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Abstract 38 

Identifying true DNA cellular barcodes amongst polymerase chain reaction (PCR) and sequencing 39 

errors is challenging. Current tools are restricted in the diversity of barcode types supported or 40 

the analysis strategies implemented. As such, there is a need for more versatile and efficient tools 41 

for barcode extraction, as well as for tools to investigate which factors impact barcode detection 42 

and which filtering strategies to best apply. Here, we introduce the package CellBarcode and its 43 

barcode simulation kit, CellBarcodeSim, that allows efficient and versatile barcode extraction and 44 

filtering for a range of barcode types from bulk or single-cell sequencing data using a variety of 45 

filtering strategies. Using the barcode simulation kit and biological data, we explored the technical 46 



and biological factors influencing barcode identification and provided a decision tree on how to 47 

optimize barcode identification for different barcode settings. We believe that CellBarcode and 48 

CellBarcodeSim have the capability to enhance the reproducibility and interpretation of barcode 49 

results across studies.  50 

 51 

Main text 52 

Introduction 53 

DNA cellular barcoding is a high-throughput approach widely used to follow lineage1,2 in different 54 

fields such as hematopoiesis, development3–5, cancer6–9 and infection dynamics10. It uses unique 55 

and heritable DNA sequence incorporated into the genome of an ancestor cell then detected via 56 

sequencing in its progenies.  57 

 58 

In the earliest approaches, progenitor cells were prospectively transduced ex vivo with libraries 59 

of fixed-length oligonucleotides11. More recently, to avoid extraction and reimplantation of 60 

progenitor cells, in vivo recombining genetic cassettes have been incorporated in transgenic 61 

organisms. Many innovative approaches have produce these in situ genetic labels12–16, with the 62 

majority detected via short-read sequencing. Barcodes are now detected with single cell RNA-63 

sequencing (scRNA-seq)14–17, coupling lineage with fine-grained phenotyping. 64 

 65 

DNA barcodes detected via Next Generation Sequencing (NGS) are subject to various sources 66 

of error, resulting in the identification of spurious barcodes. All barcode types are affected by PCR 67 

error/bias18 and sequencing error; in situ barcodes suffer additionally from the inability to control 68 

the distance between barcodes19,20. Biological factors such as the number of barcodes and clone 69 

size can impact barcode detection but have rarely been investigated21. To extract and identify true 70 

from spurious barcodes, many different bioinformatic filtering strategies have been proposed. 71 

However, little comparison of the various strategies has been published and most publications 72 

use their own “in house” processing pipelines. This is problematic in terms of interpretation of 73 

results across studies and reproducibility. Both guidelines on how filtering strategies and their 74 

parameterization impact barcode quantification as well as broadly applicable tools are required22. 75 

 76 

Beside tools for visualization and data exploration23–25 three tools have been developed to extract 77 

DNA barcodes from NGS data: genBaRcode26, Bartender27 and CellTagR28. Whilst each has 78 



demonstrated utility, they are either restricted in the diversity of barcode types supported 79 

(CellTagR, genBaRcode) or the analysis strategies implemented (all of the above). No tools 80 

provide a framework to simulate barcode experiments and investigate the technical and biological 81 

factors impacting barcode detection. There is a need for more versatile tools to extract, identify 82 

and simulate barcodes.  83 

 84 

To address these issues, we developed two tools: CellBarcode, an R Bioconductor package for 85 

barcode extraction and filtering, and CellBarcodeSim, a barcode simulation kit which faithfully 86 

reproduces barcoding experiments. We demonstrate, using simulated and experimental datasets, 87 

that CellBarcode allows users to implement various filtering strategies for bulk or single cell 88 

datasets. Using CellBarcodeSim to simulate barcoding experiments, we investigated potential 89 

technical and biological factors impacting the reliability of barcode identification, confirmed with 90 

experimental datasets. We recapitulated our results into a decision tree to guide researchers on 91 

which filtering strategy is most appropriate for their setting. Overall, we present efficient and 92 

versatile tools to extract and identify barcodes from errors, and provide advice on how best to 93 

analyze barcoding experiments in a range of biological situations.  94 

 95 

Results 96 

 97 

CellBarcode package 98 

 99 

We developed the CellBarcode R package, which provides a toolkit for barcode pre-processing, 100 

including steps from generating the FASTQ quality control (QC) information to exporting the data 101 

into a read count matrix (Figure 1A). Using the read QC & filtering functions of CellBarcode, users 102 

can check sequencing quality, remove low-quality sequences, and get an overview of read 103 

diversity. Barcodes can then be extracted from the FASTQ or BAM file by defining a regular 104 

expression matching the structure of the lineage barcode and its surrounding flanking sequence 105 

(see Supplementary vignette 1 for examples and a detailed description of this process); both 106 

fixed-length and variable-length barcodes can be extracted, and mismatches in the flanking 107 

regions are allowed (bulk analysis only). Once the raw barcodes have been extracted, filtering 108 

functions can remove spurious barcode sequences using commonly applied strategies. In 109 

addition, the package provides functions for visualizing the barcode read count distribution per 110 

sample and across replicates (Figure 1B and 1C). 111 



 112 

The four main filtering strategies generally applied to barcoded data are implemented in 113 

CellBarcode (Figure 1D): 1) Reference filtering: barcodes not matching with the reference list are 114 

eliminated. The reference list is either generated by sequencing the viral barcode libraries5 or 115 

enumerating all possible barcodes using knowledge of barcode structure19; 2) Threshold filtering: 116 

barcodes are retained if their read number (depth) surpasses a specified threshold5. CellBarcode 117 

has a manual or an automatic threshold option (Methods section ‘Barcode Filtering’);  3). Cluster 118 

filtering: barcodes that have an edit distance smaller than a specified threshold to a more 119 

abundant barcode are eliminated29; 4) unique molecular identifier (UMI) filtering: if UMIs are 120 

added to DNA molecules during library preparation, several optional filtering steps can be applied, 121 

including extracting the most abundant barcode per UMI and threshold filters on the read count 122 

per UMI or UMI count per barcode. These 4 filtering strategies can be used individually or in 123 

combination, and we later advice on when to apply each strategy using simulated data with 124 

CellBarcodeSim. See Supplementary Vignettes 1 and 2 for examples of all major use cases. 125 

 126 

In summary, CellBarcode is a versatile and open-source tool that works on all major operating 127 

systems and is capable of analyzing a wide variety of DNA barcode types with commonly applied 128 

filtering strategies. The key assets of CellBarcode are its speed, the ability to deal with UMI data 129 

and the extraction of barcodes from scRNA-seq data (Supplementary Table 1). Efficient C++ code 130 

accelerates heavy tasks compared to other packages; barcode extraction and cluster filtering are 131 

20 and 70 times faster than using genBaRcode (Supplementary Figure 1).  132 

 133 

Comparing barcode filtering strategies using CellBarcodeSim 134 

 135 

The CellBarcode package provides a variety of functions for barcode filtering, but choosing a 136 

filtering strategy and its parameterization in a given experimental setting is challenging. With this 137 

in mind, we developed a barcode simulation toolkit, called CellBarcodeSim which produces in 138 

silico barcoding data mimicking bulk DNA-seq experimental situations by varying a number of 139 

technical and biological factors. CellBarcodeSim covers production of a barcode library, cell 140 

barcode labeling and clonal expansion, construction of full sequencing reads including flanking 141 

sequences and UMIs when desired, and finally PCR amplification and sequencing with the 142 

inclusion of error (Figure 2A, Methods section ‘DNA cellular barcode sequencing simulations’). In 143 

total, CellBarcodeSim provides 10 configurable parameters for non-UMI and 13 for UMI 144 

sequencing libraries (Figure 2A). Tens of thousands of clones can be simulated on a standard 145 



laptop (16 Gb random-access memory), covering most experimental situations. Two types of 146 

barcode libraries can be simulated with CellBarcodeSim (Methods section ‘DNA cellular barcode 147 

sequencing simulations’) while other types of barcodes can be uploaded as a list. Comparing the 148 

known barcodes from simulation with the output of CellBarcode can guide users in their choice of 149 

filtering strategy and its parameterization. Overall, CellBarcodeSim simulates barcoding 150 

experiments varying multiple technical and biological factors. 151 

 152 

Before exploring how different parameters impact barcode identification across filtering strategies, 153 

we first checked that CellBarcodeSim could reproduce the expected output of a barcoding 154 

experiment. We simulated two experimental datasets: lentiviral fixed-length 20bp barcodes 155 

recovered from myeloid cells30; and a variable, diversity, joining (VDJ)-barcoded dataset with 156 

UMIs recovered from Mouse Embryonic Fibroblast (MEF) cells20 (Methods section ‘Acquisition, 157 

analysis and simulation of experimental data’). We showed that CellBarcodeSim outputs the same 158 

read structure and similar proportion of reads matching the regular expression as the 159 

experimental data (Figure 2B and 2C), with high Pearson correlation between the proportion of 160 

the most abundant base at each sequencing cycle between the simulated and experimental data 161 

(Figure 2B and 2C). 162 

 163 

Next, to investigate the key factors impacting barcode identification for different filtering strategies, 164 

we first designed a default scenario for non-UMI barcode libraries (Methods section ‘DNA cellular 165 

barcode sequencing simulations’ and Supplementary Table 2) and then 25 alternative scenarios 166 

varying key biological and experimental parameters (Supplementary Table 2). After randomly 167 

simulating each scenario 30 times, we applied 4 different filtering strategies (read count 168 

thresholding, reference library, clustering and UMI filtering). To evaluate the filtering performance, 169 

for each simulation we computed barcode recall (the proportion of true barcodes found in the 170 

output) and precision (the proportion of output barcodes which are true) using the known ground 171 

truth. We then computed the area under the precision-recall curve (P-R AUC) across a range of 172 

thresholds (Supplementary Figure 2) to indicate how well filtering methods separate true from 173 

spurious barcodes regardless of threshold. 174 

 175 

We first consider read count threshold filtering. In all scenarios, there is an overlap between the 176 

read count distributions of error and true barcodes combined across simulations (Supplementary 177 

Figure 3), therefore it is impossible to choose a read threshold to perfectly separate true from 178 

spurious barcodes. Using a read threshold involves a trade-off between the recall and precision 179 



of barcode detection, with higher threshold removing more spurious barcodes but also more true 180 

barcodes (Figure 3A and 3B). Surprisingly, the factor which had the largest impact on P-R AUC 181 

was one of the biological factors: the standard deviation (SD) of the log clone size (where log 182 

denotes the natural logarithm), with smaller clone size variation displaying larger P-R AUC (Figure 183 

3C, Supplementary Figure 4 and Supplementary Figure 5A). When log clone size SD was 1, the 184 

P-R AUC reached 1 regardless of other factors including barcode type or mean clone size (Figure 185 

3C, Supplementary Figure 4 and Supplementary Figure 5A). Comparing precision and recall for 186 

different thresholds, we observed the expected trend of increased recall but decreased precision 187 

as the threshold became less stringent (Figure 3A, Figure 3B, Supplementary Figure 6 and 188 

Supplementary Figure 5B). When there is high variability in the number of cells labeled by each 189 

barcode (log clone size SD>=2), recall needs to be compromised to avoid calling spurious 190 

barcodes. This leads to a significant loss of true barcodes, predominantly affecting barcodes of 191 

small clones that have similar read count to error barcodes derived from much larger clones 192 

(Figure 3A, Figure 3B, Supplementary Figure 6 and Supplementary Figure 5B). This loss of true 193 

barcodes can preclude robust statistical analysis downstream (Supplementary Figure 5C).  194 

 195 

To validate the finding about the impact of clone size SD, we used an unpublished dataset in 196 

which Cas9-expressing mice intestinal organoids were infected with libraries of gRNAs designed 197 

to knock out specific genes (Methods section ‘CRISPR gRNA dataset’). Whilst not a standard 198 

barcode, each specific knock-out acts as a clonal label and can be extracted by CellBarcode using 199 

a regular expression targeting the constant primer region. Two time points were analyzed, 24 200 

hours and 7 days, with clone size variation increasing over time due to fitness effects of the 201 

gRNAs. Using CellBarcodeSim to simulate the experiment, we successfully reproduced the 202 

percentage of barcode-containing reads, and observed a change in the read count distribution, 203 

from bimodal with true and spurious barcode counts mostly separated at low clone size SD, to 204 

unimodal with more overlap in true and spurious barcode counts at higher clone size SD 205 

(Supplementary Figure 7, top row). These same trends were observed in the experimental data 206 

(Supplementary Figure 7, bottom row). To verify the finding that number of PCR cycles has limited 207 

impact on barcode recall (Supplementary Figure 8), we used published data of mixes of 7 MEF 208 

cell lines that each contain a unique known VDJ barcode20. Across the mixes, the total number of 209 

initiating cells was reduced and the number of PCR cycles correspondingly increased to produce 210 

a constant PCR product concentration, with the clone size ratios kept constant. Irrespective of the 211 

number of PCR cycles, CellBarcode identified the 7 known barcodes in each mix (with one 212 

spurious barcode at +4 PCR cycles) (Supplementary Figure 8). Using CellBarcodeSim with 213 



matched parameters and varying the number of PCR cycles, we reproduced the separation of true 214 

and spurious barcode counts and the lack of change in the sequence frequency distribution 215 

(Supplementary Figure 8). Using two experimental datasets, we therefore demonstrated that 216 

CellBarcodeSim can simulate real scenarios. Our simulation results of the large impact of the clone 217 

size-SD and the limited impact of PCR cycle number on barcode identification were supported by 218 

these experimental data. Regarding filtering, we showed that the read count thresholding strategy 219 

is suboptimal at best, except for systems in which the clones have a similar number of cells. Some 220 

biological systems have been shown to differ in their proliferation capacities31, but for most of 221 

them this information is unknown. CellBarcodeSim is therefore a useful tool to simulate different 222 

scenarios, guiding researchers on the impact of thresholds on barcode identification and aiding 223 

in the interpretation of results. 224 

 225 

An alternative strategy for barcode filtering is to match the extracted barcodes to a reference 226 

library when available. Using this approach for fixed-length barcodes, the distributions of true 227 

barcode read counts overlap less with those of spurious barcodes (Supplementary Figure 9), and 228 

true barcode P-R AUC was substantially improved, with most scenarios having a P-R AUC of 1 229 

(Supplementary Figure 10), as suggested before5. We applied read count thresholding here after 230 

reference filtering to compute the P-R AUC enabling scenario comparison, although its use is 231 

optional. We note that read count threshold filtering is used to call true barcodes in the generation 232 

of the reference library itself, and even though these plasmid libraries have more homogenous 233 

barcode abundances than most biological experiments, the reference library suffers from the 234 

threshold-related problems described above and by others21. For variable-length barcodes such 235 

as VDJ barcodes, a reference library can be generated by simulating all possible combinations. 236 

Using this list had limited improvement in P-R AUC (Figure 3D, Supplementary Figure 10) due to 237 

the small edit distance between some barcodes (many with edit distance < 3, Supplementary 238 

Figure 11A). Spurious sequences created by PCR or sequencing error can have the same 239 

sequence as a barcode in the reference library (Figure 3F) and are not filtered out, impacting the 240 

precision (Supplementary Figure 12). Overall, these results show that a reference library is a 241 

useful approach for fixed-length barcodes designed to have edit distances larger than 3, but is 242 

not useful for variable-length barcodes such as VDJ barcodes where the edit distance cannot be 243 

controlled. 244 

 245 

Several studies have advocated cluster filtering to identify true barcodes21,26,27. With clustering, 246 

true barcodes are identified by comparing barcode sequences, usually with the assumptions that 247 



barcodes separated by very short edit distances are the result of PCR/sequencing errors and that 248 

the most abundant barcode in the cluster is the true barcode21,26,27. We used CellBarcodeSim to 249 

evaluate how cluster filtering performs compared to other filtering strategies. Cluster filtering 250 

improved the P-R AUC of random barcodes compared to threshold filtering alone (Figure 3E) and 251 

performed as well as reference library filtering (Figures 3D and E), implying that it is the method 252 

of choice for the generation of a reference library, as previously suggested18,21. For variable length 253 

barcodes like VDJ barcodes, clustering performed worse or similar to threshold or reference 254 

library filtering (Figure 3E and Supplementary Figure 13) due to low recall (Supplementary Figure 255 

14), although the true barcode read counts overlap less with those of the spurious ones 256 

(Supplementary Figure 14). This is linked to the short edit distance of some in-situ barcodes, 257 

which are not PCR/sequencing errors as assumed by cluster filtering (Figure 3F and 258 

Supplementary Figure 11A). We previously developed a sequencing library preparation protocol 259 

for VDJ barcodes with UMIs20. We hypothesized that the addition of UMIs will improve the 260 

identification of true barcodes using cluster filtering. To test this hypothesis, we simulated VDJ 261 

barcode sequencing with UMIs for high clone size variation samples, which we identified as the 262 

most difficult scenario in which to apply this filtering (Supplementary Table 3). We observed that 263 

incorporating UMI information significantly improved the P-R AUC for samples with large clone 264 

size variation (Figure 3G), supporting the hypothesis that the addition of UMIs helps true barcode 265 

identification by cluster filtering for barcodes with low edit distance, such as VDJ barcodes. 266 

Overall, these results show that cluster filtering is an efficient method to identify barcodes in 267 

systems with large edit distance such as viral barcodes18,32. It is the method of choice if one had 268 

no reference library or to make a reference library for such barcodes18,21. 269 

 270 

We summarized the findings of our comprehensive comparison in a decision tree to guide 271 

researchers on which strategy to apply to their data (Figure 3H). In summary, our advice is: use 272 

reference library or cluster filtering if the barcoding system has a large edit distance 273 

(approximately >= 3); otherwise if the barcode clone size variation is small, a read threshold would 274 

work. If the barcode clone size variation is large and the barcode system has small edit distance, 275 

either UMIs need to be used or a stringent read count threshold implemented sacrificing true 276 

barcodes with low read count.  277 

 278 

Reference and cluster filtering of lentiviral barcodes 279 

 280 



To compare cluster and reference library filtering on biological data, we used CellBarcode to 281 

analyze paired technical replicates of 13,564 myeloid cells labelled with a random fixed-length 282 

barcode library30. Consistent with simulated random barcodes (Supplementary Figure 11B) it 283 

displayed a high edit distance (Supplementary Figure 11C). First, we used CellBarcode to check 284 

the quality of the FASTQ file, plotting the base percentage and quality in each sequencing cycle 285 

(Figures 4A and B). We successfully extracted and quantified the barcodes using CellBarcode as 286 

shown by the correlation with those in the original paper (Figure 4C). Our results are also 287 

consistent with genBaRcode (Supplementary Figure 15A) and Bartender analysis 288 

(Supplementary Figure 15B), although we observe considerably more noise in the Bartender data, 289 

because it has fewer filtering steps implemented.  290 

 291 

According to our decision tree, the methods to use for high edit distance barcodes are reference 292 

library or cluster filtering. We therefore extracted barcodes using either no filtering, reference 293 

library or cluster filtering and compared barcode cell count detected in technical repeats after 294 

normalizing read counts by total cell number (Figure 4D). In biological data as the identity of the 295 

true barcodes is unknown, we used the reference library provided in30. Without filtering, many 296 

barcodes not present in the reference library overlapped in read count distribution with those in 297 

the reference library, agreeing with our simulation results that read threshold filtering decrease 298 

the recall to ensure precision (Figure 4D). Cluster filtering removed most of the barcodes absent 299 

from the reference library, leaving only one spurious sequence present in one cell, while keeping 300 

all the true barcodes with more than one cell (Figure 4E). This confirms our simulation finding that 301 

cluster filtering can have the same efficacy as reference library filtering using barcodes with high 302 

edit distances.  303 

 304 

Read threshold filtering of in situ barcodes 305 

 306 

Variable-length barcodes like VDJ barcodes are the most challenging to identify in noisy data due 307 

to the short edit distance barcodes generated. To explore if our CellBarcode simulation results 308 

would hold in experimental variable-length barcode data, we made use of our unpublished in vivo 309 

VDJ barcode data from mouse mammary glands, for which we have both UMI and non-UMI data 310 

from the same sample (Figure 5A and B). Using the known read structures of the two sequencing 311 

libraries (Figure 5B), we extracted the barcodes and applied automatic read threshold filtering 312 

and UMI filtering to the non-UMI and UMI samples respectively (Figure 5C and Figure 5D), 313 

illustrating the versatility of CellBarcode to extract barcodes from a variety of structures (Methods 314 



section ‘VDJ barcode mammary gland dataset). For different UMI read count thresholds, we 315 

observed that the number of barcodes reached a plateau (Supplementary Figure 16A). At this 316 

plateau, in one duplicate sample, we identified 80 barcodes in the non-UMI library, and 82 317 

barcodes in the UMI library with 76 barcodes overlapping (87%) (Figure 5E).  318 

 319 

In this data, the biggest clones had about 100 times higher read/UMI count compared to the 320 

smallest clones, corresponding to a log clone size SD of 1, the lowest considered in our 321 

simulations (Figures 5C and D). The clone sizes in the UMI and non-UMI libraries after threshold 322 

filtering (normalized reads or UMI count) correlated very well (Figure 5F), with most of the 323 

inconsistent barcodes being small clones. This result supports our simulation conclusion that 324 

automatic read thresholding performs well in experimental settings with small clone size variation. 325 

We observed more spurious barcodes in both UMI and non-UMI results from Bartender (see 326 

Supplementary Figure 16B and C), indicating the importance of read or UMI read count thresholds 327 

which are not implemented in Bartender. 328 

 329 

Using CellBarcode to analyze scRNA-seq data 330 

 331 

Finally, we designed CellBarcode to extract and identify lineage barcodes from single cell omics 332 

data. To this end, CellBarcode is equipped with functions to process barcodes from the most 333 

popular technologies such as 10x Genomics or Smart-seq (Figure 6A). In this section, we use the 334 

term ‘cell barcode’ to refer to the unique barcode labeling each cell from the single cell sequencing 335 

protocol, and ‘lineage barcode’ to refer to the barcode added during a lineage tracing experiment. 336 

Input to CellBarcode is flexible, allowing FASTQ and BAM/SAM files, either one file for all cells 337 

(as for 10x Genomics scRNA-seq) or one file per cell (as for Smart-seq2), and BAM/SAM files 338 

pre-tagged with cell barcodes and UMIs, such as those output by the 10x Genomics software 339 

CellRanger. We illustrate the use of CellBarcode on scRNA-seq data but it applies to many types 340 

of lineage barcoded single cell omics data, such as scATAC-seq33,34. The potential (but optional) 341 

filters include 1). Extract dominant barcode per UMI, 2). Filter UMIs using a read count threshold 342 

and 3). Filter lineage barcodes using a UMI count threshold (Figure 6B). The user must choose 343 

various thresholds, and here we distinguish two experimental scenarios from published data: 1. 344 

a unique lineage barcode per cell, such as low concentration lentivirus infection17 or heterozygous 345 

inducible VDJ barcode35, and 2. multi-barcodes per cell, for example, high concentration lentiviral 346 

infection such as the CellTag barcode system36. 347 

 348 



To compare the performance of CellBarcode to that of CellTagR, a dedicated package for analysis 349 

of barcoded scRNA-seq data, we replicated the CellTagR demo analysis pipeline 350 

(https://github.com/morris-lab/CellTagR) with CellBarcode on the multi-barcode per cell data 351 

from36. Applying the same steps and parameters (Methods section ‘CellTag barcode scRNA-seq 352 

dataset’), CellBarcode obtained similar results to CellTagR (Supplementary Figure 17A and B) 353 

with 20% less runtime (Supplementary Figure 17C and D). CellTagR only supports the extraction 354 

of CellTag barcodes, whereas, to illustrate the versatility of CellBarcode, we extracted variable-355 

length VDJ barcodes from scRNA-seq data from Cosgrove et al (2023)35 and obtained similar 356 

barcodes and quantification to the original paper (Supplementary Figure 18).  357 

 358 

To illustrate how CellBarcode can help users select the different filtering thresholds, we counted 359 

the number of lineage barcodes retrieved per cell for various types of filtering in VDJ barcoding 360 

data from Cosgrove et al (2023)35. Due to the introduction of one VDJ cassette in one allele of the 361 

mouse genome, each cell in this dataset has only one lineage barcode. We observed a trade-off 362 

between the accuracy of lineage barcode retrieval (i.e. the proportion of cells with one unique 363 

lineage barcode) and the total number of lineage-barcoded cells retained for analysis. We first 364 

filtered to take the dominant lineage barcode per UMI, as the combination of high-diversity cell 365 

and UMI barcodes for each read can be assumed unique, which dramatically reduced the number 366 

of barcodes per cell in comparison to the raw data (Figure 6C). Using different minimum read-367 

count-per-UMI thresholds, we found that the number of barcodes per cell was easily restricted to 368 

a maximum of 2 with a threshold of 2 (Figure 6D). Increasing the read-count-per-UMI threshold 369 

further resulted in the loss of many cells for analysis (Figure 6D). Complementing the read-count-370 

per-UMI filtering with a UMI-count-per-barcode filter of 2, we obtained one identifiable lineage 371 

barcode per cell (Figure 6E). These thresholds will depend on each specific dataset, for example, 372 

with low sequencing depth, even without read-count-per-UMI or UMI-count-per-cell filtering, most 373 

cells have one unique lineage barcode as observed in the Marsolier et al. (2022)17 dataset 374 

(Supplementary Figure 19).  375 

 376 

To conclude, in addition to an improvement in run time, CellBarcode can extract and identify 377 

lineage barcodes in scRNA-seq data from many different barcode designs due to its flexible use 378 

of regular expressions. Moreover, CellBarcode implements several filtering strategies to identify 379 

true from spurious lineage barcodes in single cell data, and produces figures helping the user 380 

choose a strategy and its parameterization.  381 



Discussion 382 

In this paper, we presented CellBarcode, a versatile R package for analysis of barcoding data, 383 

and CellBarcodeSim, a pipeline to simulate barcoding experiments. Whilst we designed the 384 

simulation tool to test and parameterize filtering approaches for barcode identification, it can be 385 

employed in a similar vein for experimental design; for example, users can investigate the impact 386 

of different barcode lengths, UMI or no-UMI libraries and sequencing depths in their biological 387 

scenario. We would highlight, however, that this is complicated by the combination of unknown 388 

biological factors and final filtering approach.   389 

 390 

Beltman et al. (2016)21 suggested not to use cluster filtering as it can result in the removal of true 391 

barcodes. However, both our simulations and tests on real data show that cluster filtering 392 

performs well when the barcode edit distance is large enough (>=3 in our simulations) compared 393 

to realistic low levels of PCR/sequencing error. We would therefore refine the statement from 394 

Beltman et al (2016)21 to add that cluster filtering can be successfully used when the edit distance 395 

is sufficiently high, even in the case of high clone size variation. 396 

 397 

We modeled clone size using a log-normal distribution based on our analysis of t-cell receptor 398 

clones (Supplementary Figure 20), and whilst users of CellBarcodeSim can also opt for a power 399 

law distribution, we hope to add more detailed models in future versions of the tool (such as one 400 

based on Radtke et al. 202337). Indeed, in most systems the clone size distribution is unknown; 401 

in this case CellBarcodeSim can be used to investigate the impact of filtering strategies on 402 

barcode identification under different assumptions and can aid users in their biological 403 

interpretation. Further simulation work is also required to test the impact of filtering on barcode 404 

quantification.  405 

 406 

CellBarcodeSim makes many other assumptions about the processes involved to simulate 407 

barcoding data. Barcode library production is modeled with simple distributions rather than 408 

separately modeling the stages of transfection, growth and sampling. The fixed-length Hamming38 409 

barcodes simulated using the DNABarcodes package are filtered to remove many sources of 410 

error problematic for PCR, such as barcodes containing triplets or with GC bias. The PCR 411 

simulation assumes the amount of starting material is large enough to ignore contamination and 412 

doesn't model factors such as non-specific hybridizations. Indeed, we do not expect our simulation 413 

to quantitatively model all possible effects of the complex PCR process. Researchers interested 414 



in specific sources of error, such as those introduced during barcode library preparation, or using 415 

a non-standard protocol where the PCR primer does not target the constant flanking region, would 416 

need to adapt the simulation. 417 

 418 

CellBarcodeSim calls external tools such as ART NGS read simulator39, DNABarcodes R 419 

package to simulate fixed-length barcodes40 and IGoR to simulate VDJ barcodes41, which could 420 

be a concern in terms of longevity. ART is a mature and heavily used tool with no updates required 421 

and containing pre-built error profiles for all the major sequencers. The packages simulating 422 

barcodes are less mature and barcode type specific, but CellBarcodeSim can be easily updated 423 

allowing other tools to feed in. 424 

 425 

Methods 426 

 427 

Ethics statement 428 

All studies and procedures involving animals were in accordance with the recommendations of 429 

the European Community (2010/63/UE) for the Protection of Vertebrate Animals used for 430 

Experimental and other Scientific Purposes. Approval was provided by the ethics committee of 431 

the French Ministry of Research (reference APAFIS #34364-202112151422480). We comply with 432 

internationally established principles of replacement, reduction, and refinement in accordance 433 

with the Guide for the Care and Use of Laboratory Animals (NRC 2011). Husbandry, supply of 434 

animals, as well as maintenance and care in the Animal Facility of Institut Curie (facility license 435 

#C75–05–18) before and during experiments fully satisfied the animal’s needs and welfare. 436 

Mouse breeding was in a specific pathogen-free animal facility and animals were co-housed with 437 

housing conditions using a 12 light/12 dark cycle, temperature between 20 and 24 °C and average 438 

humidity rate between 40% and 70%. 439 

DNA cellular barcode sequencing simulations 440 

We simulated the DNA cellular barcode sequencing data using CellBarcodeSim (version 1.0) with 441 

5 steps: 1). Lineage barcode simulation, 2). barcode labeling 3). clonal expansion, 4). PCR 442 

amplification, and 5). sequencing. 443 

 444 



Lineage barcode simulation 445 

Two types of barcode libraries can be simulated with CellBarcodeSim ("random barcodes" with 446 

uniform probability and fixed-length, and "Hamming barcodes" with uniform probability, fixed-447 

length and a minimum Hamming distance between sequences) while other types of barcodes can 448 

be uploaded as a list. In addition, three libraries were simulated and uploaded in the package: 14 449 

base pair (bp) random barcodes, 14bp Hamming barcodes with minimum distance 3 simulated 450 

using DNABarcode40, and variable length VDJ barcodes20 simulated using an external package 451 

IGoR. 452 

For the simulation study, a list of possible barcodes was simulated for three types of barcode and 453 

barcodes were randomly sampled from this list to label cells. The fixed-length uniform-probability 454 

‘random barcodes’ were generated with stri_rand_strings from stringi package. To generate 455 

‘Hamming barcodes’ with a minimum Hamming distance of 3, we used the create.dnabarcodes 456 

function from the DNABarcodes package40. The barcode length can be defined by the user. In 457 

this simulation study, we tested 14 or 10 base-pair. Lastly, for the variable length ‘VDJ barcodes’20, 458 

a list of 1✕107 VDJ barcodes to sample from was generated using IGoR41. To ensure the simulated 459 

VDJ barcodes resemble those produced in vivo, the parameters of the Bayesian network model 460 

used to generate the barcode space were inferred using IGoR from the VDJ barcode sequencing 461 

data in mammary gland tissue (Supplementary Data 1 & 2). Among the simulated sequences, 462 

there are 1.4✕105 unique barcode sequences with different frequencies. To simulate the noise 463 

during library preparation for random or Hamming barcodes, CellBarcodeSim can simulate 464 

normal, log-normal or exponential distributions, or the user can simulate according to their own 465 

uploaded empirical distribution. 466 

 467 

Barcode labeling simulation 468 

We randomly sampled the barcode lists simulated in the previous step for the corresponding 469 

barcode type. We simulated different samples with different total barcode numbers. Each barcode 470 

labels one initial cell in the simulation, and those barcode sequences were used as the true 471 

barcodes in later precision & recall analysis. We tested scenarios with 300-30,000 initiating cells, 472 

but as we found the sequence count distributions to be very similar, as well as the impact of 473 

various factors on the precision and recall, we chose values of 150, 300, 600 and 1,200 for the 474 

repeat simulations, corresponding to the number of barcodes in most published work.  475 

 476 



Clonal expansion simulation 477 

We used a log-normal distribution to simulate the final clone sizes of the initially labeled cells. The 478 

parameters of the reference distribution are log mean 1.2 and log standard deviation (SD) 2, which 479 

were chosen based on the experimentally-derived murine naive CD8 TCR beta chain sequence 480 

clone size distribution described in Desponds, Mora and Walczak 2016 (Supplementary Figure 481 

20)42. Observing log clone size SDs of ~1 in our VDJ barcoded mammary gland data, ~2.5 in 482 

Eisele et al (2022)30 and ~2.5-3 in Adair et al (2020)43, we define alternative scenarios of log clone 483 

size SD 1 and 3. We used the rlnorm function in R 4.2.144 to generate random numbers and the 484 

clone size of each barcode clone was defined by rounding up the nearest integer of the 485 

corresponding random number. The CellBarcodeSim tool also offers the power-law clone size 486 

distribution. 487 

We note that when the clone size follows a log-normal distribution, the ratio of the 99th quantile, 488 

Q(0.99), divided by the 1st quantile, Q(0.01), depends only on the log standard deviation and not 489 

on the log mean (Supplementary Figure 21), which is explained by the following equations:  490 

Q(q) = eμ+σ∗Φ−1(q)        (1) 491 

where Φ−1(q) is the q-th quantile of the standard normal distribution with mean, 492 

μ, and standard deviation, σ. 493 

The ratio of the 99th quantile to the 1st quantile: 494 

Q(0.99)/Q(0.01) = eμ+σ×Φ−1(0.99)/eμ+σ×Φ−1(0.01) = e{σ×(Φ−1(0.99)−Φ−1(0.01)})   (2) 495 

Therefore, we can use the range of empirical clone sizes as a quick estimation of the log standard 496 

deviation.  497 

 498 

PCR expansion simulation 499 

The PCR simulation was written in C++ and assumes exponential amplification with efficiency of 500 

0.70345 and error rate of 1✕10-5 for Taq enzyme, 1✕10-6 for Phusion enzyme, and 1✕10-7 for Q5 501 

enzyme. Since PCR mutations are rare events, it is unlikely to have more than one mutation per 502 

sequence molecule per PCR cycle, and substitution errors are the dominant PCR error type46. 503 

We therefore only allow a maximum of one base substitution per PCR cycle. In the simulation, we 504 

replicated the barcode DNA sequence in-silico with the probability of the amplification efficiency, 505 



rounding to the nearest natural number, and randomly mutated the base of the newly synthesized 506 

sequence with the PCR error rate. To reduce the memory usage, as most of the barcodes have 507 

the same sequence due to the low PCR error, we stored barcode sequences in a frequency table 508 

of barcode sequences and frequencies. For the new PCR products, the mutant molecular 509 

abundance was estimated by multiplying each sequence frequency by the error ratio, considering 510 

the sequence length. The value was rounded to the nearest integer. Then uniform random 511 

numbers were generated to decide the mutation position and substitution base-pair. The 512 

sequence frequency table was updated by integrating the mutant sequence. If using UMIs, 513 

investigators can select the number of pre-UMI PCR cycles (in which the UMI sequence will not 514 

accumulate PCR errors) and the number of post-UMI PCR cycles (when the UMI sequence will 515 

accumulate PCR errors). Since the PCR primer region is unlikely to have a PCR mutation and 516 

this generally corresponds to the barcode flanking regions, by default, the flanking sequence is 517 

added after the PCR simulation, matching the sequence to the experimental case when 518 

applicable. However, investigators have the option to include the flanking region in the PCR 519 

simulation by appending the fixed flanking regions to the barcodes when simulating the barcode 520 

library (see Supplementary Vignette 1 for more detail). 521 

 522 

Sequencing simulation 523 

Sequencing simulation was conducted using the ART (version 2016-06-05) command line tool (a 524 

next-generation sequencing reads simulator), which supports base substitution, insertions, and 525 

deletions39. The ART-integrated MiSeq V1 and HiSeq2000 read error profiles (learnt empirically 526 

from relevant training data39) were used to generate single-end sequencing with 100 base pairs, 527 

with other parameters as default. We describe the sequencing profiles used in Supplementary 528 

Figure 22A and B, together with PCR error in Supplementary Figure 22C.  When comparing the 529 

barcode clone size distributions between different simulated datasets, we sample 105 sequencing 530 

reads to make the distributions easier to compare. 531 

 532 

Simulating VDJ barcoded data with high clone size variation and UMIs 533 

We simulated VDJ barcode sequencing with UMIs for high clone size variation samples (details 534 

of the parameters in Supplementary Table 3). With an expected sequencing depth of 50 reads 535 

per UMI, we filtered out UMIs that have read < 10 (based on sensitivity analysis to identify when 536 

the number of barcodes detected plateaus) and then varied the UMI count threshold to compute 537 

the P-R AUC. 538 



DNA cellular barcode pre-processing strategy evaluation 539 

 540 

Evaluation of filtering strategies: precision, recall, AUC 541 

In the simulation study, we evaluated filtering strategies using precision and recall. The precision 542 

and recall are defined as: 543 

Precision=ntrue/noutput   (3) 544 

Recall=ntrue/ninput   (4) 545 

where ninput is the number of barcodes used for labeling, noutput is the total number of barcodes in 546 

the pre-processing output, ntrue is the number of barcodes shared between the pre-processing 547 

output and the barcodes used for labeling. 548 

 549 

The precision and recall depend on the threshold used for barcode filtering. Precision-recall 550 

curves were drawn using a range of read count thresholds (or UMI count in UMI cleaning case), 551 

and the area under the curve (AUC) was calculated to evaluate the overall goodness of a filtering 552 

strategy. The AUC is a way to evaluate the goodness of a method regardless of threshold and 553 

was computed using the ROCR R package47. 554 

 555 

All boxplots depict 25, 50, and 75th percentiles in the box, 25th or 75th percentile minus or plus 556 

1.5*IQR respectively for the whiskers and points show outliers beyond the whiskers. 557 

Barcode filtering 558 

 559 

We enabled four barcode filtering strategies in the CellBarcode package with bc_cure_umi, 560 

bc_cure_clustering, bc_cure_depth and bc_auto_cutoff functions. They are 1). read count 561 

thresholding filtering with bc_cure_depth function, 2). Reference library filtering, 3). cluster filtering 562 

and 4). UMI filtering. 563 

 564 

Read count threshold filtering excludes the barcodes with read counts under the threshold. The 565 

automatic threshold function determines the threshold by applying 1-dimensional weighted k-566 

means clustering to the barcode read count distribution. It involves the following steps: 1). 567 

Remove barcodes with count below the median (as there are generally many more spurious than 568 

true barcodes). 2). Transform counts by log2(x+1). 3). Apply 1-dimensional k-means clustering48 569 

to the transformed read counts with cluster number fixed at 2 and with weights of the transformed 570 

count. 4). Use the boundary between the two clusters as the read count threshold. 571 

 572 



In reference library filtering, only barcodes appearing in the barcode reference list are retained 573 

in the final output, and all others are filtered out. In the simulations, the barcode reference library 574 

was the barcode list generated in the “Lineage barcode simulation”. 575 

 576 

For cluster filtering, we assumed that with a low error rate, spurious error barcodes should have 577 

a much lower read number compared to their true “mother” sequences. We clustered barcodes 578 

with similar sequences to identify potential “mother” and “daughter” sequence pairs. Then we 579 

removed the “daughter” sequences, thus making it easier to identify true barcodes with small 580 

clone size. We used the following clustering process for each sample: 1). Identify the most 581 

abundant barcode based on read counts; 2). Compute the distance (Hamming distance or 582 

Levenshtein distance) between the most abundant barcode and the other barcodes, starting from 583 

the least abundant barcode; 3). If the distance between two barcodes is below a set threshold, 584 

and the reads count fold change between them is above a set threshold, the less abundant 585 

barcode is removed; 3). Iterate for each of the other barcodes in order of abundance. The process 586 

is described by the pseudo code in Supplementary Algorithm 1. 587 

 588 

UMI filtering takes advantage of the unique molecular identifier (UMI) sequence. The default in 589 

CellBarcode is to assume UMIs are not unique in line with the findings of Venkataram et al49 590 

(although the reader has the option to assume the converse if they wish). We first counted the 591 

number of reads for each UMI-barcode combination and then applied a read count threshold. The 592 

remaining barcode abundances were quantified by summing the UMI count. We assume that the 593 

probability of an error in both the UMI and its associated barcode sequence is very low, and so 594 

we do not cluster similar UMIs. This may result in a slight overestimation of clone size if a UMI 595 

sequence results from an error, but should not affect barcode identification. 596 

 597 

Benchmarking CellBarcode and genBaRcode 598 

In order to compare the output and run time of CellBarcode (version 1.7.1) and genBaRcode (with 599 

version 1.2.6), we simulated a random barcode dataset using the method described above with 600 

parameters 1). 300 cells induced, 2). Log-normal clone size distribution with log clone size SD of 601 

2 and log clone size mean 1.2, 3). 30 PCR cycle, 1e-6 PCR mutation rate, PCR efficiency 0.705 602 

and 4). HiSeq 2000 100bp sequencing error profile.  603 

 604 



For barcode extraction, the regular expression 605 

AAAAAAAAAAGGGGG([ATCG]{14})ATCGATCGTTTTTTT was used in CellBarcode to extract 606 

the 14 base-pair random barcode, and the pattern 607 

AAAAAAAAAAGGGGGNNNNNNNNNNNNNNATCGATCGTTTTTTT was used in genBaRcode. 608 

Then at the barcode filtering step, the clustering strategy was used, which removed the minority 609 

barcodes with a Hamming distance of 1 to the majority ones. We note that CellBarcode discards 610 

error reads, whereas genBaRcode adds them to the majority one. We chose this strategy as we 611 

found that the resulting underestimation of clone size due to discarding clustered reads was very 612 

slight (see comparison of genBaRcode and CellBarcode, Supplementary Figure 1 and 16), 613 

whereas if a clustered barcode is actually a real barcode, for example, when library edit distance 614 

is small, the result could be a substantial overestimation of some clone sizes. For further 615 

information on how this clustering process was carried out, please refer to the methods outlined 616 

in the Barcode Filtering section. The run time of above analysis was evaluated by Sys.time 617 

function in R 4.2.144. We used CellBarcode version 1.7.1 and genBaRcode version 1.2.6 here 618 

and throughout. 619 

Acquisition, analysis and simulation of experimental data 620 

Several datasets are analyzed in this manuscript; below, for each, we describe first the 621 

experimental dataset, then the barcode analysis and finally the simulation parameters (for bulk 622 

data). 623 

Lentiviral barcode dataset 624 

Experimental data 625 

We used a lentiviral barcode dataset from our previous publication30. Briefly, it consists of 13,564 626 

myeloid cells recovered from mice 4 weeks after transplantation of barcoded EPO-treated 627 

HSPCs. The HSPCs were labeled by the LG2.2 barcode library, which has a 20bp fixed-length 628 

barcode region, a diversity of > 10000 barcodes, and has a reference library. The myeloid cell 629 

DNA was divided into two technical replicates before PCR amplification and sequencing. 630 

 631 

Barcode analysis 632 

The output FASTQ file from Eisele et. al.30 was analyzed with the CellBarcode package using the 633 

regular expression ACGGAATGCTAGAACACTCGAGATCAG(.{20})ATGTGGTATGATGTATC 634 

to extract the 20bp barcode sequence between constant regions. In the regular expression, the 635 



first bases ACGGAATG are the plate index used to demultiplex samples with the same P7 index. 636 

The extracted barcodes were cleaned by reference library or cluster filtering separately. For the 637 

cluster filtering, we remove the minority barcodes with Hamming distance 1 to the majority ones 638 

as the barcode library has a minimum edit distance of 5 (Supplementary Figure 11C). Then we 639 

normalized the read number (𝑛𝑖
𝑟𝑒𝑎𝑑𝑠) by the total cell count (𝑛𝑡𝑜𝑡𝑎𝑙

𝑐𝑒𝑙𝑙 ) to estimate the clone size 640 

(𝑛𝑖
𝑐𝑒𝑙𝑙) for each barcode clone (i) with following formula: 641 

𝑛𝑖
𝑐𝑒𝑙𝑙 = 𝑛𝑖

𝑟𝑒𝑎𝑑𝑠/ ∑ 𝑛𝑖
𝑟𝑒𝑎𝑑𝑠 × 𝑛𝑡𝑜𝑡𝑎𝑙

𝑐𝑒𝑙𝑙 
𝑖  (5) 642 

For comparing CellBarcode and genBarcode on the fixed-length barcode dataset from Eisele et 643 

al. 202230, both methods use the same criteria to extract and filter barcodes, which involves 644 

defining a barcode as a 20bp random sequence between fixed sequences 645 

ACGGAATGCTAGAACACTCGAGATCAG and ATGTGGTATGATGTATC. Additionally, cluster 646 

filtering is performed to remove minority barcodes with a Hamming distance of 1, the run time was 647 

measured by the “Sys.time()” function in R. The spearman correlation was performed using all 648 

barcodes. 649 

 650 

Bartender can only define a fixed region of 5bp. Therefore, the barcode definition is set as a 20bp 651 

random sequence between ATCAG and ATGTG. The default Bartender clustering filtering has 652 

been applied. And the run time was measured by the “time” function in the shell. The Bartender 653 

version used here (and following references) is https://github.com/LaoZZZZZ/bartender-654 

1.1/commit/9683af760cc33f31185140957d503af7f3e230be. 655 

 656 

Simulation 657 

To simulate the barcodes, we used a lentiviral barcode reference library to label 15 cells. The 658 

labeled cells were then subjected to clonal expansion, following a log-normal distribution with a 659 

mean log clone size of 1.2 and standard deviation of 3. After performing 30 PCR cycles with an 660 

error rate of 1e-6, we concatenated the constant regions: 5' 661 

ACGGAATGCTAGAACACTCGAGATCAG and 3' ATGTGGTATGATGTATCA. Finally, we 662 

simulated the sequencing using the HiSeq2000 profile, aiming for 50 reads per cell. 663 

CRISPR gRNA dataset 664 

Experimental data 665 

Tumor organoids were derived from Apc1638N mice50 and transduced with lentiviral particles 666 

expressing the Cas9 enzyme along with blasticidin resistance (Addgene plasmid# 52962) as 667 



described previously51. Selection of infected organoids was achieved by adding 10g/ml of 668 

blasticidin (#A1113903 Thermofisher) to the medium.  669 

 670 

Cas9-expressing tumor organoids were then transduced with lentiviral particles each containing 671 

a sgRNA sequence derived from a bank of 1796 sgRNAs that target Notch1-related genes, as 672 

discovered in the study by Mourao et al. 201952. Transduced organoids were harvested either at 673 

48h or 7 days post infection. At 7 days, organoids were dissociated and Tomato-expressing live 674 

cells (based on DAPI exclusion) were FACS sorted (Supplementary Figure 24). DNA was 675 

extracted using a standard phenol:chloroform:isoamyl alcohol protocol. Briefly, cells were 676 

resuspended in 500µl of PBS and 1ml of phenol:chloroform:isoamyl alcohol (25:24:1) solution 677 

(Sigma #P2069) was added. After centrifugation at 16,000xg for 5 min, the aqueous phase was 678 

collected and one volume of chloroform (Sigma #32211) was added. Following a vortex 679 

homogenization step, the samples were centrifuged at 16,000xg for 5 min and the aqueous phase 680 

was recovered. Precipitation of the DNA was then performed by adding 1µl of glycogen at 20µg/µl 681 

(thermofisher # 10814010), 0,5 volume of the sample of 5,5M Sodium Acetate and 2.5 volumes 682 

of the sample of cold 100 % Ethanol. After an overnight at -20°C and 30 min of centrifugation at 683 

16,000xg at 4°C, the precipitated DNA pellet was recovered in 30µl of water and quantified by 684 

nanodrop. 10µl of DNA were then amplified by PCR in triplicates for each sample in order to add 685 

P5-staggers and P7-index oligos to perform NGS DNA sequencing. The PCR was performed with 686 

Taq polymerase (Promega # M7406 ) for 22 cycles (30 sec at 95°C, 30 sec at 53°C, 30 sec at 687 

72°C).  688 

 689 

The sequences of the primers are the following:  690 

P5-staggers: 691 

5’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT[s]T692 

TGTGGAAAGGACGAAACACCG) 693 

P7-index: 694 

(5’CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCT695 

TCCGATCTTCTACTATTCTTTCCCCTGCACTGT) 696 

 697 

Bead purification of the PCR product using a ratio of 1.2 was performed following the 698 

manufacturer’s protocol (Beckman Coulter #B23318). Quality and concentration of the samples 699 

were assessed on a Tapestation. Then it was sequenced by MiSeq SE110 with 10% PhiX. 700 

 701 



Barcode analysis 702 

The gRNA sequencing results are processed by CellBarcode with regular expression 703 

“AAGGACGAAACACCG(.{20})”. After reference library-based filtering, the log clone size SD was 704 

calculated. 705 

 706 

Simulation 707 

We simulated the gRNA sequencing data using a barcode library consisting of 1796 gRNA 708 

sequences. The simulated cells were labeled with a clone size log-mean of 1, but varying log 709 

clone size SD values ranging from 0.5 to 2.5. To mimic the error rate of Taq polymerase, we 710 

performed 20 PCR cycles with a PCR error rate of 10-4. Finally, the sequencing was simulated 711 

using the built-in ART MiSeq profile. We analyzed the simulated results in the same manner as 712 

the experimental dataset. 713 

VDJ barcode MEF cell line dataset 714 

Experimental data 715 

The VDJ barcodes are produced by an inducible mouse in situ barcode system based on VDJ 716 

recombination20. In this system, the V, D and J sequences are separated by the signal cassettes, 717 

which are recognized and cut out by the Rag1 (recombination activating gene-1) and Rag2 718 

(recombination activating gene-2) enzymes and repaired by non-homologous end joining repair, 719 

which is error-prone, creating the diversity of the final barcode sequences. A cassette with 720 

reversed Rag1, Rag2 and TdT (terminal deoxynucleotidyl transferase) genes are surrounded by 721 

LoxP sequences, which can be activated by Cre floxing. The TdT adds de novo nucleotides to 722 

the end joins, which increases the diversity of the final barcode sequence. 723 

 724 

In Urbanus et al 2023, mouse embryo fibroblast (MEF) cell lines were created from individual cells 725 

of a VDJ barcode-induced mouse with known unique barcode sequences. There are a total of 7 726 

MEF cell lines with barcode sequences:  727 

CTCGAGGTCATCGAAGTATCAAGTCCAGTTCTACTATCGTAGCTACTA, 728 

CTCGAGGTCATCGAAGTATCAAGTCCAGTACTATCGTACTA, 729 

CTCGAGGTCATCGAAGTATCAAGTCCAGTCTACTATCGTTACGACAGCTACTA, 730 

CTCGAGGTCATCGAAGTATCAAGTCCAGTTCTACTATCGTTACGAGCTACTA,  731 

CTCGAGGTCATCGAAGTATCAAGTCCATCGTAGCTACTA, 732 

CTCGAGGTCATCGAAGTATCAAGTCCAGTACTGTAGCTACTA, 733 

CTCGAGGTCATCGAAGTATCAAGTCCAGTATCGTTACGCTACTA.  734 



These cell lines were mixed in specific ratios, in ascending order of powers of 2 from 1 to 7. 735 

Sequencing data was then generated with different numbers of initiating cells20. 736 

 737 

Barcode analysis 738 

We re-analyzed one of the technical replicates of +0, +2, +4 and +6 PCR cycles with CellBarcode 739 

using the regular expression 740 

([ACGT]{12})CTCGAGGTCATCGAAGTATC([ACGT]+)CCGTAGCAAGCTCGAGAGTAGACCTA741 

CT to capture the variable-length barcode between the fixed regions of 742 

CTCGAGGTCATCGAAGTATC and CCGTAGCAAGCTCGAGAGTAGACCTACT, after a 12 bp 743 

random UMI.  744 

 745 

Simulation 746 

For Figure 2B, to simulate a MEF cell line experiment, we simulated 6250 cells (half of the 12,500 747 

cells to mimic the technical replicates) with barcode sequences and clone sizes that match the 748 

experimental setup. After two cycles of preamplification, a 12bp random UMI is added with a 749 

tagging efficiency of 2%. This is followed by 30 cycles of PCR amplification, with a PCR efficiency 750 

of 0.705 and a PCR error rate of 1e-5. 751 

For Supplementary Figure 7, we simulated the full dataset to mimic the experiment described 752 

above with different numbers of PCR cycles. We used the same barcode sequences, cell number, 753 

and type of sequencing while incorporating variable total PCR cycles of +0, +2, +4, and +6. The 754 

same fixed 3’ sequence as the experimental dataset was added 755 

(CCGTAGCAAGCTCGAGAGTAGACCTACTGGAATCAGACCGCCACCATGGTGAGCA 756 

), and the simulated data were analyzed in the same manner as the experimental dataset. 757 

In vivo VDJ barcode mammary gland dataset 758 

Experimental data 759 

The VDJ barcode mouse was crossed with Notch1CreERT2 mouse53. Lactating mothers were 760 

injected with tamoxifen (0.1mg per g of mouse body mice, MP Biomedicals, 156738) as described 761 

54 in order to induce Cre recombination in the progeny at stage P0. Mammary tissue of a DRAG+/− 762 

Notch1CreERT2+/− female was then collected at 6 weeks of age and mammary single cell 763 

dissociation was performed as previously described55. Briefly, mammary fat pads were 764 

mechanically minced with scissors and scalpel and digested for 90 min at 37C in CO2-765 

independent medium (Invitrogen, 18045-054) supplemented with 5% fetal bovine serum, 3 mg/ml 766 

collagenase A (Roche, 10103586001) and 100 U/ml hyaluronidase (Sigma, H3884). The resulting 767 



suspension was sequentially resuspended in 0.25% trypsin–EDTA for 1 min, and then 5 min in 5 768 

mg/ml dispase (Roche, 04942078001) with 0.1 mg/ml DNase I (Sigma, D4527) followed by 769 

filtration through a 40-μm mesh. Red blood cells were lysed in NH4Cl. The obtained single cell 770 

suspension was then stained with the following Biolegend antibodies, at a 1/100 dilution: APC 771 

anti-mouse CD31 (102510), APC anti-mouse Ter119 (116212), APC anti-mouse CD45 (103112), 772 

APC/Cy7 anti-mouse CD49f (313628), and PE anti-mouse EpCAM (118206). Dead cells (DAPI+), 773 

and CD45+/CD31+/Ter119+ (Lin+) non-epithelial cells were excluded before analysis using FACS 774 

ARIA flow cytometer (Becton Dickinson) (Supplementary Figure 25). In total 20,589 barcoded 775 

GFP+, Lin-, EpCAMhigh, CD49flow luminal cells were sorted into the lysis buffer (Viagen, 301-C). 776 

 777 

For this data we have access to both UMI and non-UMI sequencing libraries as each technical 778 

replicate was split in two and processed in parallel with UMI and non-UMI protocols. 779 

 780 

For the UMI barcode sequencing library, we follow the protocol described in20. In brief, the lysed 781 

cells were sheared by sonication then divided into two technical replicates, and the target region 782 

captured by beads. The DNA in beads was used as a template to do the preamp PCR to amplify 783 

the target region with 11 cycles. Next, the UMI was introduced by a second PCR, then the third 784 

PCR to add the M1 sequences, finally the fourth PCR to add the adapter sequence to get the 785 

sequencing library. The library was sequenced by MiSeq SE110 with 10% PhiX. 786 

 787 
For the non-UMI barcode sequencing library, the preamp PCR product from the UMI barcode 788 

library was used to generate a non-UMI sequencing library. We took 100 ul preamp PCR product, 789 

cleaned it with 1.8X SPRI beads, and eluted in 30ul DNAse free water. The first PCR used 28ul 790 

of the eluted DNA as template with 50 ul PCR reaction (10ul 5X Q5 buffer, 0.5ul 2 U/ul Q5 DNA 791 

polymerase, 1 ul 10mM dNTP, 0.25ul 100uM preamp Fwd primer and preamp Rev primer, 10ul 792 

DNAse free water) for 19 cycles (98C 2min; 19 cycles of 98C 10 sec, 67C 30sec, 72C 30; then 793 

72C 5 min). Then the products were cleaned by 1.8 SPRI beads, and eluted into 30ul DNAse free 794 

water. The second PCR used 15ul of the eluted DNA from last step as the template with 50 ul 795 

reaction (10 ul 5X Q5 buffer, 1 ul 2U/ul Q5 DNA polymerase, 1 ul 10 mM dNTP, 0.25 ul 100 uM 796 

preamp Fwd primer and M1 Rev primer, and 22.5 ul DNAse free water) for 5 PCR cycles (98C 797 

2min; 5 cycles of 98C 10 sec, 67C 30sec, 72C 30; then 72C 5 min). After that, the PCR products 798 

were cleaned by 1.8X SPRI beads and eluted into 30ul DNAse free water. The third PCR used 799 

10ul DNA from last step as template to add the NGS adaptors by 20 ul PCR reaction (4ul 5X Q5 800 

buffer, 0.4ul 2U/ul Q5 DNA polymerase, 0.4ul 10mM dNTP, 0.1ul 100uM P5 tagging primer, 4ul 801 



2.5uM P7 tagging primer with index, and 1.1 ul DNAse free water) by 5 PCR cycles (98C 2min; 5 802 

cycles of 98C 10 sec, 67C 30sec, 72C 30; then 72C 5 min). The final DNA was cleaned by 1X 803 

SPRI beads, and eluted into 30ul DNAse free water. The library with 10% PhiX was sequenced 804 

by MiSeq in SE110 mode with a 25M sequencing chip aimed for 20M reads output. This library 805 

was sequenced together with other samples but independent to the UMI barcode library. 806 

 807 
preamp Fwd primer: 808 

ACTCACTATAGGGAGACGCGTGTTACC 809 

preamp Rev primer: 810 

GACACGCTGAACTTGTGGCCGTTTA 811 

M1 Rev primer: 812 

AGTTCAGACGTGTGCTCTTCCGATCCAGCTCGACCAGGATGGG 813 

P5 tagging primer: 814 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTACT815 

CACTATAGGGAGACGCGTGTT 816 

P7 tagging primer: 817 

CAAGCAGAAGACGGCATACGAGATTGACTGAGTGACTGGAGTTCAGACGTGTGCTCTTCC818 

GATC 819 

 820 

Barcode analysis 821 

For the VDJ barcode UMI library analysis using CellBarcode, we extract the barcode and UMI 822 

using regular expression 823 

“(.{16})CCTCGAGGTCATCGAAGTATCAAG(.*)CCGTAGCAAGCTCGAGAGTAGACCTACT”, 824 

which  defines the 16bp UMI sequence before the constant region and the variable-length VDJ 825 

barcode sequence followed by another constant region. Then we removed the UMI-barcode tags 826 

with fewer than 100 reads and counted the UMIs per barcode in the remaining tags, which is a 827 

robust threshold since the final barcode is very stable when we increase the threshold 828 

(Supplementary Figure 18A), and used the remaining barcodes. Investigators can use a similar 829 

approach to determine a read count threshold, in conjunction with knowledge about their targeted 830 

sequencing depth per cell. 831 

 832 
For the Non-UMI barcode library sequencing, we used the regular expression 833 

“CCTCGAGGTCATCGAAGTATCAAG(.*)CCGTAGCAAGCTCGAGAGTAGACCTACT” to match 834 

the variable-length VDJ barcode between the constant regions. The automatic read count 835 

threshold was used to identify true barcodes. 836 



 837 

We compared CellBarcode and Bartender using both UMI and non-UMI sequencing described 838 

above. We extracted the barcodes with CellBarcode as described above, with the UMI tag 839 

requiring a minimum of 100 reads to be counted. In non-UMI libraries, an automatic threshold is 840 

applied in CellBarcode. For Bartender, it only allows a maximum of a 5bp match in the fixed 841 

region. Therefore, the barcode is defined between the fixed regions TCAAG and CCGTA. The 842 

UMI is defined by the first 16bp random sequence in both cases. Then the clustering with 1 843 

mismatch is used for both UMI and non-UMI sequencing. The run time of Bartender is measured 844 

by shell command “time”, and for CellBarcode by the “Sys.time()” function in R. The shared 845 

barcodes were counted and visualized using a Venn plot. Linear regression was performed on 846 

the shared barcodes.  847 

 848 

Simulation 849 

We used CellBarcodeSim to simulate the above VDJ sequencing data. The simulation included 850 

a VDJ barcode library with 100 cells, which were expanded using a log-normal distribution (log 851 

clone size mean 1.2, SD 1). We used a random UMI of length 16bp, and sequenced 100 reads 852 

per UMI using the ART built-in MiSeq profile, resulting in sequences of length 111 bp. Additionally, 853 

we added fixed regions at the 5' end (CCTCGAGGTCATCGAAGTATCAAG) and the 3' end 854 

(CCGTAGCAAGCTCGAGAGTAGACCTACTGGAATCAGACCGCCACCATGGTGAGCACACG855 

TCTGAACTCCAGTCACTCAGTCAATCTCGTATGCCGTCTTCTGCTTG). Other parameters 856 

were kept default. 857 

CellTag barcode scRNA-seq dataset 858 

Experimental data 859 

The scRNA-seq CellTag BAM file (Biddy et. al. 2018)36 was downloaded from SRA with access 860 

number SRR7347033. This file corresponds to the Mouse Embryonic Fibroblast (MEF) cell line 861 

that was infected with CellTag barcodes, underwent fate reprogramming through overexpression 862 

of transcription factors FOXA1 and HNF4α, and was sequenced after 15 days. 863 

 864 

Barcode analysis 865 

For the CellTagR analysis, we followed its demo described here https://github.com/morris-866 

lab/CellTagR. Firstly, we filtered the BAM file in bash by 1). Filtering unmapped reads, and 2). 867 

Filtering transgene reads. The filtered BAM file was used as input to both the CellTagR and 868 

CellBarcode pipelines. After first creating a CellTag object, the V1 barcode was extracted from 869 

https://github.com/morris-lab/CellTagR
https://github.com/morris-lab/CellTagR


the BAM file, by matching 5’ constant GGT and 3’ constant GAATTC. After that, barcode filtering 870 

was applied including: 1). Filter cells (a list of cells passing QC was downloaded from GEO with 871 

dataset id GSE99915) 2). Barcode sequence error correction with clustering using Starcode, 3). 872 

Keep UMIs with at least 2 reads, and 4). Barcode reference library filtering (whitelist filtering). The 873 

barcode reference library (whitelist) can be found with the demo datasets of the CellTagR 874 

package. Barcode clustering error correction was done by starcode-1.456. 875 

 876 

We applied the CellTagR pipeline described above as closely as possible using CellBarcode. 877 

Using CellBarcode, we extracted the V1 barcode using the regular expression 878 

“GGT([ATCG]{8})GAATTC” which matches the 8bp DNA sequence surrounded by two fixed 879 

constant regions. Then, we carried out the 4 filtering steps using the CellBarcode package which 880 

are 1). Filter cells using the QC passed list described above, 2). Barcode sequencing correction 881 

by removing minority barcodes with a Hamming distance of 1 to the majority one, 3). Keep UMI 882 

with at least 2 reads and 4). Barcode reference library filtering. 883 

VDJ barcode scRNA-Seq dataset  884 

Barcode analysis 885 

In this section we describe VDJ barcode extraction with CellBarcode, the barcode filtering was 886 

described in the Results section.  887 

In single cell sequencing data analysis, each cell is stored as an individual sample in the 888 

BarcodeObj, and this object has the same data structure as that of bulk analysis. 889 

The FASTQ file was acquired from the authors. Their read 1 and read 2 were concatenated. In 890 

the sequence, we defined the cellular 10X barcode as the first 16 bases, and the UMI as 12 bases 891 

followed, according to the 10X 3’ scRNA-seq reads structure. And the lineage barcode sequence 892 

was extracted using the 3’ and 5’ constant sequences: “CGAAGTATCAAG” and 893 

“CCGTAGCAAG”. 894 

 895 

The result in original paper was accessed from GitHub: https://github.com/TeamPerie/Cosgrove-896 

et-al-897 

2022/blob/main/Figure1/RNA_BC_PREPROCESSING/input_output_m534/agrep_10xbc_and_v898 

bc_m534_both.txt.gz. A brief description of the barcode filtering of the original is as follows: UMIs 899 

were filtered to keep only those with 3 or more reads and one dominant VDJ barcode (defined 900 

as >=0.45 reads). The dominant barcode for each UMI was extracted, and finally they assigned 901 

one VDJ barcode to a 10x cell if there is good agreement across UMIs, defined as >=0.75 902 

https://github.com/TeamPerie/Cosgrove-et-al-2022/blob/main/Figure1/RNA_BC_PREPROCESSING/input_output_m534/agrep_10xbc_and_vbc_m534_both.txt.gz
https://github.com/TeamPerie/Cosgrove-et-al-2022/blob/main/Figure1/RNA_BC_PREPROCESSING/input_output_m534/agrep_10xbc_and_vbc_m534_both.txt.gz
https://github.com/TeamPerie/Cosgrove-et-al-2022/blob/main/Figure1/RNA_BC_PREPROCESSING/input_output_m534/agrep_10xbc_and_vbc_m534_both.txt.gz
https://github.com/TeamPerie/Cosgrove-et-al-2022/blob/main/Figure1/RNA_BC_PREPROCESSING/input_output_m534/agrep_10xbc_and_vbc_m534_both.txt.gz


agreement across all remaining UMIs. If there is only one UMI retained, they further ensured that 903 

the VDJ barcode for this UMI was the dominant barcode across all the reads for that cell and 904 

has >=0.45 of reads. 905 

 906 

Statistics and Reproducibility 907 

No statistical method was used to predetermine sample size. No data were excluded from the 908 

analyses. The experiments were not randomized. The Investigators were not blinded to allocation 909 

during experiments and outcome assessment.   910 



Data availability 911 

The lentiviral barcodes dataset from Eisele et al (2022)30 was obtained  from 57; the corresponding 912 

pre-analysed data is available at: https://github.com/TeamPerie/Eisele-et-al. The CellTag 913 

barcode sequencing data from Biddy et al (2018)36 is on GEO with dataset ID GSE99915. The 914 

Marsolier et al (2022)17 barcoded scRNASeq dataset is on GEO with dataset ID GSE164716. The 915 

mammary gland VDJ barcode dataset and gRNA sequencing data is available on Zenodo58. The 916 

MEF cell line mixes VDJ barcode dataset is available from 59. The VDJ-barcoded scRNA-seq data 917 

from Cosgrove et al (2023) belongs to the authors of that paper and was given to us for the 918 

purposes of this paper; to obtain this data please contact Leïla Perié (leila.perie@curie.fr). Source 919 

data for Figures 2-6 are provided with this paper. 920 

Code availability 921 

Code for all analysis in this study is available at 922 

https://github.com/TeamPerie/CellBarcode_paper_Sun_et_al and at 60. The CellBarcode 923 

package is available at Bioconductor 924 

https://bioconductor.org/packages/release/bioc/html/CellBarcode.html and at 61. 925 

https://doi.org/doi:10.18129/B9.bioc.CellBarcode). And the Barcode sequencing simulation kit is 926 

available at https://github.com/TeamPerie/CellBarcodeSim and at 62.  927 
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 950 

Figure legends 951 

Figure 1. CellBarcode: a package to extract and identify lineage barcodes. 952 

A. Barcode experiment scheme. Cells are labeled with genetic barcodes, divide and differentiate, 953 

with progeny inheriting the barcode. Barcodes are read out by next generation sequencing (NGS) 954 

in descendant cells. CellBarcode allows extraction, filtering and identification of barcodes from 955 

NGS data and returns a barcode count matrix for further analysis. 956 

B. Diagram of barcode sequencing data processing with CellBarcode. CellBarcode reads the raw 957 

sequencing data (FASTQ, FASTA, BAM/SAM files or R object) and checks the QC (QC and 958 

filtering functions) before extracting the barcode sequences (barcode extraction functions). 959 

Barcodes are then filtered to remove PCR and sequencing errors using different filtering 960 

strategies (barcode cleaning functions). After filtering, barcode data can be plotted with the visual 961 

check functions and exported as a barcode frequency matrix (export functions). 962 

C. Example of barcode processing workflow using CellBarcode. Barcodes (underlined) are 963 

extracted from raw sequences using a regular expression (sequence in bold) that depends on the 964 

barcode type. Barcodes are then filtered, as detailed in D, to eliminate spurious barcodes and 965 

exported.  966 

D. The four most commonly used barcode filtering strategies. Green indicates true barcodes, red 967 

spurious barcodes. 1) Reference library filtering: barcodes B1, B2 and B3 that match the 968 

reference list are considered true barcodes, M3 and M5 are removed. 2) Threshold filtering: 969 

barcodes that have a read number superior or equal to the threshold of 20 are kept (B1 and B2) 970 



and barcodes below the threshold are removed (M3, M5 and B3). 3) cluster filtering: barcodes 971 

with an edit distance smaller than a threshold to a more abundant barcode are eliminated. Here, 972 

two barcodes have one substitution difference (mutant loci in white) from an abundant barcode 973 

and will be deleted. 4) UMI filtering: usually involves retaining the most abundant sequence per 974 

UMI followed by a UMI count threshold per barcode. 975 

Figure 2. Cellular barcode sequencing simulation 976 

A. Schematic of barcoding experiment simulation with CellBarcodeSim and the parameters that 977 

can be tuned at each step, starting with simulation of a barcode library, cell labeling and clonal 978 

expansion, PCR amplification and finally sequencing. The round shape represents 979 

undifferentiated cells, the triangle and rectangle represent differentiated cell types. 980 

B, C. Stacked bar plots, created using CellBarcode, displaying the percentage of bases for the 981 

VDJ barcode dataset with UMI (B) and a random barcode dataset (C) across each sequencing 982 

cycle. Each column represents a sequencing cycle, with color and height indicating the base and 983 

proportion respectively. Both simulated and real experimental data are presented for each 984 

dataset. The percentage of total reads matching the regular expression is indicated, as well as 985 

the Pearson correlation between the most abundant base per sequencing cycle. Fixed and/or 986 

UMI regions are annotated above the heatmap. The VDJ barcode dataset is the MEF line 987 

experiment data with 12500 cells from Urbanus et al. 202220; the random barcode dataset is from 988 

Eisele et al. 202230. Simulation details for each dataset are provided in the Methods section. 989 

Figure 3. Benchmarking Barcode Filtering Strategies with Simulated Data. 990 

 991 

A. B. Percentage precision and recall of true barcodes for different threshold filtering using read 992 

proportion thresholds of 0.0001 (A), and 0.001 (B). Several scenarios with two types of barcodes 993 

(random and VDJ) and three different clone size variations across barcodes are compared.  994 

C. Area Under Precision-Recall Curve (PR-AUC) using threshold filtering for two types of 995 

barcodes (random and VDJ) and three different clone size variations across barcodes.  996 

D. Same as in C after reference filtering.  997 

E. Same as in C after cluster filtering. 998 

F. Diagrams depicting reference library filtering and cluster filtering advantages and drawbacks. 999 

Reference library filtering removes spurious barcodes that are not in the library but keeps spurious 1000 

barcodes that match a barcode in the reference library. Cluster filtering removes low abundance 1001 



barcodes that are similar to abundant barcodes. This can result in the removal of true barcodes 1002 

which have sequence similarity to another true barcode, for example if the barcode library has 1003 

small edit distance. 1004 

G. PR-AUC after UMI filtering for variable-length VDJ barcodes for two higher clone size variations 1005 

(log clone size standard deviation of 2 and 3). An initial filtering based on UMI count greater than 1006 

10 reads was performed before computing PR-AUC.  1007 

H. Barcode filtering decision tree. 1008 

Except when otherwise specified, each simulated scenario has the reference parameters from 1009 

Supplementary Table 2: 30 simulations, 300 induced barcodes with log clone size mean 1.2, PCR 1010 

cycle 30, PCR efficiency 0.705, PCR error 1✕10-6, reads per cell 50 and sequencing profile 1011 

HiSeq2000. Specifically for H, the number of PCR cycles before and after UMI tagging are 10 and 1012 

20 respectively, with 8 bp UMI and tagging efficiency 0.02. The median and interquartile range 1013 

(IQR, the difference between the 75th and 25th percentiles of the data) are shown in the boxplot 1014 

over 30 simulations, and the outliers (beyond the whiskers of Q3 + 1.5IQR or Q2 - 1.5IQR) plotted 1015 

as dots. 1016 

The two-sided Wilcoxon Test is applied to compare the precision, recall or AUC of different 1017 

simulation conditions. 1018 

Figure 4. Lentiviral barcode sequencing analysis. 1019 

 1020 

A. Base quality heatmap made with CellBarcode. Each row is a sample, each column corresponds 1021 

to a sequencing cycle, the color represents the median base Phred quality score. 1022 

B. Base percentage plotted against the sequencing cycle number made with CellBarcode. 1023 

Sequence shows a 20bp barcode with fixed flanking regions either side. Color represents a base 1024 

pair. 1025 

C.  Barcode normalized read count + 1 (by total 10^5 read) as filtered in the original paper Eisele 1026 

et al. (2022)30 versus using CellBarcode. Each dot is a barcode. The spearman correlation and 1027 

p-value (two-sided) are displayed in the top left corner. 1028 

D. Barcode cell counts between the two technical replicates for the data without filtering. The read 1029 

counts were normalized to cell counts. Each dot is a barcode with black indicating presence in 1030 

the reference library provided in Eisele et al. (2022)30.  1031 

E. Same as D but after cluster filtering, the filtering process involves removing barcodes that have 1032 

a Hamming distance of less than 2 from a more abundant barcode. 1033 



In C, D, and E the red line represents y = x, the black line indicates a threshold of one cell.  1034 

 1035 

Figure 5. In vitro VDJ barcode analysis. 1036 

A. Sequencing library design and sequencing scheme. A sample was divided into two technical 1037 

replicates. After a first PCR amplification, each technical replicate was further divided into two for 1038 

sequencing library preparation with and without UMIs. 1039 

B. Stacked bar plot made with CellBarcode showing the base percentage for each sequencing 1040 

cycle. Each column corresponds to a sequencing cycle, the color and height indicate the base 1041 

and proportion respectively. Both rows depict the same biological sample, with or without UMI for 1042 

sequencing. The position of the regular expression (constant region) and the UMI are annotated.  1043 

C. Barcode read counts between technical replicates for the No-UMI library without filtering. 1044 

Automatic thresholds (marked by red lines) were applied to remove the errors in each technical 1045 

replicate separately. The numbers show the barcode count in each of the four categories as 1046 

divided by the threshold lines. Each dot represents a barcode. Plot made with CellBarcode, the 1047 

dots are semi-transparent to display overlap. 1048 

D. Barcode UMI count between technical replicates with UMI library. The data was first filtered 1049 

retaining UMI with at least 10 reads. The red lines indicate a UMI count threshold of 1. The number 1050 

of barcodes in each of the four categories as divided by the threshold lines is annotated. Each 1051 

dot represents a barcode. Plot made with CellBarcode, the dots are semi-transparent to display 1052 

overlap.   1053 

E. Comparing the number of barcodes identified in the No-UMI library and the UMI library in one 1054 

technical replicate. For the No-UMI library, the automatic threshold was applied as shown in C. 1055 

For the UMI library, the same filtering steps were applied as in D with the addition of a UMI count 1056 

threshold of 1. 1057 

F. Barcode read count after filtering between the No-UMI library and the UMI library for one of the 1058 

technical replicates. The read counts were renormalized to one. A linear regression was fitted, 1059 

and the fitted line (and shaded area of 95% confidence interval) and its parameters are written on 1060 

the plot. Each dot represents a barcode. 1061 



Figure 6. Single cell RNASeq Cellular DNA barcode analysis. 1062 

A. Diagram of how single cell sequencing lineage barcode sequencing data are processed with 1063 

CellBarcode. Input files can be FASTQ or BAM/SAM files. The lineage barcodes are extracted, 1064 

filtered, and exported for subsequent analysis. 1065 

B. Filtering steps for single cell sequencing lineage barcode data implemented in CellBarcode. 1066 

Firstly, for each UMI the dominant barcode is identified and other barcodes are removed; then 1067 

UMIs with a read count below a threshold are removed. For each barcode, the number of UMI is 1068 

counted and the barcodes are filtered based on a UMI count threshold. 1069 

C. The number of lineage barcodes found per cell before and after filtering barcodes based on 1070 

the dominant barcode per UMI using the VDJ scRNA-seq data from Cosgrove et al35so. In the 1071 

scatter plot the y-axis is the barcode number in a cell, each dot repr35esents a cell, and the 1072 

distribution is shown by the violin plot. 1073 

D. The number of lineage barcodes per cell (corresponding to the left black y-axis) and the cell 1074 

number (corresponding to the right red y-axis) for different thresholds of read per UMI. The data 1075 

was first processed with the dominant barcode per UMI filter. Each black dot represents a cell 1076 

while the violin plot shows the distribution of the barcode number per cell. 1077 

E. The number of lineage barcodes per cell (corresponding to the left black y-axis) and the number 1078 

of cells with a unique barcode (corresponding to the right red y-axis) for different thresholds of 1079 

UMI count per barcode. The data was first processed with the dominant barcode per UMI filter 1080 

and the UMI read threshold >= 2. In the figure, each dot represents a cell, and the distribution is 1081 

shown by the violin plot. The red line plot represents the number of retained, unique barcoded 1082 

cells after applying different UMI count filters described in x-axis.  1083 
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