Chakib Fettal
email: chakib.fettal@etu.u-paris.fr

Lazhar Labiod
email: lazhar.labiod@u-paris.fr

Mohamed Nadif
email: mohamed.nadif@u-paris.fr

Simultaneous Linear Multi-view Attributed Graph Representation Learning and Clustering

Keywords: CCS CONCEPTS, Computing methodologies → Unsupervised learning;, Information systems → Clustering attributed networks, clustering, multi-view

Over the last few years, various multi-view graph clustering methods have shown promising performances. However, we argue that these methods can have limitations. In particular, they are often unnecessarily complex, leading to scalability problems that make them prohibitive for most real-world graph applications. Furthermore, many of them can handle only specific types of multi-view graphs. Another limitation is that the process of learning graph representations is separated from the clustering process, and in some cases these methods do not even learn a graph representation, which severely restricts their flexibility and usefulness. In this paper we propose a simple yet effective linear model that addresses the dual tasks of multi-view attributed graph representation learning and clustering in a unified framework. The model starts by performing a first-order neighborhood smoothing step for the different individual views, then gives each one a weight corresponding to its importance. Finally, an iterative process of simultaneous clustering and representation learning is performed w.r.t. the importance of each view, yielding a consensus embedding and partition of the graph. Our model is generic and can deal with any type of multi-view graph. Finally, we show through extensive experimentation that this simple model consistently achieves competitive performances w.r.t. state-of-the-art multi-view attributed graph clustering models, while at the same time having training times that are shorter, in some cases by orders of magnitude.

INTRODUCTION AND RELATED WORK

Attributed graphs are graphs that contain features in their nodes. Under different approaches, they are used to model a wide variety of structured data [START_REF] Fettal | Subspace Co-clustering with Two-Way Graph Convolution[END_REF][START_REF] Fettal | Scalable Attributed-Graph Subspace Clustering[END_REF][START_REF] Riverain | Semi-supervised Latent Block Model with pairwise constraints[END_REF] with applications in recommender systems [START_REF] Fan | Graph Neural Networks for Social Recommendation[END_REF][START_REF] Salah | Social regularized von Mises-Fisher mixture model for item recommendation[END_REF][START_REF] Ying | Graph convolutional neural networks for web-scale recommender systems[END_REF], computer vision, [START_REF] Qi | 3D Graph Neural Networks for RGBD Semantic Segmentation[END_REF][START_REF] Victor | Few-Shot Learning with Graph Neural Networks[END_REF][START_REF] Xu | Scene Graph Generation by Iterative Message Passing[END_REF], and physical systems [START_REF] Sanchez-Gonzalez | Graph networks as learnable physics engines for inference and control[END_REF]. However, capturing topological (or structural) information at the same time as capturing information about node-level features presents challenges, and in the last few years a number of methods have been proposed for tackling problems such as attributed graph representation learning and attributed graph clustering.

In some real-world applications, data is collected from a variety of different sources, which means that it can be characterized using different sets of information or views. This is the premise of multiview learning [START_REF] Xu | A survey on multi-view learning[END_REF], an area of considerable interest among the data mining and machine learning communities [START_REF] Boutalbi | Implicit consensus clustering from multiple graphs[END_REF]. In the context of attributed graphs, a multi-view attributed graph is simply a set of attributed graphs; each attributed graph counts as a single view. For example, in the case of a recommender system, the relationship between users can be characterized using a two graphs, one representing their "friendship", and one representing their mutual interests; as for the features, one set of features could represent personal information and another set their past transactions.

The task of multi-view attributed graph clustering has lately received a lot of attention. The methods that have been proposed can be separated into two broad approaches. In the first approach, a consensus graph partition is learned directly from the data without explicitly learning an embedding of the graph. Methods adopting this approach include MvAGC [START_REF] Lin | Graph Filter-based Multi-view Attributed Graph Clustering[END_REF], where a graph filter is proposed to perform the graph clustering, and MAGC [START_REF] Lin | Multi-view attributed graph clustering[END_REF], a similar method to MvAGC that uses a graph filter to learn a consensus graph before doing the clustering. The second approach is more flexible; it consists in learning a consensus representation or embedding before applying a simple single-view attributed graph clustering method. For example, DMGI [START_REF] Park | Unsupervised attributed multiplex network embedding[END_REF] is an unsupervised network embedding method for attributed multiplex networks that uses the concept of mutual information, while O2MAC [START_REF] Shaohua Fan | One2multi graph autoencoder for multi-view graph clustering[END_REF] is based on the graph autoencoder [START_REF] Thomas | Variational graph auto-encoders[END_REF], it learns clustering-friendly embeddings through integrating a clustering loss in its objective.

These different methods have their shortcomings. First, the more flexible approaches that learn a consensus representation generally tackle the problems of representation learning and clustering separately, i.e. they learn representations that are not specifically tailored to clustering. Second, they often have unnecessarily complex architectures in comparison to simpler strategies. Finally, some of these methods are not generic, in the sense that they require the multi-view graph to be of a certain type: for example, a multi-view graph with a multiple structures and a single set of features (but not the other way around) like for DMGI, or a graph with exactly two views, etc. As a way of addressing these shortcomings, we propose LMGEC (for Linear Multi-view Graph Embedding and Clustering), a simple yet effective linear model. LMGEC starts by applying a linear graph filter corresponding to a one-hop neighborhood propagation step in each individual view, and then applies a weighting scheme so that views are attended to in order of their perceived importance. This is followed by an iterative process of simultaneous clustering and representation learning, which gives rise to a consensus embedding and partition of the graph. The model is generic in the sense that it can deal with any number of graph structures and/or any number of feature sets. A high-level schematic representation of the model is shown in figure 1. Our contributions may be summarized as follows:

• We introduce a simple yet effective generic linear model for performing multi-view attributed graph representation learning simultaneously with clustering. The model is based on (1) a onehop neighborhood propagation corresponding to a linear graph filter, (2) a view weighting scheme reminiscent of the attention mechanism in neural networks, and (3) a graph clustering and representation learning linear component that addresses both tasks via a unified framework. • We carry out a theoretical study of the linear graph filtering, formulate the problem that we are seeking to solve, and propose an algorithm that we subject to a detailed computational complexity analysis. • We showcase the efficiency and effectiveness of this model against the state of the art through extensive experimentation. We show that our model is both competitive and several magnitudes more efficient than current state-of-the-art multi-view attributed graph clustering. • We release our code for reproducibility 1 .

PRELIMINARIES 2.1 Definitions and Notations

An attributed graph is defined as a quadruple G = (V, E, A, X) where V represents the vertex set, E the edge, X ∈ R 𝑛×𝑑 its node features matrix and A its adjacency matrix of size 𝑛 × 𝑛. A multiview attributed graph is represented as a sequence of attributed graphs

M := G 𝑣 = (V 𝑣 , E 𝑣 , A 𝑣 , X 𝑣) 𝑣=𝑉 𝑣=1
. Matrices are denoted by boldface uppercase and vectors by boldface lowercase letters, 1 represents a column vector of ones. I denotes the identity matrix. Where X is a matrix, x 𝑖 is its 𝑖-th row. A matrix referenced as X 𝑣 means that it belongs to the 𝑣-th attributed graph, and its 𝑖-th row is referenced as x 𝑣 𝑖 .

Graph Filters and the Simple Graph Convolutional Network

Let G = (V, E, A, X) be an attributed graph whose symmetrically normalized Laplacian matrix is

L sym = I -D -1 2 AD -1 2
where D is the diagonal matrix of degrees of the graph such that 𝑑 𝑖𝑖 = 𝑗 𝑎 𝑖 𝑗 . A graph signal can be seen as a vector f = [𝑓 (𝑣 1), . . . , 𝑓 (𝑣 𝑛)] such that 𝑓 : V → R is a real-valued function on the vertex set V.

1 https://github.com/chakib401/LMGEC For any graph signal f, we can quantify its smoothness using the Laplacian quadratic form [START_REF] Zhou | A regularization framework for learning from graph data[END_REF]

S(f) = f ⊤ L sym f = 1 2 𝑛 ∑︁ 𝑖,𝑗 𝑎 𝑖 𝑗 𝑓 𝑖 √ 𝑑 𝑖𝑖 - 𝑓 𝑗 √︁ 𝑑 𝑗 𝑗 2 . (1)
Now let L sym = UΛU ⊤ be the eigendecomposition of the Laplacian and {u 𝑙 } 𝑛 𝑙=1 and {𝜆 𝑙 } 𝑛 𝑙=1 the sets of eigenvectors and eigenvalues of L sym . Since L sym is symmetric, these eigenvectors form a basis for R 𝑛 , and we can therefore write f = Uc = 𝑛 𝑙=1 𝑐 𝑙 u 𝑙 . This implies that we can write the Laplacian quadratic form as

S(f) = f ⊤ L sym f = c ⊤ U ⊤ UΛU ⊤ (Uc) = c ⊤ Λc = 𝑛 ∑︁ 𝑙=1 𝑐 2 𝑙 𝜆 𝑙 , (2)
and that diagonal operators applied to the spectrum of the Laplacian modulate the smoothness of the signal; consequently, the eigenvalues can be seen as the frequencies of the signal [START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF]. Accordingly, if we wish to make a graph signal smoother, we should minimize this measure through removing frequencies that correspond to larger eigenvalues. This is done using a low-pass filter.

To low-pass filter a graph using a polynomial filter whose frequencyresponse function is 𝑔, we use the graph convolution operation which is defined as

f filtered = 𝑔 L sym f = U𝑔(Λ)U ⊤ f (3)
such that 𝑔(Λ) = diag (𝑔(𝜆 1), ..., 𝑔(𝜆 𝑛)). For example, in the case of a graph filter corresponding to a GCN [START_REF] Kipf | Semi-Supervised Classification with Graph Convolutional Networks[END_REF] with 𝑝 layers, or its simplified version [START_REF] Wu | Simplifying graph convolutional networks[END_REF] using a 𝑝-th order feature propagation, its frequency-response function is given as 𝑔(𝜆) = (1-𝜆) 𝑝 , or in matrix form as 𝑔(L sym) = (I -L sym) 𝑝 = A 𝑝 , which is a polynomial filter that is low-pass for odd values of 𝑝 and somewhat low-pass for even values of 𝑝 since the filtering function is not strictly decreasing on the interval of definition of the eigenvalues 𝐼 = [0, 2]. Note that the GCN also introduces added self-loops into the adjacency matrix A.

For more details about graph filtering and graph signal processing in general, we refer the reader to [START_REF] Ortega | Graph signal processing: Overview, challenges, and applications[END_REF][START_REF] David I Shuman | The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[END_REF].

PROPOSED MODEL

Now that we have introduced the necessary background, we can formulate our problem.

First-order Neighborhood Propagation and Linear Graph Filtering

As previously mentioned, the graph neighborhood propagation performed in the GCN acts as a filter on the graph signal and removes high-frequency noise. We argue, however, that these steps of neighborhood propagation as performed in the GCN are unnecessary and even counterproductive because of a risk of over-smoothing, which is when the signal becomes uniform over the different nodes.

To support our argument, we would point to the performance of the linear graph autoencoder [START_REF] Salha | Simple and effective graph autoencoders with one-hop linear models[END_REF], which was competitive w.r.t more complex GCN-based models. In this paper we are seeking to show that a first-order (or one-hop) neighborhood propagation, when applied properly, is also sufficient for the task of simultaneous graph clustering and embedding. Given an attributed graph be the adjacency matrix with 𝛽 added self-loops and D its diagonal matrix of degrees. We define our propagation matrix as

G = (V, E, A, X), let à ← A + 𝛽I (4)
S ← D-1 Ã. (5
)
The generalized Laplacian L rw that corresponds to this propagation matrix is a random walk normalized Laplacian with added selfloops. The linear propagation operation we propose is

H ← SX (6)
where H are the new filtered features. The frequency-response function associated with this filter is 𝑔(𝜆) = 1 -𝜆 or, in matrix form, 𝑔(S) = I -L rw , which is clearly a linear function that is decreasing in the interval of definition of the eigenvalues 𝐼 = [0, 2].

Simultaneous Multi-view Attributed Graph Representation Learning and Clustering

Given a multi-view attributed graph represented as a set of attributed graphs M := G 𝑣 } 𝑣=𝑉 𝑣=1 , we define a preliminary version of the problem of simultaneous multi-view graph representation learning and clustering as min

G,F W 1 ,...,W 𝑉 ∑︁ 𝑣 (∥H 𝑣 -H 𝑣 W 𝑣 W ⊤ 𝑣 ∥ 2 reconstruction term +∥ H 𝑣 W 𝑣 -GF∥ 2 clustering term individual view loss) multi-view loss 𝑠.𝑡 . ∀𝑣 W 𝑣 W ⊤ 𝑣 = I, G ∈ {0, 1} 𝑛×𝑘 , G1 = 1 (7)
where W 𝑣 ∈ R 𝑑 𝑣 ×𝑓 such that 𝑑 𝑣 is the dimension of the features in view 𝑣, 𝑓 is the dimensionality of the consensus representation we wish to learn and 𝑘 is the number of clusters. The loss corresponding to each view consists of two terms, namely a reconstruction term and a clustering term:

• The reconstruction term can be seen as reconstructing the filtered graph signal of the 𝑣-th view H 𝑣 using a semi-orthogonal matrix W 𝑣 similar to what is done in principal component analysis. We may draw a parallel with autoencoders, where multiplying by W encodes the data and W ⊤ decodes it. • The clustering term is similar to the 𝑘-means objective applied to the embeddings learned from the reconstruction process H 𝑣 W 𝑣 . G is a partition matrix and F is the centroids matrix.

Matrices G and F are the same for each matrix and represent the consensus partition and centroids respectively. There are, however, exactly 𝑉 W 𝑣 matrices, due the fact that the features in the different views do not necessarily have the same dimensionality. Problem [START_REF] Fettal | Scalable Attributed-Graph Subspace Clustering[END_REF] can be rewritten in a way that combines the two terms as follows min

G,F,W 1 ,...,W 𝑉 ∑︁ 𝑣 ∥H 𝑣 -GFW ⊤ 𝑣 ∥ 2 s.t. ∀𝑣 W 𝑣 W ⊤ 𝑣 = I, G ∈ {0, 1} 𝑛×𝑘 , G1 = 1. (8)
This formulation is more intuitive, since we can see it as trying to minimize the discrepancy between each input vector h 𝑣 𝑖 and its corresponding centroid learned in the latent embedding space after reconstructing g 𝑖 FW ⊤ 𝑣 . A proof of this is available in [START_REF] Yamamoto | A general formulation of cluster analysis with dimension reduction and subspace separation[END_REF].

Paying Attention to the Individual Views

Not all views have the same importance, and for this reason it is not optimal to directly add the losses from each view without applying some kind of importance weighting scheme. To address this issue we introduce a new set of parameters {𝛼 𝑣 } 𝑣=𝑉 𝑣=1 such that 𝑣 𝛼 𝑣 = 1 where 𝛼 𝑣 represents the relative importance of each view 𝑣. With this, we obtain the final formulation of our problem min

G,F,W 1 ,...,W 𝑉 ∑︁ 𝑣 𝛼 𝑣 ∥H 𝑣 -GFW ⊤ 𝑣 ∥ 2 s.t. ∀𝑣 W 𝑣 W ⊤ 𝑣 = I, G ∈ {0, 1} 𝑛×𝑘 , G1 = 1. (9)
Note, however, that we do not introduce 𝛼 𝑣 as a parameter, since this would cause a solution to pay attention to only a single view, i.e., the view with the smallest individual view loss. With this in mind, we define 𝛼 as the softmax 𝛼 of the negative inertia of each view, and we add a temperature parameter for greater flexibility. The formula for each 𝛼 is then

𝛼 𝑣 ← 𝑒 -𝐼𝑣 𝜏 𝑤=𝑉 𝑤=1 𝑒 -𝐼𝑤 𝜏 (10)
where 𝐼 stands for inertia. For the 𝑣-th view 𝐼 𝑣 is computed as follows: 𝐼 𝑣 = ∥H 𝑣 -G 𝑣 F 𝑣 ∥ such that W 𝑣 is obtained through a truncated singular value decomposition (SVD) on X 𝑣 , and G 𝑣 and F 𝑣 are the results of a 𝑘-means applied on the embeddings of the 𝑣th view X 𝑣 W 𝑣 . When the temperature 𝜏 is sufficiently high, only the best view in terms of inertia is selected, and when it is sufficiently low, all the views have the same weight.

OPTIMIZATION AND COMPLEXITY

Even though solving LMGEC exactly may be NP-hard, a solution can be computed reasonably efficiently via the use of heuristics.

To this end, we propose using a Block Coordinate Descent (BCD) scheme that boils down to iteratively solving sub-problems where we alternately solve for one of W 1 , . . . , W 𝑉 , G, F while keeping the others fixed. All optimizations are described below.

Optimizing for G

When solving for G and fixing the other matrices, we obtain the following problem min

G ∑︁ 𝑣 𝛼 𝑣 ∥H 𝑣 W 𝑣 -GF ∥ 2 𝑠.𝑡 G ∈ {0, 1} 𝑛×𝑘 , G1 = 1.
(11) This problem is hard to solve, so instead we propose solving the following relaxation obtained using the Cauchy-Schwarz inequality:

min G ∑︁ 𝑣 𝛼 𝑣 H 𝑣 W 𝑣 -GF 2 𝑠.𝑡 . G ∈ {0, 1} 𝑛×𝑘 , G1 = 1. (12)
In this way we can efficiently minimize the objective of this problem with the assignment step

𝑔 𝑖 𝑗 ← 1 if 𝑗 = arg min 𝑙 ∥ (𝑣 𝛼 𝑣 H 𝑣 W 𝑣) 𝑖 -f 𝑙 ∥ 2 0 otherwise. (13
)

Optimizing for F

When optimizing for F we retrieve the same criterion as for G, the difference lying in the constraints min

F ∑︁ 𝑣 𝛼 𝑣 H 𝑣 W 𝑣 -GF 2 . (14
)
This problem is an instance of an ordinary least-squares problem whose exact solution is easy to find and is given as

F = (G ⊤ G) -1 G ⊤ ∑︁ 𝑣 𝛼 𝑣 H 𝑣 W 𝑣 . (15
)
4.3 Optimizing for W 1 , . . . , W 𝑉 Optimizing for the different W 𝑣=𝑉 𝑣=1 matrices results in 𝑉 sub-problems. For a specific W 𝑣 , the resulting problem is min W 𝑣 ∥H 𝑣 -GFW ⊤ 𝑣 ∥ 2 which can be solved using a singular value decomposition as follows:

W 𝑣 = UV ⊤ s.t. U, Σ, V = SVD(X ⊤ 𝑣 GF) (16
) For more details on the derivation we refer the reader to [START_REF] Fettal | Efficient Graph Convolution for Joint Node Representation Learning and Clustering[END_REF][START_REF] Yamamoto | A general formulation of cluster analysis with dimension reduction and subspace separation[END_REF].

Optimization Algorithm

The main steps are summarized in Algorithm 1. The loss function might not be strictly decreasing due to the use of relaxations for the sub-problems, but it should nevertheless have an overall decreasing trend, as shown in figure 2 where we observe that our algorithm does not need many iterations to converge.

EXPERIMENTATION

In this section we present the experimental setup and results. We start by introducing the datasets and the evaluation metrics used in relation to clustering, the methods used for comparison with LMGEC, and the experimental settings. We then present the results in terms of quality of clustering, followed by analysis where we consider embedding, complexity, sensitivity, and robustness in the face of noisy views.

Datasets and Metrics

In order to demonstrate the generic nature of our model we looked at the three possible types of multi-view attributed graph datasets:

(1) Datasets with Heterogeneous Graph Topology. These datasets have the same set of features X but multiple graph topologies, i.e. multiple adjacency matrices {A 𝑣 } 𝑣=𝑉 𝑣=1 . They include ACM, DBLP and IMDB.

(2) Datasets with Heterogeneous Features. These datasets have the same graph structure A but multiple sets of features {X 𝑣 } 𝑣=𝑉 𝑣=1 . The example we chose was Amazon Photos.

(3) Datasets with Both. These datasets have multiple graph structures {A 𝑣 } 𝑣=𝑉 𝑣=1 as well as multiple sets of features {X 𝑣 } 𝑣=𝑉 𝑣=1 , The only such dataset is Wiki for which we create the additional views from the initial data, we initially have a single topology and features, we then generate a second topology using a nearest neighbor graph based on the cosine distance and a second set of features by using a log-scale of the original ones. The characteristics of these datasets are given in table 1. In quantifying the quality of a clustering we use four metrics: clustering accuracy (CA), clustering F1-score (F1) [START_REF] Van Rijsbergen | Information retrieval[END_REF], normalized mutual information (NMI) [START_REF] Strehl | Cluster ensembles-a knowledge reuse framework for combining multiple partitions[END_REF] and adjusted rand index (ARI) [START_REF] Hubert | Comparing partitions[END_REF].

Baselines

Below we list all the methods evaluated in our proposal.

• LINE [START_REF] Tang | Line: Large-scale information network embedding[END_REF]: A single-view graph embedding method. It is applied on each view and the best results are reported. • GAE [START_REF] Thomas | Variational graph auto-encoders[END_REF]: Another single-view graph embedding method based on the autoencoder. • X-avg: To utilize multiple views of a network we apply the X method to learn node representations on each single view, then average all learned representations. • LINE-avg and GAE-avg: By this we mean that the node representations learned for each view using LINE and GAE are averaged and clustered as such.

• MNE [START_REF] Zhang | Scalable multiplex network embedding[END_REF]: A scalable multi-view network embedding model. Only the graph structure information (adjacency matrix) of each view is input into this model. • PMNE [START_REF] Liu | Principled multilayer network embedding[END_REF]: Encompasses three multi-view graph embedding methods, including network aggregation PMNE (n), results aggregation PMNE (r) and layer co-analysis PMNE (c).

• RMSC [START_REF] Xia | Robust multi-view spectral clustering via low-rank and sparse decomposition[END_REF]: A multi-view spectral clustering method that uses Markov chains and low-rank decomposition. • PwMC and SwMC [START_REF] Nie | Self-weighted Multiview Clustering with Multiple Graphs[END_REF]: PwMC is a parameter-weighted multiview graph clustering method, while SwMC is a self-weighted multi-view graph clustering method. • O2MA and O2MAC [START_REF] Shaohua Fan | One2multi graph autoencoder for multi-view graph clustering[END_REF]: O2MAC is also an autoencoder-based multi-view graph clustering method. O2MA is a simplified version of O2MAC with the clustering loss removed from the objective function.

• DMGI [START_REF] Park | Unsupervised attributed multiplex network embedding[END_REF]: This is an unsupervised embedding method for attributed multiplex network embedding. This approach is only applicable to datasets with one set of features and multiple graphs.

• MvAGC [START_REF] Lin | Graph Filter-based Multi-view Attributed Graph Clustering[END_REF]: Performs graph filtering to do multi-view attributed graph clustering. • MAGC [START_REF] Lin | Multi-view attributed graph clustering[END_REF]: A multi-view graph clustering method that utilizes both node attributes and graphs.

Experimental Settings

We use the clustering results reported in the original papers where possible. When performing our own tests we tried to follow the setups prescribed by the authors of the different models as faithfully as possible. For our model, we set the maximum number of iterations to 30, the tolerance to 0 and 𝑓 = 𝑘 + 1 in all experiments.

We performed experiments with different hyper-parameter values for 𝛽 and 𝜏. We did a tf-idf normalization of the inputs to our model, and we also centered the data after neighborhood propagation. For the values of 𝛽 and 𝜏, we try 𝛽 ∈ {.2, 1, 2} and 𝜏 ∈ {1, 10, 100} and we report the best results. The different experiments were run on the same machine with two Intel(R) Xeon(R) CPU @ 2.20GHz and 13GB RAM. Most of the source codes in the official repositories of the baselines were not optimized for GPU. Note that the results reported for our method are the averages of five runs.

Experimental Results

Below we study in detail the results from our comparisons and highlight the interest of LMGEC.

Clustering Results. Tables 2 and3 show the results of our experiments for the clustering task. Some of the results for ACM, DBLP, IMDB and Amazon Photos are taken from [START_REF] Shaohua Fan | One2multi graph autoencoder for multi-view graph clustering[END_REF][START_REF] Lin | Graph Filter-based Multi-view Attributed Graph Clustering[END_REF][START_REF] Lin | Multi-view attributed graph clustering[END_REF], while results for Wiki are those that we obtained in our experiments. The pattern that emerges is that methods combining multi-view information tend to outperform those using single-view information. Our model LMGEC consistently achieves competitive performances, outperforming other models on ACM, DBLP, IMDB, Amazon Photos and Wiki on most metrics, and being competitive on IMDB, where it has the second best results on two out of four performance metrics. Overall, our model offers the best results in 15 out of 20 cases and has the best or second best results in 18 out of 20 cases, showing that it is competitive despite its simple nature. Note that 3). for datasets with multiple features, in our experiments we used only the baselines that were the best performing (on average). We can see the benefits of our model from tables 2 and 3 and from figure 4, where the performance of LMGEC on individual views is shown against the consensus performance; the consensus performance is consistently better than for the individual views. In some instances LMGEC applied to the individual views even outperforms state-of-the-art models, for example, on ACM, Amazon Photos and Wiki.

Embedding Results. Figure 3 depicts the embeddings produced by LMGEC on the different datasets by projecting them onto a 2dplane using t-SNE. A clustering structure is visible on all datasets apart from IMDB, where the embeddings are not very well separated.

Efficiency Results. We report the training times of our method in table 4 as well as those of the best performing (on average) baselines in our experiments. Our model is consistently much faster than other models, improving on the training time of the second fastest model (MvAGC) by 75%, 89%, 85%, 48% and 86% on ACM, DBLP, IMDB, Wiki and Amazon Photos respectively. Sensitivity Analysis. In our experiments we tried various values for the 𝛽 and 𝜏 hyperparameters. Figure 5 illustrates the performance of LMGEC for different pairs of these parameter values on the different datasets and for the different clustering metrics. We see that the on most datasets the performance remains fairly constant, which is an indication of LMGEC's robustness. The exception is ACM, where LMGEC is sensitive to the temperature parameter 𝜏 because of the presence of uninformative views. We discuss this in greater detail in the following paragraph. As a rule of thumb, we suggest taking 𝜏 = 10 and 𝛽 = 1.

Robustness in the face of noisy views. In real applications noisy data sources are not uncommon and can impair the performance of multi-view models. Since LMGEC takes into account the importance of the different views via a weighting scheme based each view's inertia, it is able to filter out noisy views by increasing the temperature 𝜏 of the softmax function used in computing {𝛼 𝑣 } 𝑣=𝑉 𝑣=1 . Tables 2 and3 and figure 4 report the clustering performance of LMGEC on each individual view for the different datasets, as well as the consensus performance. In the case of DBLP we may consider that the first view is noisy, since LMGEC performs considerably less well on this view than on the second and third views. We remark, however, that the consensus performance is not influenced by the presence of this noisy view, which shows the robustness of LMGEC in the face of noise. The same is true of Wiki as regards the first view, albeit less significantly than for DBLP, since the performance gap is not as flagrant w.r.t the other views.

CONCLUSION

In this paper we proposed a simple linear additive model that addresses the dual tasks of multi-view attributed graph representation learning and multi-view attributed clustering in a unified framework. This model is more generic than most state-of-the-art approaches in the sense that it can deal with any number of graph structures and/or any number of feature sets. Experiments showed that our model is competitive with more complex state-of-the-art models, outperforming these models on most benchmarks in terms of both performance and computation time.

Figure 1 :

 1 Figure 1: Schematic representation of LMGEC.

Figure 2 :

 2 Figure 2: Evolution of the loss value across iterations using BCD for LMGEC.

Figure 3 :

 3 Figure 3: Two-dimensional projections of the LMGEC embeddings using t-SNE colored according to the real class labels.

Figure 4 :

 4 Figure 4: Performance of LMGEC on each individual view vs. its consensus performance when considering all views on ACM, DBLP and IMDB (for the other datasets see table3).

Figure 5 :

 5 Figure 5: Sensitivity analysis of the parameters of LMGEC on the graph topology heterogeneous datasets.

 Algorithm 1: Block Coordinate Descent (BCD) for LMGEC 𝑑×𝑓 1 ∀𝑣 H 𝑣 ← A 𝑣 X 𝑣 ; 2 ∀𝑣 Initialize W 𝑣 through a truncated SVD on H 𝑣 ; 3 ∀𝑣 Compute 𝛼 𝑣 using formula (10); 4 Initialize G and F through a k-means on 𝑣 𝛼 𝑣 H 𝑣 W 𝑣 ; 5 while change in loss > 𝜖 and max_iter not reached do 𝑣 𝛼 𝑣 ∥H 𝑣 -GFW ⊤ For simplicity, we suppose that 𝑓 ∈ 𝑂 (𝑘), that 𝑑 1 , . . . , 𝑑 𝑉 ∈ 𝑂 (𝑑) and that |E 1 |, . . . , |E 𝑉 | ∈ 𝑂 (|E |). We also suppose that 𝑘 << 𝑛, 𝑑, which is almost always the case in real-world attributed graph datasets. Note that in what follows, the multiplication of matrix G with another matrix amounts only to a re-indexing of this other matrix, because of the structure of G. Updating {W 𝑣 } 𝑣=𝑉 𝑣=1 . Like their initialization steps, this step takes roughly 𝑂 (𝑣𝑛𝑑 log(𝑘)). • Updating G. The rule associated with this step takes 𝑂 (𝑛𝑘 2) computations. • Updating F. This rule is computed in 𝑂 (𝑣𝑛𝑑𝑘), as a result of computing the embeddings for the different views H 𝑣 W 𝑣 . • Objective Value Calculation. The computation here can be performed in 𝑂 (𝑛𝑑). • Overall Complexity. Altogether, the total computation time for our algorithm is 𝑂 (𝑣 |E |𝑑 + 𝑡𝑣𝑛𝑑𝑘), where 𝑡 is the number of iterations of LMGEC.

	𝑣 ∥;
	10 end
	4.5 Complexity Analysis
	• First-order Neighborhood Propagation. This step consumes
	roughly 𝑂 (𝑣 |E |𝑑) operations.
	• Initializing {W 𝑣 } 𝑣=𝑉 𝑣=1 . This step takes 𝑂 (𝑣𝑛𝑑 log(𝑘)) when us-
	ing a randomized SVD algorithm.
	• Computing {𝛼 𝑣 } 𝑣=𝑉 𝑣=1 . Here it is necessary to compute the inertia
	as well as the sets {G 𝑣 } 𝑣=𝑉 𝑣=1 and {F 𝑣 } 𝑣=𝑉 𝑣=1 for each view, totalling
	around 𝑂 (𝑣𝑛𝑑𝑘) operations.

Input : -Sequence of views {(A 𝑣 , X 𝑣)} 𝑣=1,...,𝑉 -Number of clusters 𝑘 -Embedding dimension 𝑓 -Temperature 𝜏 -Tolerance 𝜖 -Maximum number of iterations max_iter Output : -Consensus membership indicator G ∈ {0, 1} 𝑛×𝑘 -Consensus embedding centers F ∈ R 𝑘×𝑓 -Consensus embedding matrices W ∈ R 6 ∀𝑣 Update W 𝑣 using formula (16); 7 Update G using formula (13); 8 Update F using formula (15); 9 𝑙𝑜𝑠𝑠 ← • Initializing G and F. Computing the summation 𝑣 𝛼 𝑣 H 𝑣 W 𝑣 and the application of 𝑘-means on it amounts to 𝑂 (𝑛𝑑𝑘) operations, where the number of iterations of k-means is held constant.

•

Table 1 :

 1 Characteristics of the Datasets. For wiki, there are two topologies and two features matrices leading to four possible combinations/views.

	Dataset	Multi-view type #Views #Nodes #Features	#Edges	#Clusters
	ACM [28]	Topology	2	3,025	1,830	29,281 2,210,761	3
						11,113	
	DBLP [28]	Topology	3	4,057	334	5,000,495	4
						6,776,335	
	IMDB [28]	Topology	2	4,780	1,232	98,010 21,018	3
	Amazon Photos [23]	Features	2	7,487	745 7,487	119,043	8
	Wiki [34]	Both	4	2405 2405	4973 4973	24,357 12,025	17

Table 2 :

 2 Clustering results on ACM, DBLP and IMDB. Best results are highlighted in bold and the second best results in italic.

	Model	CA	F1	ACM NMI	ARI	CA	F1	DBLP NMI	ARI	CA	F1	IMDB NMI	ARI
	LINE-avg 0.6479 0.6594 0.3941 0.3433	0.875	0.866	0.6681 0.7056 0.4719 0.2985 0.0063 -0.009
	GAE	0.8216 0.8225 0.4914 0.5444 0.8859 0.8743 0.6925	0.741	0.4298 0.4062 0.0402 0.0473
	GAE-avg	0.699	0.7025 0.4771 0.4378 0.5558 0.5418 0.3072 0.2577 0.4442 0.4172 0.0413 0.0491
	MNE	0.637	0.6479 0.2999 0.2486		out of memory error		0.3958 0.3316 0.0017 0.0008
	PMNE(n) 0.6936 0.6955 0.4648 0.4302 0.7925 0.7966 0.5914 0.5265 0.4958 0.3906 0.0359 0.0366
	PMNE(r)	0.6492 0.6618 0.4063 0.3453 0.3835 0.3688 0.0872 0.0689 0.4697 0.3183 0.0014 0.0115
	PMNE(c) 0.6998 0.7003 0.4775 0.4431		out of memory error		0.4719 0.3882 0.0285 0.0284
	RMSC	0.6315 0.5746 0.3973 0.3312 0.8994 0.8248 0.7111 0.7647 0.2702 0.3775 0.0054 0.0018
	PwMC	0.4162 0.3783 0.0332 0.0395 0.3253 0.2808	0.019	0.0159 0.2453 0.3164 0.0023 0.0017
	SwMC	0.3831 0.4709 0.0838	0.018	0.6538 0.5602	0.376	0.38	0.2671 0.3714 0.0056 0.0004
	O2MA	0.888	0.8894 0.6515 0.6987	0.904	0.8976 0.7257 0.7705 0.4697 0.4229 0.0524 0.0753
	O2MAC	0.9042 0.9053 0.6923 0.7394 0.9074 0.9013 0.7287	0.778	0.4502 0.4159 0.0421 0.0564
	DMGI	0.8973 0.8985 0.6974 0.7296 0.8722 0.8691 0.6931 0.7034 0.5827 0.4253 0.1317 0.1457
	MvAGC	0.8975 0.8986 0.6735 0.7212 0.9277 0.9225 0.7727 0.8276 0.5633 0.3783 0.0371 0.0940
	MAGC	0.8806 0.8835 0.6180 0.6808 0.9282 0.9237 0.7768 0.8267 0.6125 0.4551 0.1167 0.1806
	LMGEC 0.9302 0.9311 0.7513 0.8031 0.9285 0.9241 0.7739 0.8284 0.5893 0.4267 0.0632 0.1294

Table 3 :

 3 Clustering results on Amazon Photos and Wiki. Additionally, we report the performance of LMGEC on each individual view (for the other datasets see figure4). Note that Amazon Photos has only two views, while Wiki has four.

	Model	CA	Amazon Photos F1 NMI	ARI	CA	F1	Wiki	NMI	ARI
	LMGEC (view 1) 0.6726 0.6451 0.5903 0.4865 0.4757 0.4154 0.4772 0.2944
	LMGEC (view 2) 0.6835 0.6164 0.5971 0.4896 0.5181 0.4463 0.5079 0.3226
	LMGEC (view 3)	-	-	-	-	0.5202 0.4333 0.5383 0.3401
	LMGEC (view 4)	-	-	-	-	0.5264 0.4384 0.5362 0.3455
	MAGC	0.4511 0.3359 0.4297 0.1127 0.4972 0.4084 0.5139 0.2707
	MvAGC	0.6775 0.6397 0.5237 0.3968 0.3297 0.2432 0.3531 0.0864
	LMGEC	0.7117 0.6500 0.6114 0.5123 0.5333 0.4501 0.5408 0.3496

Table 4 :

 4 Training times. Best results are in bold, second best results are in italic. DMGI is only applicable to datasets with one set of features.

	Model	ACM	DBLP IMDB Wiki Amazon Photos
	DMGI	943.19 3117.87 843.96	-	-
	MvAGC	14.48	26.28	32.97	34.73	139.14
	MAGC	139.93 242.99 395.45 150.93	1661.64
	LMGEC 3.49	3.07	4.96	18.06	19.42

ACKNOWLEDGMENTS

This work has been funded by Informatique Caisse des Dépôts et Consignations (ICDC), Association Nationale de la Recherche et de la Technologie (ANRT), and Idex-Spectrans of UP Cité.