
A100 respectively. To train patches on smaller NVIDIA cards we should reduce the batch size.
When not specified, patches are designed to target one the following classes: salamander, starfish,
bird house, bullfrog, pinwheel, mongoose, brown bear, accordion and common iguana.
We use Expectation over Transformations (EoT (Eykholt et al., 2018)) to obtain a more physically
realizable patch, similarly to prior work on APAs (Brown et al., 2017; Lee & Kolter, 2019; Casper
et al., 2022). For all the methods (GAP (Brown et al., 2017), LaVAN (Karmon et al., 2018), L2
(Inkawhich et al., 2019) and ours), during training, we randomly rotate the patch up to five degrees
for the x and y-axis and up to 10 degrees for the z-axis. We also randomly scale the patch between
70 × 70 to 110 × 110 pixels, adjust patch brightness between [−0.1, 0.1] and patch blur between
[0.8, 1.2], and apply normal noise of magnitude 0.1 on the patch. Patches are randomly translated in
the image but not in the center.
To control the balance between the adversarial loss and the total variation loss, the gradient of each
loss is computed individually, normalized, and combined using a weighted sum. Following Nesti
et al. (2022) we choose wadv = 1 and wTV = 0.1 where wadv is the weight for the adversarial loss
and wTV is the weight for the TV loss.

Computation time. We measure and report the computation time of each method in Table 7. This
Table reports the averaged computational time for the different methods. Our method has a similar
computational time as other methods. This result may be counterintuitive as OT losses are known to
be slow, but in our setting, the number of samples is low. The M3D method (Zhao et al., 2023) is

14



Published as a conference paper at ICLR 2024

much slower than other methods. It is coherent, this method trains alternatively the patch and two
models in a min-max game.

Table 7: Computational time of the different methods to obtain a fully optimized patch (minutes).
Times are averaged over ten optimization runs. Each run is launched on the same setup composed by
a single NVIDIA A100.

Method Time
GAP (Brown et al., 2017) 20
LaVAN (Karmon et al., 2018) 30
L2 (Inkawhich et al., 2019) 20
TnT (Doan et al., 2022) 30
Casper et al. (2022) 35
TTP (Naseer et al., 2021) 30
M3D (Zhao et al., 2023) 66
Ours (SW2

2)
(1)
500 19

Ours (W2
2)

(1) 20

B FEATURE POINT METHOD INSTABILITY

To measure the stability of the L2 method (Inkawhich et al., 2019), we launch the optimization
for three randomly selected target points. Patches are designed to sway ResNet50-v1 or Swin-T to
output the class Australian terrier. Figure 3 plots the learning curves and the resulting patches for
our distribution-based approach for Resnet50-v1 and Swin-T, respectively. Figure 4 and 5 plot the
learning curves and the resulted patches of the L2 method for Resnet50-v1 and Swin-T, respectively.
These four graphs show that our method is the easiest to optimize and is more robust to optimization
artifacts. For the Swin-T model, the optimization for the L2 method becomes noisy. Table 8 reports
the transfer results of the obtained patches from previous figures. Although the optimization has
converged for the first target of the L2 method for ResNet50-v1, the obtained patch is harmless. Even
if the APA works, its attacking capacity depends on the considered target point. For example, the
mean transferability on Swin-T can decreased by a factor four. In general, our distribution-oriented
approach outperforms the L2 method.

Table 8: Transfer results between categories of models (tSuc (%)) for the L2 method and for our
distribution-oriented method. Three different target points are evaluated for the L2 method. Results
are for the source model ResNet50-V1 and Swin-T, for the class Australian terrier and for patches of
size 60× 60. Patches are placed randomly in the image but not at the center of images.

Target mean / stdSource Method CNNs-v1 CNNs-v2 ENet CNext DeiT Swin AT

ResNet50-v1 L2 (Inkawhich et al., 2019)
Target 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0
Target 2 36.64 2.52 9.35 0.52 3.59 0.5 3.71 8.12 / 12
Target 3 43.83 4.18 8.82 0.75 4.98 0.58 6.09 9.89 / 14.1

Ours 43.34 4.76 8.75 0.92 6.46 0.63 4.68 9.94 / 13.9

Swin-T L2 (Inkawhich et al., 2019)
Target 1 4.12 1.18 2.41 0.23 1.83 1.9 0.39 1.72 / 7.8
Target 2 26.97 7.36 4.65 3.9 7.2 6.13 1.92 8.3 / 7.8
Target 3 0.17 0.11 0.12 0.1 0.1 0.07 0.1 0.11 / 0.02

Ours 50.77 12.54 14.2 7.08 13.64 8.19 5.94 16.05 / 14.5
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Figure 3: Learning curves and resulted patches of our distribution-oriented method. The optimization
is run for three different learning rate. The source model is ResNet50-v1 or Swin-T and the targeted
class is Australian terrier.
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Figure 4: Learning curves and resulted patches of the L2 method for different targeted points. For
each targeted point the optimization is run for three different learning rate. The source model is
ResNet50-v1 and the targeted class is Australian terrier.
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Figure 5: Learning curves and resulted patches of the L2 method for different targeted points. For
each targeted point the optimization is run for three different learning rate. The source model is
Swin-T and the targeted class is Australian terrier.
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C FEATURE POINT METHOD GENERALIZATION

We provide in this section a proof that the exact 2-Wasserstein distance coincide with the L2-based
method Inkawhich et al. (2019) when the source distribution is uniformly distributed and the targeted
distribution is supported by a unique point. We recall that

W2
2(µ, ν) = inf

π∈Π(µ,ν)

∫
Rd×Rd

||x− y||2dπ(x, y), (6)

defines the 2-Wasserstein distance. This distance can be interpreted through a probabilistic point
of view. If we name (X,Y ) a couple of random variables over Rd × Rd with X ∼ µ, Y ∼ ν and
(X,Y ) ∼ π ∈ Π(µ, ν), we can write

W2
2(µ, ν) = min

(X,Y )
E(X,Y )

[
||X − Y ||2

]
. (7)

If we suppose that the target distribution is composed by a unique point, i.e., ν = δy , then we have

W2
2(µ, ν) = min

X
EX

[
||X − y||2

]
. (8)

In our problem we have empirical distribution based on samples, we name µ̂n and ν̂m the empirical
distributions of µ based on n samples and ν based on m samples respectively. We suppose that
each sample from each distribution is uniformly distributed, i.e., µ̂n = 1

n

∑n
i=1 δxi

and ν̂m =
1
m

∑m
j=1 δyj

, where δ is the Kronecker symbol. The estimated 2-Wasserstein distance is

W2
2(µ̂n, ν̂m) = min

π∈Π(µ,ν)

n∑
i=1

m∑
j=1

πij ||xi − yj ||2. (9)

If we suppose that the target distribution is composed by a unique point, i.e., ν̂ = δy , then we have

W2
2(µ̂n, ν̂) =

1

n

n∑
i=1

||xi − y||2. (10)

which is equal to the L2-based criterion. Minimizing with respect to the 2-Wasserstein is equivalent
to consider the L2-based criterion (Inkawhich et al., 2019). As a result, our method includes and
generalizes the L2-based method.

D BENEFITS OF OPTIMAL TRANSPORT

Optimal transport-based losses (both exact and sliced) has the following advantages:

• OT losses take into account the underlying metric space (through the cost matrix) on which
the probability distributions are defined,

• for non-overlapping distributions such as ours, the Kullback-Leibler divergence is infinite.

To illustrate the first point, we consider the toy example shown in Figure 6. We define four different
one-dimensional distributions supported here by five points. We compute the 1-Wasserstein distance
and the KL divergence between the red and the blue distributions for each column (results are shown
between graphs). The blue mass has been moved near the first point from right to left. The 1-
Wasserstein distance captures this mass shift, while the KL divergence does not and remains constant.
This toy example highlights that OT losses capture the underlying geometry on which distributions
are defined. More details concerning the advantages of OT over other methods can be found in
(Arjovsky et al., 2017) (Part 2: Different Distances).
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Figure 6: Example of distributions defined on five points with different mass values. The 1-
Wasserstein distance and the KL divergence is computed between the red and the blue distribution for
each column.

E MODEL ROBUSTNESS AND PATCH POSITION

In this section, we evaluate the robustness of models according to the patch position in images. We
consider the same families of models as before. We define nine patch positions and measure the patch
transferability when the patch is fixed at one of these positions. Figure 7 represents the nine patch
positions. We regroup these positions into three categories: Corner, Cross, and Center. We measure
the patch transferability for a patch of size 40× 40 (≈ 3% image size). Results are averaged over
methods (GAP (Brown et al., 2017), LaVAN (Karmon et al., 2018), L2 (Inkawhich et al., 2019) and
ours), classes, and categories of patch position. Table 9 reports the patch transferability according
to its position. CNNs-v1 models are much more biased by the center of images than other network
families. The accuracy of CNNs-v1 drops by a factor of 14 % when the patch is moved to corners to
the center of images. This effect is not entirely due to the occluding of the object of interest since
the patch is very small. Very recent families of networks (CNext and Swin models) are the more
balanced networks in using context in images. For these models, the accuracy is nearly the same
when the patch is placed in either corners or the center. To measure the actual efficiency of patches
and to not occlude the object of interest in the case of large patches, its patches may not be placed in
the center of images.

Table 9: Transfer results according to the categories of patch position (Accuracy (%)). Results are
averaged over methods, over classes, over patch positions and are for patches of size 40× 40.

Target
CNNs-v1 CNNs-v2 ENet CNext DeiT Swin AT

Position

Clean
74.90 77.63 80.15 82.42 77.81 82.43 65.44

Corner 71.07 76.57 78.85 81.97 76.33 81.43 64.24
Cross 67.65 75.36 77.71 81.66 75.66 81.44 62.44
Center 61.52 72.01 74.23 80.72 73.94 80.71 57.06
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Figure 7: Illustration of the categories of patch positions.

Figure 8: Transfer and whitebox results for patches built on an ensemble of models (tSuc (%)).
Results are averaged over classes and over patch sizes. Patches are placed randomly in the image but
not at the center of images.

F ENSEMBLE METHODS

Ensemble methods train a single patch across an ensemble of models simultaneously. We determine
if an attacker building his attack on an ensemble of CNN-v1 models can significantly increase its
attacking performance on CNext or Swin models. We consider the following ordered list of models
E-CNN-v1 = {ResNet50/34/18-v1, DenseNet121} in which networks are added to the ensemble in
this order. Figure 8 plots the targeted success rate (tSuc) as a function of the number of models in the
ensemble. Even with the largest ensemble of four models, patches failed to significantly increase
their transferability performances on CNext and Swin models. This result confirms that an attacker
expecting to sway all the models uniformly should design his attack on Swin models using our
methodology. Figure 8 also shows that the feature point method becomes unstable with the increased
number of models in the ensemble.

G TRANSFERABILITY ON ADVERSARIALLY TRAINED MODELS

In this section, we study the robustness of Adversarially Trained (AT) models. We consider two
scenarios: when the patch is learned on AT models and when not. To strongly transfer on an AT
model, the patch must be designed on an AT model (Table 10). None of the other source models can
show good transferability results when applied to AT models. These results suggest that AT models
learn different representations than other networks. From Table 11, we see that the GAP method
(Brown et al., 2017) and our method are the best procedures to design a patch to target an AT model.
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Table 10: Transfer results between categories of models (tSuc (%)). Results are averaged over classes
and over patch sizes. Patches are designed using our method (W2

2)
(1).

Target
CNNs-v1 CNNs-v2 ENet CNext DeiT Swin AT mean / std

Source

Clean
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

CNNs-v1 39.65 13.01 8.27 2.44 4.89 3.16 0.82 10.32 / 12.56
CNNs-v2 19.0 11.35 3.82 4.51 3.74 4.19 0.45 6.72 / 5.86
ENet 35.12 10.45 32.0 2.27 7.8 3.79 3.49 13.56 / 12.94
CNext 3.47 12.2 0.92 25.14 2.04 15.12 0.16 8.44 / 8.69
DeiT 22.26 11.43 10.18 5.29 39.51 9.25 5.08 14.72 / 11.43
Swin 20.55 17.89 8.09 17.7 13.55 49.1 0.72 18.23 / 14.09
AT 39.75 10.69 17.35 3.51 19.87 5.31 38.95 19.35 / 13.77

Table 11: Transfer results between categories of models (tSuc (%)). Results are averaged over classes
and over patch sizes. Patches are placed randomly in the image but not at the center of images.

Target mean / stdCNNs-v1 CNNs-v2 ENet CNext DeiT Swin AT

Method

Clean
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

GAP (Brown et al., 2017) 43.05 11.67 16.7 3.35 20.09 5.23 39.17 19.98 / 14.51
LaVAN (Karmon et al., 2018) 37.27 10.94 14.08 3.43 18.18 5.21 29.96 17.018 / 11.64
L2 (Inkawhich et al., 2019) 6.78 1.86 2.23 0.59 4.39 1.1 8.35 3.618 / 2.77
TnT (Doan et al., 2022) 3.71 1.33 1.41 0.8 2.61 0.85 8.03 2.688 / 2.39
Casper et al. (2022) 5.83 1.38 2.74 0.54 7.55 0.97 13.91 4.78 / 4.48
TTP (Naseer et al., 2021) 35.25 9.45 13.75 2.91 17.92 4.69 35.17 17.028 / 12.43
M3D (Zhao et al., 2023) 6.24 5.61 3.45 0.82 1.82 1.12 2.53 3.088 / 1.98
Ours (SW2

2)
(1) 22.52 5.22 8.05 2.17 11.51 3.22 21.57 10.618 / 7.79

Ours (W2
2)

(1) 39.75 10.69 17.35 3.51 19.87 5.31 38.95 19.35 / 13.77

H ROBUSTNESS ACCORDING TO PHYSICAL TRANSFORMATIONS

In this section, we measure the robustness of patches according to physical transformations. We
evaluate the L2 (Inkawhich et al., 2019), our exact Wasserstein (W2

2)
(1) and Sliced-Wasserstein

(SW2
2)

(1)
500 patches as they are the only to transfer in the easiest scenario, i.e., without patch rota-

tion, medium brightness and small distance patch-camera (Section 4.3 of the main article). Patch
transferability is measured according to z-axis rotations (rotations in the image plane), variation of
light (low and high) and distance between camera and the object (the patch is placed near the object).
Results are reported in Table 12 and Figure 9. Our patches transfer even in the worst-case scenario
(far from the camera or when rotated), while other patches do not. This indicates that our patches may
be critical in real-world scenarios. Globally, our method produces patches with better transferability
than other methods.

Table 12: Transfer results according to rotations and variation of light (tSuc %). Patches are designed
to sway networks to output the class bird house. Patches are printed and placed in the real-world near
a cup. Results are averaged over video frames and over all the networks.

Method z-axis rotations Variation of light
-45° 0° 45° Low High

L2 (Inkawhich et al., 2019) 0.8 5.7 0.23 4.4 5.7
Ours (SW2

2)
(1)
500 6.1 11.5 6.53 12 11.5

Ours (W2
2)

(1) 7.1 14.8 7.05 12.6 14.8
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Figure 9: Transfer results as a function of the distance camera-object. Patches are designed to sway
networks to output the class bird house. Patches are printed and placed in the real-world near a cup.
Results are averaged over video frames and over all the networks.

I ABLATION STUDIES

In this section, we study the effect of our method hyper-parameters. We solve the exact and the sliced
Wasserstein distance for p ∈ {1, 2} and report the results in Table 13. This Table shows that both
values of p lead to the same transferability. To penalize higher feature values, we set the value of
p = 2.

We launch the Sliced-Wasserstein distance (SW) for the following number of projections: K ∈
{500, 1000, 5000, 10000, 50000}. There is no clear advantage to considering many projections (Table
16). The best transferability results are obtained with K = 500.

We now study the effect of the number of attacked layers (N ). In Table 14, we report the transferability
results according to different numbers of targeted layers. We obtain better results for the exact
Wasserstein distance when considering multiple layers. We observe that it helps the optimization to
converge to a better local minimum, leading to stronger patches. For the Sliced-Wasserstein distance,
targeting multiple layers seems counterproductive. Table 15 details the result presented in the article
on the choice of the essential layer to target. The last layer of the encoder (l = lJ) seems essential to
model and close the gap between the two distributions and, particularly, for the Sliced-Wasserstein
distance.

To evaluate the data dependency of our method, we create different targeted distributions by changing
the number of points which compose it (m = 1, 2, 10, 100, 300, 600, 900). We launch the optimiza-
tion of patches for five different sampling seeds and three different classes. We consider the Swin-T
model as the source model. We evaluate patches using the same procedure explained in the main
article (Section 4). We report the results of the three runners-up baselines (GAP, LaVAN and TTP).
As these methods do not consider distributions, they correspond to straight lines in the figure. From
Figure 11 we see that the average targeted success rate (tSuc) increases with respect to the number of
target samples. When considering multiple points, our method leads to better transfer results and is
more stable than the L2-based method (see B). Our method performs better than decision-boundary-
based methods (GAP, LaVAN and TTP). However, we would like to emphasize that our method
requires multiple images of the target class to overcome the limitations of the L2-based approach (see
Appendix B). This data dependency is a practical limitation of our method. This practical limitation
may be simply leveraged by considering the training data of the source model when available.
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Table 13: Transfer results according to the power p (tSuc (%)). Results are averaged over classes and
over patch sizes. Patches are designed on Swin-T.

Target
CNNs-v1 CNNs-v2 ENet CNext DeiT Swin mean / std

p

Clean
0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

(W2
2)

(1) 25.62 19.88 10.96 18.84 13.28 55.67 24.04 / 14.91
(W1

1)
(1) 26.37 20.99 10.86 19.56 13.3 56.98 24.68 / 15.31

(SW2
2)

(1)
10000 27.82 20.22 11.29 18.6 16.66 41.43 22.67 / 9.72

(SW1
1)

(1)
10000 28.74 22.72 11.24 19.89 16.07 43.13 23.63 / 10.26

Table 14: Transfer results according to the number of targeted layers (N) (tSuc (%)). Results are
averaged over classes and over patch sizes. Patches are designed on the Swin family. Layers lJ−8

and lJ−2 correspond to the second and third block of Swin models (which are composed by four
blocks in total).

Target
CNNs-v1 CNNs-v2 ENet CNext DeiT Swin mean / std

(N)

Clean
0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

(W2
2)

(N)
{lJ} 20.55 17.89 8.09 17.7 13.55 49.1 21.14 / 13.12

{lJ−2, lJ} 24.87 20.38 9.59 19.77 17.77 48.42 23.47 / 12.06
{lJ−8, lJ−2, lJ} 19.14 12.45 7.52 10.56 13.55 24.75 14.66 / 14.66

(SW2
2)

(N)
{lJ} 25.26 18.7 9.19 17.27 15.32 44.11 21.64 / 11.11

{lJ−2, lJ} 24.22 18.26 8.25 15.27 17.47 34.5 19.66 / 8.14
{lJ−8, lJ−2, lJ} 15.94 10.23 6.35 8.6 12.43 17.35 11.82 / 3.89

Table 15: Transfer results according to targeted layer in the single targeted layer setting (tSuc (%)).
Results are averaged over classes and over patch sizes. Patches are designed on the Swin family.
Layers lJ−8 and lJ−2 correspond to the second and third block of Swin models (which are composed
by four blocks in total).

Target
CNNs-v1 CNNs-v2 ENet CNext DeiT Swin mean / std

L

Clean
0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

(W2
2)

(1) lJ−2 17.02 15.03 6.59 14.32 12.55 38.35 17.31 / 9.95
lJ 20.55 17.89 8.09 17.7 13.55 49.1 21.14 / 13.12

(SW2
2)

(1)
lJ−8 0.3 0.19 0.19 0.14 0.17 0.2 0.2 / 0.05
lJ−2 15.39 11.2 5.2 9.08 13.37 20.44 12.45 / 4.81
lJ 25.26 18.7 9.19 17.27 15.32 44.11 21.64 / 11.11

J DECISION BOUNDARY-BASED METHODS OVERFITTING

In this section, we conduct an additional experiment to support that decision boundary-based methods
learn a patch that tends to overfit on the source model classifier. For this purpose, we consider the
transfer not between 2 different models but between 2 models sharing the same encoder but different
classifiers. We select from the different methods patches trained to attack the source model Swin-T
(Liu et al., 2021). On top of this Swin-T encoder, we train a new linear classifier from scratch on
the ImageNet train set (Deng et al., 2009). This new linear classifier reaches the same level of clean
accuracy as the previous classifier (from Pytorch (Paszke et al., 2019)) while being different. We
measured the patch performance when targeting this new network (same encoder, different linear
classifier). As expected, the transferability of decision boundary-based patches drops drastically
(nearly by half) while our patches transferability remains almost the same.
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Figure 10: Figure from (Liu et al., 2021). In red are displayed the targeted layers consider in the
article.

Figure 11: Transfer results as a function of the number of targets points supported in the target
distribution (mean tSuc (%)). Each dotted line correspond to a different sampling of points to create
the target distribution. The solid line is the average of the five dotted lines. Patches are designed on
the Swin-T source model. Results are averaged over three classes, over patch sizes and over all the
targeted networks.
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Table 16: Transfer results (tSuc (%), higher is better attack) between categories of models. Results
are averaged over classes and over patch sizes. Patches are placed randomly in the image without
object overlapping. Physical transformations (e.g., noise, rotations) are applied to patches. Control
stands for inserting a real object of the corresponding class as a patch.

Target mean / stdCNNs-v1 CNNs-v2 ENet CNext DeiT Swin

Method
Source

Clean
0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

Control 2.85 1.59 0.86 0.54 1.57 0.93 1.39 / 0.75

(SW2
2)

(1)
500

CNNs-v1 25.25 6.15 4.73 1.7 5.15 2.61 7.6 / 8.04
CNNs-v2 16.93 8.67 4.02 4.08 5.77 3.56 7.17 / 4.69

ENet 22.53 5.83 18.8 2.07 8.49 3.03 10.13 / 7.8
CNext 3.97 11.62 1.1 29.97 3.14 14.75 10.76 / 9.86
DeiT 23.65 12.16 7.27 5.21 32.39 9.35 15.01 / 9.77
Swin 25.2 20.21 8.93 19.54 16.16 45.31 22.56 / 11.3

(SW2
2)

(1)
1000

CNNs-v1 26.38 6.13 5.59 1.96 5.85 2.8 8.12 / 8.32
CNNs-v2 16.88 8.82 3.97 3.89 5.8 3.53 7.15 / 4.71

ENet 23.56 6.45 19.18 2.25 8.55 3.01 10.5 / 8.07
CNext 4.44 12.07 1.14 33.22 3.24 15.3 11.57 / 10.89
DeiT 22.77 11.97 7.68 5.36 35.25 9.2 15.37 / 10.48
Swin 24.2 19.01 8.94 17.73 15.89 44.53 21.72 / 11.16

(SW2
2)

(1)
5000

CNNs-v1 26.4 6.11 5.37 1.83 5.2 2.65 7.93 / 8.4
CNNs-v2 14.49 8.35 3.73 3.64 5.89 3.24 6.55 / 3.96

ENet 27.44 7.04 19.85 2.16 8.88 3.12 11.42 / 9.2
CNext 4.52 13.79 1.18 31.54 3.18 16.4 11.77 / 10.45
DeiT 24.14 12.89 8.37 5.02 36.29 9.17 15.98 / 10.9
Swin 24.02 19.69 9.53 17.97 15.06 44.74 21.83 / 11.15

(SW2
2)

(1)
10000

CNNs-v1 25.73 6.25 5.51 1.86 5.75 2.67 7.96 / 8.11
CNNs-v2 18.38 10.46 4.19 4.73 6.15 4.01 7.99 / 5.14

ENet 24.49 6.6 20.26 2.14 8.64 2.98 10.85 / 8.52
CNext 2.92 9.34 0.92 23.33 2.9 12.18 8.6 / 7.68
DeiT 23.87 12.22 7.57 4.89 36.3 9.34 15.7 / 11.01
Swin 23.68 18.08 8.92 17.95 15.42 44.61 21.44 / 11.24

(SW2
2)

(1)
50000

CNNs-v1 26.16 6.16 5.4 1.89 5.32 2.7 7.94 / 8.29
CNNs-v2 13.67 8.71 3.09 4.0 4.67 3.4 6.26 / 3.8

ENet 25.66 6.06 20.4 2.11 8.73 2.99 10.99 / 8.91
CNext 3.06 10.97 0.95 27.34 3.34 16.73 10.4 / 9.31
DeiT 23.95 11.84 8.65 4.6 35.72 8.58 15.56 / 10.86
Swin 25.26 18.7 9.19 17.27 15.32 44.11 21.64 / 11.11

(W2
2)

(1)

CNNs-v1 39.65 13.01 8.27 2.44 4.89 3.16 11.9 / 12.91
CNNs-v2 19.0 11.35 3.82 4.51 3.74 4.19 7.77 / 5.69

ENet 35.12 10.45 32.0 2.27 7.8 3.79 15.24 / 13.25
CNext 3.47 12.2 0.92 25.14 2.04 15.12 9.82 / 8.64
DeiT 22.26 11.43 10.18 5.29 39.51 9.25 16.32 / 11.59
Swin 20.55 17.89 8.09 17.7 13.55 49.1 21.14 / 13.12

Table 17: Transfer results when changing the linear classifier while the encoder remains fixed
(variation of tSuc (%)). Patches are designed to fool the Swin-T model (Pytorch version, encoder
and linear classifier). The transferability is measured when targeting a new network (same encoder,
different linear classifier). Results are averaged over classes and over patch sizes.

Method Variation of tSuc (%)
GAP (Brown et al., 2017) - 61.4
LaVAN (Karmon et al., 2018) - 42.6
TTP Naseer et al. (2021) - 51.8
Ours (SW2

2)
(1)
500 - 0.27

Ours (W2
2)

(1) - 5.6
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K COMPLEMENTARY TABLES

In this section, we provide additional tables. Table 18 is the same as Table 4 present in the main paper
but results are presented for different values of smoothing factors λ.

Table 18: Transfer results on robustified models by LGS defense (Naseer et al., 2019b) (tSuc (%)).
Patches are designed on Swin models.

Target mean / stdCNNs-v1 CNNs-v2 ENet CNext DeiT Swin

λ = 1.5

Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0
GAP (Brown et al., 2017) 0.72 0.87 0.35 0.78 1.13 2.34 1.03 / 0.63

LaVAN (Karmon et al., 2018) 0.56 0.69 0.3 0.69 0.82 2.65 0.95 / 0.78
L2 (Inkawhich et al., 2019) 4.79 6.44 1.72 7.79 4.79 13.85 6.56 / 3.75

TnT (Doan et al., 2022) 0.84 0.59 0.52 0.53 0.7 0.85 0.67 / 0.13
Casper et al. (2022) 0.37 0.4 0.2 0.32 0.25 0.59 0.36 / 0.13

TTP (Naseer et al., 2021) 0.68 0.77 0.28 0.68 0.76 1.98 0.86 / 0.53
M3D (Zhao et al., 2023) 0.83 0.81 0.36 0.77 1.17 1.17 0.85 / 0.27

Ours (SW2
2)

(1)
500 10.56 11.86 3.81 18.9 11.67 31.68 14.75 / 8.75

Ours (W2
2)

(1) 13.23 13.4 4.37 21.42 13.84 32.08 16.39 / 8.58

λ = 1.9

Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0
GAP (Brown et al., 2017) 0.61 0.81 0.32 0.68 1. 1.76 0.86 / 0.45

LaVAN (Karmon et al., 2018) 0.45 0.61 0.26 0.55 0.72 1.72 0.72 / 0.47
L2 (Inkawhich et al., 2019) 4.05 5.72 1.53 6.6 4.27 11.26 5.57 / 2.99

TnT (Doan et al., 2022) 0.82 0.61 0.51 0.52 0.62 0.81 0.65 / 0.12
Casper et al. (2022) 0.32 0.33 0.19 0.25 0.23 0.5 0.3 / 0.1

TTP (Naseer et al., 2021) 0.56 0.73 0.24 0.59 0.66 1.34 0.69 / 0.33
M3D (Zhao et al., 2023) 0.68 0.7 0.31 0.7 1.03 1.01 0.74 / 0.24

Ours (SW2
2)

(1)
500 8.56 10.49 3.27 15.93 10.39 25.96 12.43 / 7.1

Ours (W2
2)

(1) 10.95 11.98 3.78 18.37 12.35 27.07 14.08 / 7.19

λ = 2.3

Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0
GAP (Brown et al., 2017) 0.52 0.74 0.29 0.58 0.87 1.34 0.72 / 0.33

LaVAN (Karmon et al., 2018) 0.38 0.55 0.24 0.47 0.64 1.19 0.58 / 0.3
L2 (Inkawhich et al., 2019) 3.35 4.95 1.35 5.46 3.74 8.93 4.63 / 2.32

TnT (Doan et al., 2022) 0.8 0.64 0.52 0.52 0.58 0.8 0.64 / 0.12
Casper et al. (2022) 0.47 0.69 0.22 0.53 0.57 0.92 0.26 / 0.08

TTP (Naseer et al., 2021) 0.47 0.69 0.22 0.53 0.57 0.92 0.57 / 0.21
M3D (Zhao et al., 2023) 0.55 0.59 0.27 0.64 0.9 0.9 0.64 / 0.22

Ours (SW2
2)

(1)
500 6.76 9.16 2.81 13.1 9.13 20.69 10.28 / 5.59

Ours (W2
2)

(1) 8.85 10.61 3.27 15.28 10.86 22.28 11.86 / 5.85
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L PRINTABLE PATCHES

Figure 12: Printable patches designed on Swin models with our distribution-oriented method.

28


	Introduction
	Related work
	Transferable invisible adversarial examples
	Adversarial patch attack
	Transferability evaluation

	Methodology
	Background
	Optimal Transport based loss

	Experiments
	Digital experiments
	Transferability among networks
	Effectiveness against robustified networks

	Hybrid experiments
	Qualitative physical experiments
	Ablation studies

	Discussion and Conclusion
	Ethics Statement
	Implementation details
	Feature point method instability
	Feature point method generalization
	Benefits of Optimal Transport
	Model robustness and patch position
	Ensemble methods
	Transferability on adversarially trained models
	Robustness according to physical transformations
	Ablation studies
	Decision boundary-based methods overfitting
	Complementary tables
	Printable patches

