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INTRODUCTION AND BACKGROUND

Subspace clustering [START_REF] Parsons | Subspace clustering for high dimensional data: a review[END_REF] is an unsupervised problem where one wishes to group points according to the subspaces in which they lie. There have been a variety of approaches to solve the problem, a lot of which consider the self-expressive formulation where it is assumed that each element can be written as a linear combination of Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. CIKM '22, October 17-21, 2022, Atlanta, GA, USA © 2022 Association for Computing Machinery. ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00 https://doi.org/10.1145/3511808.3557706 the elements in the that subspace. Typically, the generic formulation is given as

min R ∥ X -RX ∥ 2 + Ω (R) s.t. R ∈ R (1) 
where X ∈ R 𝑛×𝑑 is a matrix of 𝑑-dimensional data points, R ∈ R 𝑛×𝑛 is called the self-representation matrix, Ω(R) serves as a regularization term to induce desirable properties on R and avoid trivial solutions (such as R = I), and R is the feasible region.

After finding an optimal solution R * , an affinity matrix is generated based on the magnitudes of the entries of R * , usually using |R * + R * ⊤ |/2, and a partition of the points is then generated using a graph clustering method e.g. the spectral clustering algorithm [START_REF] Shi | Normalized cuts and image segmentation[END_REF].

Subspace clustering methods based on the self-expressive property [START_REF] Zhang | Learning a self-expressive network for subspace clustering[END_REF] have been widely used to cluster image datasets due the assumption that image datasets are often drawn from multiple low-dimensional subspaces. One of the earlier approaches was the least-square regression (LSR) subspace clustering [START_REF] Lu | Robust and efficient subspace segmentation via least squares regression[END_REF] that leverages a grouping effect based on the correlation of the data to do the segmentation. More sophisticated approaches that make up the state-of-the-art for proposed were later proposed such as the Elastic-net Subspace Clustering (EnSC) [START_REF] You | Oracle based active set algorithm for scalable elastic net subspace clustering[END_REF] and the subspace clustering through the orthogonal matching pursuit (SSC-OMP) [START_REF] You | Scalable sparse subspace clustering by orthogonal matching pursuit[END_REF]. However, despite text data also fulfilling this assumption, to the best of our knowledge, no self-expressive subspace clustering approach specifically tailored to text has been proposed. This can perhaps be explained by the fact that document-term datasets are usually much larger and sparser than image datasets and thus each individual data point could potentially lie in a unique subspace.

In this paper we propose a subspace clustering model tailored for document-term matrices through the concept of co-clustering i.e. using the interplay between rows and columns, or in the context of text, the interplay between documents and terms to generate a segmentation for both of them. We also propose a way to overcome the possible problem of each document/term lying in a unique subspace through using a two-way graph convolution that consists of a weighted Laplacian smoothing preprocessing step inspired by the simple graph convolutional network [START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF][START_REF] Thomas | Semi-supervised classification with graph convolutional networks[END_REF][START_REF] Wu | Simplifying graph convolutional networks[END_REF].

PROPOSED METHOD

Notation. Matrices are denoted with boldface uppercase and vectors with boldface lowercase letters. Given a matrix X, its 𝑖-th row is denoted by x 𝑖 and its 𝑗-th column by x ′ 𝑗 . I 𝑛 is the identity matrix of size 𝑛. The Frobenius norm is denoted by ∥.∥. 𝑘 and 𝑔 denote the number of row and column clusters. Function [U, Σ, V] = SVD(X) gives the singular value decomposition of matrix X where U and V are the left and right singular vectors and Σ is the diagonal matrix containing the singular values, sorted in decreasing order.

Self-Expressive Subspace Co-clustering

The advantage of co-clustering [START_REF] Govaert | Co-clustering: models, algorithms and applications[END_REF] is that it makes use of the inherent duality between the rows and columns of data tables which can lead to improvement in partitioning along both dimensions. For example, in the case of the document term matrices [START_REF] Affeldt | Ensemble block co-clustering: a unified framework for text data[END_REF][START_REF] Affeldt | Regularized Dual-PPMI Co-clustering for Text Data[END_REF][START_REF] Govaert | Mutual information, phi-squared and model-based co-clustering for contingency tables[END_REF][START_REF] Nadif | Unsupervised and self-supervised deep learning approaches for biomedical text mining[END_REF][START_REF] Salah | Word co-occurrence regularized non-negative matrix tri-factorization for text data co-clustering[END_REF], co-clustering incorporates term space information to do the document partitioning and vice-versa. Motivated by this observation, given a document-term matrix X ∈ R 𝑛×𝑑 + , we formulate the subspace co-clustering problem as min

R,C ∥ X -RXC ∥ 2 + Ω(R, C) s.t. R ∈ R, C ∈ C (2) 
where R ∈ R 𝑛×𝑛 and C ∈ R 𝑑×𝑑 are respectively the row and column self-representation matrices, Ω(R, C) is the regularization term where the regularization of R and C can either be independent i.e. Ω(R, C) = Ω R (R) + Ω C (C) or dependant, R and C are the feasible regions.

Promoting the Grouping Effect Through a Two-way Graph Convolution

Some subspace clustering methods [START_REF] Hu | Smooth representation clustering[END_REF][START_REF] Lu | Correlation adaptive subspace segmentation by trace lasso[END_REF][START_REF] Lu | Robust and efficient subspace segmentation via least squares regression[END_REF] ascribe the performance of their clustering to the grouping effect. Definition (Grouping Effect): Given a data matrix X, a selfrepresentation matrix R has a grouping effect if

∀𝑖 ≠ 𝑗, ∥x 𝑖 -x 𝑗 ∥ 2 → 0 =⇒ ∥r 𝑖 -r 𝑗 ∥ 2 → 0.
This could pose a problem in the case of text because of its high dimensionality and sparsity as data points may not be sufficiently "close" in the sense of the self-expressive property to be grouped in a meaningful way. This means data points need some sort of smoothing to help subspace clustering algorithms to find common subspaces. We propose to solve this problem through a two-way graph convolution. This requires two similarity matrices that will act as graphs on the rows S R and columns S C . These matrices can either be constructed through some similarity measure on the data or be provided a priori, e.g. in the case of attributed graphs.

An intuition can be drawn from the fact that the rows and columns of S 𝑝 R XS 𝑞 C , as propagation orders 𝑝, 𝑞 grow, are getting smoother by being averaged up to their 𝑝-th and 𝑞-th neighbors respectively akin to Laplacian smoothing. This operation thus makes the rows and columns more and more similar. Trough the grouping property this implies that the self-representation vectors should also be getting more similar, leading to a more meaningful partitioning.

The challenge is to choose suitable propagation orders since large values can cause over-smoothing and make all data points look similar. Our problem becomes min

R,C S 𝑝 R XS 𝑞 C -R S 𝑝 R XS 𝑞 C C 2 + Ω(R, C) s.t. R ∈ R, C ∈ C. (3)
In what follows, we will refer to the smoothed matrix S 𝑝 R XS 𝑞 C using H since this operation can be considered as a sort of data preprocessing step, independent from the clustering model. Note that the complexity of this operation is in O (𝑝 ∥S R ∥ 0 + 𝑞∥S C ∥ 0 ) where ∥.∥ 0 is the 0-norm that gives the number of non-zero entries of its input.

Subspace Co-clustering through LSR

We propose an initial variant based on the LSR subspace clustering model where we define the regularization term as follows Ω(R, C) = 𝜆 R ∥R∥ 2 + 𝜆 C ∥C∥ 2 where 𝜆 R and 𝜆 C are parameters that regulate the trade-off between the reconstruction term and the regularizer. The formulation of the problem becomes min

R,C ∥H -RHC∥ 2 + 𝜆 R ∥R∥ 2 + 𝜆 C ∥C∥ 2 . ( 4 
)
By fixing R and solving for C and inversely, a closed form solution can be obtained for both matrices where we can explicitly see how our model uses information from the columns for the row space partitioning and vice-versa

R = HC ⊤ H ⊤ HCC ⊤ H ⊤ + 𝜆 R I -1 C = H ⊤ R ⊤ RH + 𝜆 C I -1 H ⊤ R ⊤ H. (5) 
However, solving the problem requires an iterative process where we alternatively fix one of R and C and update the other until convergence. The overall computational complexity is

O (𝑛 3 + 𝑑 3 + 𝑡𝑛𝑑 2 + 𝑡𝑛 2 𝑑),
where 𝑡 is the number of iterations, and the spatial complexity is O (𝑛 2 +𝑑 2 ), which is prohibitive for a lot of real world applications.

A More Efficient Formulation Through Orthogonality Constraints

To address the issue of complexity we propose to introduce the following constraints R = ZZ ⊤ and C = WW ⊤ where Z ∈ R 𝑛×𝑘 and W ∈ R 𝑑×𝑔 are semi-orthogonal i.e. Z ⊤ Z = I 𝑘 and W ⊤ W = I 𝑔 . With these constraints the problem becomes simpler due to fact that ∥Z∥ 2 = rank(Z) and ∥W∥ 2 = rank(W). The new formulation of the problem is min

Z,W ∥H -ZZ ⊤ HWW ⊤ ∥ 2 s.t. Z ⊤ Z = I 𝑘 , W ⊤ W = I 𝑔 (6) 
At first glance this problem also requires an alternating solving scheme using two update rules that we obtain by fixing W and solving for Z and vice versa

Z = [u ′ 1 , . . . , u ′ 𝑘 ] s.t. [U, Σ, V] = SVD(HW) W = [u ′ 1 , . . . , u ′ 𝑘 ] s.t. [U, Σ, V] = SVD(H ⊤ Z). (7) 
This entails that 𝑔 = 𝑘. The detailed pseudo-code for this method is given in algorithm 1, its spatial complexity is the same as for LSR but the computational complexity is in O (𝑛 3 +𝑑 3 + 𝑡𝑛𝑑 log(𝑘)), which is faster. All in all, the approach still remains quite inefficient.

Efficient computation of Z * and W * . The previous problem can be efficiently solved using a single truncated SVD. This is a consequence of the following proposition.

Proposition 1. The alternating process defined in system of [START_REF] Fettal | Efficient Graph Convolution for Joint Node Representation Learning and Clustering[END_REF] converges to Z and W being the left and right truncated singular vectors of H respectively. This results in a more efficient algorithm since we circumvent the iterative step. However, the interaction between rows and columns implicitly remains since the resulting solution is also a solution to the aforementioned alternating optimization problem where the interaction is explicit. 

; W ← W 𝑖𝑛𝑖𝑡 ; while not converged do Z ← [u ′ 1 , . . . , u ′ 𝑘 ] s.t. [U, _, _] ← SVD(HW); W ← [u ′ 1 , . . . , u ′ 𝑘 ] s.t. [U, _, _] ← SVD(H ⊤ Z); end R, C ← ZZ ⊤ , WW ⊤ ;
Generate 𝜋 R , 𝜋 C through spectral clustering on |R| and |C|;

Proof. Suppose, without loss of generality, that 𝑘 ≤ rank(H). We have that 𝑘 = rank(Z) = rank(W) implying rank ZZ ⊤ HWW ⊤ ≤ 𝑘.

This means that we are looking for the best 𝑘-rank approximation.

Given [U, Σ, V] = SVD(H), by setting Z = U 𝑘 = [u ′ 1 , . . . , u ′ 𝑘 ] and W = V 𝑘 = [v ′ 1 , . . . , v ′ 𝑘 ]. We have that ∥H -ZZ ⊤ HWW ⊤ ∥ 2 = ∥H -U 𝑘 U ⊤ 𝑘 UΣV ⊤ V 𝑘 V ⊤ 𝑘 ∥ 2 = ∥H -[U 𝑘 , 0]Σ[V 𝑘 , 0] ⊤ ∥ 2 = ∥H -U 𝑘 Σ 𝑘 V ⊤ 𝑘 ∥ 2 (8) 
which according to the Eckart-Young-Mirsky theorem is the optimal value of the rank-𝑘 approximation problem of H. □ From the previous result, we can show that our approach has an approximate grouping effect Proposition 2. Given matrix H, the solutions R and C display a grouping effect on matrix H, the best rank-𝑘 approximation of H,

since z 𝑖 = Σ -1 𝑘 W ⊤ h𝑖 and w 𝑖 = Σ -1 𝑘 Z ⊤ h′ ⊤ 𝑖 .
Efficient Spectral Clustering from R * and C * . The optimal coefficient matrix R * = Z * Z * ⊤ is symmetric by construction, however its entries are not necessarily nonnegative which implies having to use element-wise absolute value to obtain a valid affinity matrix. This would destroy all information we already have on the decomposition of R * into Z * Z * ⊤ since generally there is no relation between the spectrum of a matrix and its spectrum after applying an entrywise function. We circumvent this problem by instead considering affinity matrix K R = (𝑟 𝑖 𝑗 + 1) 2 𝑖 𝑗 . We thus have that K R = ⟨𝜑 (Z * ), 𝜑 (Z * )⟩ where 𝜑 is a the feature map for the second degree polynomial kernel K R applied on the row vectors of Z i.e.

𝜑 (z) = ⟨𝑧 2 𝑘 , . . . , 𝑧 2 1 , √ 2𝑧 𝑘 𝑧 𝑘-1 , . . . , √ 2𝑧 𝑘 𝑧 1 , √ 2𝑧 𝑘-1 𝑧 𝑘-2 , . . . , √ 2𝑧 𝑘-1 𝑧 1 , . . . , √ 2𝑧 2 𝑧 1 , √ 2𝑧 𝑘 , . . . , √ 2𝑧 1 , 1⟩ (9) 
with 𝜑 : R 𝑘 → R 𝑘+2 2 . Any feature map for an entrywise nonnegative kernel is a possible alternative. We chose the simplest exact feature map possible here since the transformation does not result in too much of a dimensionality increase for the inputs as 𝑘 << 𝑛, 𝑑.

Approximations can be used in order to work with otherwise infinite dimensional feature map kernels e.g. the RBF kernel. We then propose to perform the spectral clustering directly on the affinity matrix instead of the Graph Laplacian as in [START_REF] Sarkar | Quantitative measures of change based on feature organization: Eigenvalues and eigenvectors[END_REF]. Since the eigenvectors of K R are the same as the left singular vectors of 𝜑 (Z * ) the process is much faster since 𝑘 << 𝑑. To obtain a clustering from C * , the operations are the same. The overall computation complexity is then in O (𝑛𝑑 + 𝑛𝑘 2 + 𝑑𝑘 2 ) log(𝑘) while the spatial one is in O 𝑛𝑘 2 + 𝑑𝑘 2 .

EXPERIMENTS 3.1 Experimental Setup

Datasets. We use four attributed graph citation networks, which are graphs characterized by an adjacency matrix A and a node features matrix X. The summary statistics are available in table 2. Comparative models. We compare our model to clustering and co-clustering models that either use only the input node feature matrix X or that use both A and X i.e. attributed graph clustering/coclustering models.

• Vanilla clustering models. The 𝑘-means algorithm is our baseline.

• Subspace clustering models. We also use the aforementioned subspace clustering LSR, EnSC and SSC-OMP models. • Attributed graph clustering models. We use GIC [START_REF] Mavromatis | Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs[END_REF] where clustering is done by maximizing the mutual information between nodes contained in the same cluster, AGE [START_REF] Cui | Adaptive graph encoder for attributed graph embedding[END_REF] proposes a Laplacian smoothing filter that acts as a low-pass filter applied in adaptive learning scheme, S2GC [START_REF] Zhu | Simple Spectral Graph Convolution[END_REF] proposes a method for the aggregation of K-hop neighborhoods that is a trade-off of low-and high-pass filter bands, and GCC [START_REF] Fettal | Efficient Graph Convolution for Joint Node Representation Learning and Clustering[END_REF] which proposes a simultaneous representation learning and clustering scheme for nodes. • Vanilla co-clustering models. We compare the model to the spectral co-clustering algorithm [START_REF] Inderjit S Dhillon | Co-clustering documents and words using bipartite spectral graph partitioning[END_REF] and the DCC [START_REF] Salah | Model-based von mises-fisher coclustering with a conscience[END_REF] which is based on a regularized von Mises-Fisher mixture model. • Attributed graph co-clustering Models. The only such model is CFOND [START_REF] Guo | CFOND: consensus factorization for co-clustering networked data[END_REF], a consensus factorization model that simultaneously factorizes information from three aspects: network topology structures, instance-feature content relationships, and feature-feature correlations.

Experimental settings. For our method, we use as our row graph, the adjacency matrix provided in the datasets S R = A.

For the columns, we use

S C = max log C .. C 𝑖. C .𝑗 𝑐 𝑖 𝑗 , 0 𝑖 𝑗
where C = X ⊤ X, which is the nonnegative pointwise mutual information [START_REF] Church | Word association norms, mutual information, and lexicography[END_REF] matrix of the terms; Intuitively 𝑠 C𝑖 𝑗 gives the semantic relatedness of term 𝑖 and 𝑗, the larger the value, the more these terms are related. Both matrices are then added self-loops and normalized as in [START_REF] Fettal | Efficient Graph Convolution for Joint Node Representation Learning and Clustering[END_REF]. The row propagation order 𝑝 is selected using the selection rule proposed in [START_REF] Fettal | Efficient Graph Convolution for Joint Node Representation Learning and Clustering[END_REF], while for the column one we set 𝑞 = 1. We perform ten runs for each model. We use the author provided implementation and parameters when available. For models that use a parameter 𝑝 like ours, we run their proposed selection rule until convergence with no maximum 𝑝 specified, for fairness. All experiments were performed on the same machine.

Document Clustering

We compare the methods on document clustering using the Clustering Accuracy (Acc), Normalized Mututal Information (NMI) and Adjusted Rand Score (ARI) metrics. Table 1 shows the performance of the different models. Methods that use both graph structure and features outperform methods that use the node features only except on ACM where the graph is not informative (most entries are set to one), we used this dataset to show the robustness of our model in the face of uninformative graph structure compared to state of the art attributed graph clustering models. We see that our approach is competitive and outperforms other models on all datasets in terms of accuracy. It also has near zero standard deviation on most metrics which is a sign of robustness. We report in table 3 the training times of our algorithm compared to other subspace clustering models. We can see that our subspace clustering approach is faster in the different datasets by significant margins even though it generates a clustering for both rows and columns.

Term Clustering

Co-clustering models additionally generate a clustering for the terms. Since the PubMed dataset is the only one for which we 4 presents the most frequent terms for each topic found by our model. The PubMed dataset contains scientific papers concerning diabetes. We see that topic 𝑎 contains terms that are related to a presentation of diabetes, e.g, insulin, glucos, type, etc. Topic 𝑏 has terms that are related to the microscopic effects of diabetes such as cell, islet, gene, betacel, and so on. Finally, topic 𝑐 seems to concern terms that are associated with medical experimentation and analysis of results such as control, increas, signific, etc. We note the coherence of these term clusters since they cluster the PubMed paper contents according to three topics. This term clustering can then be used to help characterize document clusters to facilitate interpretation (for more details, see [START_REF] Marcotorchino | Block seriation problems: A unified approach. Reply to the problem of H. Garcia and JM Proth[END_REF]).

CONCLUSION

We proposed SCC, a new approach to leverage subspace clustering for text data through co-clustering and two-way graph convolution. It circumvents the computational and spatial complexity issues of subspace clustering through using factor matrices and nonnegative kernel feature maps. Experiments showed that our model is competitive with the state of the art for attributed graph node clustering in terms of performance and robustness.

Algorithm 1 :

 1 Naive SCC Input : X data matrix, S R and S C row and column prop. matrices, 𝑝 and 𝑞 row and column prop. orders, 𝑘 number of co-clusters Output : R and C the row and column self-representation matrices, 𝜋 R and 𝜋 C row and columns partitions H ← S 𝑝 R XS 𝑞 C

Table 2 :

 2 Dataset statistics.

	Dataset	#Nodes #Edges #Features #Classes
	ACM [24]	3025 9150593	1870	3
	CiteSeer [22] 3327	4732	3703	6
	PubMed [22] 19717 44338	500	3
	Wiki [26]	2405	17981	4973	17

Table 1 :

 1 Clustering performance on the datasets averaged over ten runs. The best results are highlighted in bold. Our model is competitive with the state-of-the-art as it has the best results on most datasets while having small standard deviations.

	Method	Input		ACM			CiteSeer			PubMed			Wiki
			Acc	NMI	ARI	Acc	NMI	ARI	Acc	NMI	ARI	Acc	NMI	ARI
	𝑘-means	X	62.8±4.8 37.2±9.2 34.5±10.4 62.5±1.6 36.7±1.9 35.5±2.5 60.1±0.0 31.4±0.0 28.1±0.0 47.3±6.0 46.3±6.9 26.4±8.1
	LSR	X	80.3±0.0 47.0±0.0 51.9±0.0 21.1±0.0 0.2±0.1 0.0±0.0		OOM		21.1±3.3 9.0±5.9 2.6±2.0
	EnSC	X	79.5±0.0 46.8±0.0 50.3±0.0 55.6±0.0 14.8±0.0 14.6±0.0 55.6±0.0 14.8±0.0 14.7±0.0 45.5±2.0 45.7±1.7 28.8±1.3
	SSC-OMP X	78.8±0.1 43.4±0.1 48.3±0.1 24.0±1.1 3.5±0.4 1.8±0.1 60.4±0.0 22.3±0.0 19.4±0.0 52.7±4.4 48.1±2.3 33.3±1.5
	Spectral	X	80.6±0.1 48.4±0.1 52.3±0.1 30.3±1.7 10.0±1.3 5.5±1.6 61.2±0.0 24.7±0.0 21.8±0.0 37.8±1.2 38.2±0.3 20.8±0.4
	DCC	X	40.5±3.3 7.8±5.1 2.1±2.2 35.1±3.8 11.5±2.4 8.9±2.9 54.3±3.6 16.5±2.9 13.4±4.1 48.3±3.6 47.5±2.6 30.6±3.0
	GIC	A, X 34.3±0.4 0.1±0.1 0.0±0.0 68.8±0.8 43.8±1.0 44.6±1.0 64.3±0.4 26.0± 0.5 23.6±0.5 46.5±1.4 48.2±0.5 30.2±1.4
	S2GC	A, X 40.5±3.4 1.7±1.2 1.8±1.3 68.1±0.3 42.3±0.2 43.5±0.3 70.8±0.0 32.5±0.0 33.2±0.0 52.7±1.0 49.0±0.3 29.6±0.9
	GCC	A, X 35.4±0.0 0.3±0.0 0.0±0.0 69.4±0.1 45.0±0.2 45.4±0.1 70.8±0.0 32.3±0.0 33.2±0.0 54.1±0.8 55.0±0.2 33.3±0.5
	CFOND	A, X 71.8±0.6 37.2±0.5 38.2±0.7 63.0±1.1 36.6±1.3 36.2±1.2 60.1±0.0 31.4±0.0 28.1±0.0 47.8±3.0 49.5±2.1 30.3±2.5
	SCC	A, X 81.4±0.0 50.0±0.0 53.9±0.0 69.5±0.0 43.5±0.0 43.7±0.0 70.9±0.0 31.7±0.0 33.2±0.0 59.3±0.6 53.9±0.9 32.7±1.4

Table 3 :

 3 Training times in seconds of the different subspace clustering models averaged over ten runs. Ours is the fastest one on all datasets.

	Method	ACM CiteSeer PubMed Wiki
	ENSC	1395.9 405.2	1416 1447.2
	SSC-OMP 168.0	263.4	1447	237.5
	LSR	21.5	157.7	OOM	21.1
	SCC	9.7	7.4	28.9	8.8

Table 4 :

 4 The three topics found by SCC characterized by their top ten most frequent terms. the actual terms, we performed the term clustering solely on it. Table

	Topic a Topic b Topic c
	patient	cell	rat
	insulin	mice control
	glucos	islet	activ
	type	iddm	level
	group	gene	increas
	subject	diseas respons
	lt	develop signific
	risk	nod	effect
	associ children express
	treatment betacel plasma
	managed to find