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In Delay-Tolerant Networks (DTNs), humans are the main carriers of mobile devices, signifying that human mobility can be
exploited by extracting nodes’ interests, social behavior, and spatiotemporal features for the performance evaluation of DTNs
protocols. This paper presents a new mobility model that describes students’ daily activities in a campus environment. Unlike the
conventional random walk models, which use a free space environment, our model includes a collision-avoidance technique that
generates an escape path upon encountering obstacles of different shapes and sizes that obstruct pedestrian movement. We
evaluate the model’s usefulness by comparing the distributions of its synthetic traces with realistic traces in terms of spatial,
temporal, and connectivity features of human mobility. Similarly, we analyze the concept of dynamic movement clusters observed
on the location-based trajectories of the studied real traces. The model synthetically generates traces with the distribution of the
intercluster travel distance, intracluster travel distance, direction of movement, contact duration, intercontact time, and pause

time similar to the distribution of real traces.

1. Introduction

Mobility patterns play an essential role in the performance of
wireless networks with intermittent connections such as
Delay-Tolerant Networks (DTNs). Some of the features
associated with these networks include persistent discon-
nections, absence of simultaneous end-to-end communi-
cation routes, sparse topology, long delays among nodes due
to mobility, and sparse deployment of nodes. However, we
can achieve a weak form of connectivity in DTNs by
exploiting the temporal dimension and node mobility [1].
Considerable research efforts have been put recently to
enable communications between network entities with in-
termittent connectivity [2].

Moreover, the forwarding opportunities of the DTNs
depend on the patterns of mobility that dictate contact
opportunities between nodes for reliable information for-
warding. Interestingly, humans are the main carriers of
mobile devices. Therefore, there is a need to understand the
underlying behavior of pedestrian mobility, the driving

forces that influence its motivation to move, and the re-
pulsive forces that describe its interaction with environ-
mental constraints. These are essential for designing a
realistic mobility model to be used as a tool for wireless
network protocol evaluation, hence the need for a model
based on the empirical study of pedestrians’ mobility and
interaction with other objects in the environment to pave the
way for better event management, emergency rescue op-
eration, and congestion prediction in a narrow bottleneck.

This study investigated the mobility characteristics of
pedestrians using real traces and proposed an obstacle-based
mobility model for the DTNs that closely replicates the
empirical features observed in the analyzed traces and
generates spatial, temporal, and connectivity features similar
to the features generated by realistic human mobility to
enhance opportunistic forwarding for the DTNs and sup-
port pedestrian collision avoidance in the event of crowd or
emergency rescue operations.

Several mobility models have been proposed in [3-10],
which can be categorized into synthetic or trace-based. The
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synthetic mobility models are less realistic as compared to
the trace-based ones. On the contrary, the trace-based
models are much more difficult to develop than the synthetic
models. In addition to the models that describe pure human
mobility, the models presented in [11-13] have explored the
concept of cognitive science modeling using the driving
forces that influence pedestrians’ internal motivation to
move in a given direction and speed and the repulsive forces
that describe pedestrian interaction with other pedestrian
and environmental constraints such as obstacles using
empirical data obtained from laboratory-controlled exper-
iments. In this regard, we concentrate on the pedestrians’
interaction with the static and moving obstacles.

Starting with the conventional mobility models, random
walks are the most widely used synthetic models for the
analysis of node mobility [3, 4]. Random walk models
generate mobility patterns in which mobile nodes display
completely random behavior. With this regard, only a few
wireless networks (e.g., sensor network for animal tracking
[14, 15]) can display such kind of randomness. In contrast,
the majority of wireless networks strictly obey certain
mobility rules. Pedestrian mobility is not completely random
but influenced by features specific to humans, which re-
semble intentional mobility toward points of attraction.

On the contrary, the random waypoint model [8, 16, 17]
is considered the first synthetic model that attempts to
model intentional human movement, which is not captured
in the random walk models. Nevertheless, the model was
shown to be unrealistic in [9] due to its failure to provide a
steady state, resulting in the inconsistent decrease of an
average node speed over time.

This property can lead to unreliable results. Some simple
fixes and modifications to the random waypoint presented in
[9] still fail to capture the realistic behavior of intentional
human mobility to some locations due to the strength of a
social relationship or connection. For instance, a student
might go to class for the lecture and to the cafeteria to eat or
visit a nearby dormitory friend.

The node’s movement is not restricted to a pathway in
the random walk and random waypoint models. The
Manhattan mobility model [18], on the contrary, restricts
the movement of a node to the pathway in the simulation
area.

A generalization of several classical models that attempt
to develop synthetic mobility models for mobile networks
and satisfy some statistics was presented in [6, 7, 19, 20].
Some of the statistical features studied are the flight dis-
tribution (i.e., a straight line distance covered between two
consecutive waypoints), pause time distribution (i.e., the
amount of time a node pauses at a waypoint), and inter-
contact time distribution (i.e., the amount of time between
two contacts of the same pair of nodes) regarding different
scales of time and space.

To develop mobility models using empirical data, which
is the concept adopted in our study, studies in [21-23]
extract detailed mobility data from real traces and calibrate
the uncovered mobility features in their models. The studies
in [21, 22] recognize opportunities when the user is asso-
ciated with the same Wi-Fi access point; the idea was
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extended in Kim et al. [23] by considering a situation when
the users are within the communication range of each other.
Kim et al. [23] proposed a synthetic mobility model from
user mobility characteristics extracted from the wireless
network traces syslog but only considers Wi-Fi access points,
which have a higher granularity of mobility trajectories. In
[11], a controlled laboratory experiment was conducted to
study the behavioral effects of interactions between pedes-
trians. The study extracts individual behavioral laws from the
statistical features observed in the empirical data.

The contributions of this paper are threefold:

(1) We conduct a characterization of spatial, temporal,
and connectivity features of human mobility using
real traces.

(2) We conduct an in-depth study on the movement
displacements and directions within the movement
clusters characterized by short walks within a con-
fined area.

(3) We propose an Escape Path Obstacle-based Mobility
Model (EPOM) for the campus DTNs. We show that
the model is generic enough to be fine-tuned with a
few parameters to show matching characteristics
with the spatiotemporal and connectivity features
observed in the real traces.

This paper is organized as follows: Section 2 presents a
review of the related works. Section 3 explains the charac-
terization of human mobility. Section 4 describes the Escape
Path Obstacle-based Mobility Model and its submodels.
Section 5 describes the implementation of the proposed
model. Section 6 presents the settings and the results of the
simulations. Finally, the conclusion and future perspectives
are given in Section 7.

2. Related Work

The increasing interest of the research community on the
DTNs and the impacts of mobility on their performance has
led to the development of several mobility models focusing
on different mobility features [6, 7, 19, 20, 24]. Nevertheless,
the conventional synthetic stochastic models [3, 4, 9, 25, 26]
meant for the performance analysis of network protocols in
the early ad-hoc networks are insufficient to capture users’
intentional behaviors and social attractions. Several works
have investigated the adaptability of the conventional
models in the next generation mobile networks such as
DTNs, Vehicular Ad-hoc Networks (VANETSs), and Wire-
less Sensor Networks (WSNs). The studies found that hu-
man mobility is characterized by intentional mobility as
opposed to the random assumptions in the conventional
models [7, 19, 20].

Although synthetic models that capture intentional
human behavior are more realistic than the conventional
models, the trace-based models [22, 27] appear to be more
realistic because they are mostly generated for a specific
scenario and only for a few nodes. In contrast, the non-
conventional synthetic models [7, 19, 20] can generate
synthetic mobility traces for a large number of nodes



Journal of Advanced Transportation

considering mobility constraints such as obstacles and
pathways. The generated traces are used to evaluate network
protocols.

In this regard, an in-depth understanding of the inter-
action between pedestrians and pedestrians with other
obstacles in a realistic domain aids in simulating emergency
scenarios for pedestrian safety [11-13].

Lee et al. [6] employed the concept of fractal waypoints,
Least Action Trip Plan (LATP), and a walker model to
generate regular patterns of daily human mobility. Their
model is based on daily routine activities such as going to the
office or attending a lecture. However, the model did not
capture an event’s occurrence time and the repetitiveness
observed in the people’s realistic daily activities.

Munjal et al. [7] presented a mobility model that mimics
real human mobility patterns by relaxing an assumption of
random mobility with a notion of a mobility influence; that
is, nodes mobility is influenced by factors such as cluster size.
The model studies seven mobility statistical features: the
flights, intercontact time, pause time, long flight due to
popularity, closest mobile node visits, community interac-
tion, and mobile node distribution. However, the simulation
space in Munjal et al. [7] is a free space without restricting
obstacles, which is not always realistic in a real environment
such as a campus setting characterized by buildings of
different shapes and sizes.

In an attempt to develop a mobility model that captures
people’s agendas or activities, several models were developed
[19, 20, 24, 28, 29]. Ekman et al. [19] presented a Working
Day Model (WDM) that emulates the workers’ daily ac-
tivities such as going to the office, going for evening ac-
tivities, or returning home. The model uses map-based
movement on the concept of sources destination. It also uses
a timescale to switch between different submodels. Ekman
et al. [19] showed the similarities between the distribution of
the synthetic traces of his model and that of iMotes traces
from the Cambridge experiment. However, they did not
cover the impacts of obstacles, such as the floor, walls, and
other constraints, which affect nodes’ mobility.

In [29], the characteristics of human mobility were
described by constructing multidimensional mobility space,
divided into individuality metrics, pairwise encounter
metrics, and group metrics. The model generates node
trajectories that show more human mobility characteristics,
but it was validated using a conventional model, that is, the
random waypoint mobility model.

Students’ daily activities on the campus were studied by
Zhu et al. [20] with a focus on the contact time, intercontact
time, and contact per hour distributions. This work did not
consider the impacts of obstacles in restricting the free
movement of the mobile nodes and a possible signal ob-
struction by buildings of different shapes and sizes in the
campus environment.

Social mobility models were presented in [30, 31].
Hrabcak et al. [24] presented a Students Social Based Mo-
bility Model (SSBMM). Their work was inspired by the daily
routine of a student’s life. The model distinguishes between
the student’s free time and the mandatory time upon which
social and school activities are simulated. They compare

their model with the classical random walk model, even
though the random walk model cannot capture the repet-
itiveness and heterogeneity of time and space in human
mobility.

Wang et al. [32] proposed an obstacle-based mobility
model that generates a smooth trajectory of a Bezier curve
for escaping obstacles. Human mobility trajectories for es-
caping obstacles such as building or road diversion are not
always smooth curves in real scenarios. In addition, the
model did not capture movement to attraction factors such
as points of interest, which represents human social
behavior.

The Obstacle Mobility (OM) model developed by Jar-
dosh et al. [33] models the environmental obstructions
which affect both movement and signal propagation. In this
model, the node paths and points are constructed from a
Voronoi diagram based on the obstacle position on the
campus-like simulation area.

As an extension to [33], Papageorgiou et al. [34] pro-
posed a model that allows nodes to move around the obstacle
but is not limited to a defined path. The model considers
rectangular obstacles that limited its ability to capture the
realistic feature of an environment with obstacles of different
shapes and sizes.

A random obstacle-based mobility model for DTN was
presented by Wu et al. [28]. In this model, the node moves
from the initial location to the destination via the shortest
path if there is no obstacle along the path; otherwise, the
node recursively selects the node’s location close to the
obstacle and moves forward. This operation is repeated until
the node reaches its destination. This model considers ob-
stacles with a rectangular shape. Similarly, an unnecessary
trip would be made in the absence of a node close to the
obstacle, especially when the destination is just behind the
obstacle.

Wang et al. [32] proposed an obstacle-based mobility
model that generates a smooth trajectory of a Bezier curve
for escaping obstacles. Human mobility trajectories for es-
caping obstacles such as building or road diversion are not
always smooth curves in real scenarios. In addition to that,
the model did not capture movement to attraction factors
such as points of interest that represent human social
behavior.

Moussaid et al. [11] conducted an experimental study of
the behavioral mechanisms underlying self-organization in
human crowds to study an individual pedestrian behavior.
In the study, an individual pedestrian movement behavior is
characterized by the triplet: the internal acceleration f?, wall
interaction f¥"*!!, and individual interaction f;. To simplify
the complexity of the assumptions, a study that uses simple
rules to determine pedestrian behavior and crowd disasters
was presented in [12]. The study used simple heuristics to
determine the movement direction and possible choice of
desired speed during static and moving obstacle encounters.

Some of the research works in the literature have studied
mobility characteristics in real traces to develop synthetic
mobility models that exhibit the observed mobility features
in the real traces. Kim et al. [23] analyzed mobility char-
acteristics, including pause time, speed, and direction of



movements and developed a software model that generates
realistic user mobility tracks but the mobility trajectory
granularity of the studied trace depends on the wireless Local
Area Network (WLAN) access point locations and hence
may not be applicable to higher mobility DTN.

Real mobility traces at Dartmouth College [35] and
Disney World theme park in Orlando [36] have been an-
alyzed in [37] to obtain movement characteristics. Conse-
quently, they obtained a visiting probability of people,
distribution of movement speed, and pause time from the
traces. Their proposed model is configured with the derived
distribution in the simulation.

However, several works have proposed different tech-
niques for mining mobility patterns or mobility behaviors
from the trajectory data.

Ghosh et al. [38] proposed a mobility pattern mining
framework to extract mobility association rules from taxi
trips. The proposed framework has three modules: the input
module, the spatiotemporal analysis module, and the mo-
bility association generation module. The input module
processes the Taxi GPSlog, road network, and Point-Of-
Interest and generates transactions using application-spe-
cific mobility rule templates. The spatiotemporal analysis
model analyses travel demand data and partition regions
based on the travel demand and then generates mobility
flow. Lastly, the mobility association generation module
delineates how it can be used to understand urban dynamics.

Yue et al. [39] proposed a trajectory clustering technique
for mobility-behavior analysis. In their approach, they
formulate mobility analysis as a clustering task. They de-
veloped an unsupervised learning technique that resolves the
problem of lack of labeled trajectory data that support su-
pervised learning, in which data does not necessarily need to
be labeled.

Rahman et al. [40] presented a dynamic clustering
technique based on the processed COVID-19 infection data
and mobility data. In this work, clusters can expand and
shrink based on the merit of the data.

This study presents an Escape Path Obstacle-based
mobility Model (EPOM) for a campus Delay-Tolerant
Network. Our model covers aspects such as daily routines,
heterogeneity of time and space, skewed location visiting,
and the discovered dynamic cluster evolution. We also
develop a novel strategy for collision avoidance between
pedestrians and obstacles of different shapes and sizes. Our
model mimic more realistic behavior observed in the real-
istic traces.

Table 1compares existing works and the EPOM mobility
model in terms of the most widely studied mobility features
and the evaluation methods. Symbol X indicates that the
existing work studied the mobility feature while symbol x
indicates the opposite.

3. Characterization of Human Mobility

Several efforts have been devoted to investigating the
properties of human mobility and uncovering hidden pat-
terns [23, 41, 42]. Due to the dynamic nature of human
mobility, there is no consensus on its characteristic features.

Journal of Advanced Transportation

The features that require a thorough investigation include
but are not limited to some of the fundamental features such
as travel distance and pause time. However, there is a need to
understand the features of a movement cluster within the
community, such as the intracluster travel distance and
direction of movement, though we explicitly study some
fundamental features for the whole domain: the connectivity
features (i.e., contact and intercontact time), the spatial
feature (i.e., travel distance), and the temporal feature (i.e.,
pause time). The movement direction within the clusters, to
the best of our knowledge, has been assumed to be random
[41] or reported for the entire domain [23, 42].

In this study, we use daily GPS track log collected from
two different university campuses (NCSU and KAIST) for
the location-based trace [36]. Garmin GPS 60CSx handheld
receivers are used for data collection which are WAAS
(Wide Area Augmentation System) capable with a position
accuracy of better than three meters 95 percent of the time,
in North America. The GPS receivers take reading of their
current positions at every 10 seconds and record them into a
daily track log. The data are available at [43]. We are in-
terested in the stationary locations at which users stay.

For the contact-based trace, we use the Bluetooth en-
counters between mobile nodes from the Cambridge city
students iMote experiment [44]. The data consist of 10641
contacts between iMote devices carried by students for the
duration of about 11.43 days. The data is available at [43]
repository. We are interested in the duration at which two
devices are in contact with each other (contact duration) and
the time between two consecutive contacts between two
devices (intercontact time).

We emphasize that the cluster concept in our study
refers to the location at which a person spends much of his
time exploring the neighboring locations. Therefore, it
should not be confused with the concept in a social com-
munity, which refers to people sharing physical location,
ideas, or common goals. A person can generate more than
one cluster within his community, depending on his daily
trip schedules. Figure 1 shows the trajectory of user 16 in the
KAIST trace, creating four dynamic clusters for one day. In
our clustering, we consider only clusters that have more than
eight locations within a specified threshold.

Before clustering, we have to remove transit locations
from our traces, which is reasonable because some of the
coordinates from the GPS traces do not belong to stationary
locations; they belong to the transit locations at which a user
stays briefly on its way to its destination. Algorithm 1
summarizes the procedures for removing transit locations.
In Algorithm 1, point p;, is deleted if the distance between
pi and p;,; is greater than a distance threshold. Similarly, if
the pause time at point p; is less than a time threshold, point
pi is removed from the original trace. When Algorithm 1 is
executed, our original trace would be left with only sta-
tionary stations.

Next, we run an agglomerative clustering technique
[45] using a single linkage method, sometimes called
connectedness or minimum method and created location
clusters based on the similarity of the closest pair of
locations.
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TaBLE 1: Comparison of existing works and the EPOM mobility model in terms of most widely studied mobility features.

Features [20] (2012) [19] (2008) [7] (2011) [9] RWP [37] (2020) [34] (2009) [34] (2017) EPOM
Obstacle-aware b'e X X X X v v v
Obstacle-shape < X < < X Rectangular Irregular Irregular
shape shape shape
Travel distance X v v X X X X v
Direction of movement X X X X X X X v
Pause time X v v X v X X v
Contact time .and v v v < < X < IV x
intercontact time)
Real traces
Evaluation method Real traces Real traces Real traces Real Real traces O bstac.le .Obstac.le and
traces simulation simulation .
obstacle sim
KAIST016 Dynamic Clusters
¢
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o
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s
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WAYPOINTS
Cluster Waypoints

® Main Waypoints

F1GURE 1: The dynamic clusters of KAIST trace file 16. The blue points indicate the complete waypoints in a day, while the red points indicate
the waypoint clusters. There are four clusters associated with the user.

Initially distanceThreshold = A, waitingTimeThreshold = A,, First Point = P;, Second Point = P;, ;.
(1) if distance (P;, P;,;) > A, then
(2) remove P,
(3) if pauseTime (P;) <A, then
(4) remove P;

ALGORITHM 1: Extracting dynamic clusters from the location-based traces.



The more we know about the movement cluster prop-
erties such as a travel distance and direction of movement,
the more we can predict the behavior of a pedestrian
movement pattern for accurate design against possible
crowd congestion or emergency scenarios.

3.1. Intracluster Direction of Movement. The direction of
movement within the movement clusters has not been
studied well despite its impacts on the mobility patterns.
Nevertheless, some related works reported an aggregate
distribution of movement directions for the whole domain
instead of movement clusters [41, 42]. Our study takes a
different approach; it studies the direction of movement
within dynamic clusters to understand the direction angle’s
properties.

Figure 2 shows a weighted Probability Density Function
(PDF) of the movement direction within clusters from
NCSU trace with a bin size of 1°. We measure the direction of
each movement by its movement duration. We can see that
the direction of movement is biased symmetric toward some
preferred locations. It implies that the movement within a
dynamic cluster is not random; it favors directions of the
popular locations. The symmetry distribution was expected
due to the possible return of nodes to their main locations
after exploring some close by points of interest. We can also
deduce that students visit common locations for their ac-
tivities, which resulted in the similar aggregated distribution
of angles with bias symmetry to angles between 90°~150° and
240°-330°, respectively. We can see that nodes move to other
sides as well, but with smaller frequencies than the direction
of the point of interest; this implies that geographical re-
strictions such as constraint movement on roads are not the
driving factor for the bias symmetry of the movement angle
distribution. On the contrary, the aggregate weighted PDF
for the whole domain is shown in Figure 3. Figure 3 shows
that though it has a symmetry shape, the direction of
movement is almost uniformly distributed within the
domain.

3.2. Intracluster Travel. We study the travel distances be-
tween consecutive locations within the cluster at which a
node spent a long time exploring neighboring locations.
We fit four parametric models on the empirical data of
KAIST intracluster travel distance as shown in Figure 4. The
distribution that best fits the data is the lognormal distri-
bution with the parameters 2.29989493 and 0.8685148 for
the log mean and log standard deviation, respectively, as
shown in Figure 5 and KS test in Table 2. This shows that
students take repeated short walks around some popular
locations such as classes, libraries, and dormitories.

3.3. Pause Time Distribution. Pause time distribution is one
of the temporal features of human mobility, which plays a
vital role in the diffusive nature of human mobility. It
dictates the amount of time a node spends at a location with
zero or close to zero velocity. Figure 6 shows four different
parametric models that fit the empirical data of the KAIST
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FIGURE 2: The bias symmetry distribution of direction angle for the
dynamic clusters (NCSU traces). The x-axis represents the angular
(units are in degrees), and the y-axis is the density of movement
toward a given direction. The bin size is 1°. Each direction is
weighted by the duration of its movement.

NCSU Domain

Z 0180
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F1GURE 3: The uniform distribution of direction angle for the whole
domain (NCSU traces). The x-axis represents the angular (units are
in degrees) and y-axis is the density of movement toward a given
direction. The bin size is 1°. Each direction is weighted by the
duration of its movement.

trace. After the KS test of gof, we found that power-law
distribution is plausible, and hence there is no enough ev-
idence to support its rejection as shown in Table 3. Figure 7
shows that the power law has a threshold value (xmin) of
four minutes (240 s) and a cut-off value of P (A (¢)) =16 hrs.
The power-law pause time distribution indicates a scale-free
characteristic.
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TaBLE 2: KAIST intracluster distance gof table.

Dist gof Ntails Crit. Val Remark
Lognorm 0.01564494 815 0.04764 Accept
Power law 0.03181678 1900 0.03120 Reject

3.4. Intercontact Time. In this section, we characterize the
empirical data from iMotes experiments at Cambridge [44].
The data includes some traces of Bluetooth sightings by
groups of users carrying small devices (iMotes) for five days.
Our goal is to extract the distribution of intercontact time
from the dataset for further analysis. Figure 8 shows the
aggregate CCDF distribution for the intercontact duration of
the empirical data. The distribution follows a power-law
distribution with the exponent=1:4, but the power-law
decay is overweight by an exponential decay toward the end
of the distribution. The distribution is called a truncated
power law, similar to the results presented in [6]. The power
feature of the intercontact time distribution is interesting
because it dictates the scale-free properties of an opportu-
nistic network.

KAIST Pause Time

Pause Time CCDF

— empiral e LogNormal
Power Law ~ ---- weibul
—— exponential

FiGure 6: Four (4) different distributions fitted to the KAIST trace
pause time.

TaBLE 3: KAIST pause time gof table.

Dist gof Ntails  Crit. value ~ Remark
Power law 0.02367702 850 0.04665 Accept
Exponential 0.1315407 386 0.06922 Reject
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FIGURE 7: A pause time distribution for the KAIST trace. The
distribution exhibits power-law decay with exponential cut-oft.

4. EPOM Model

EPOM was developed by integrating several submodels or
communities into one functional model. Each submodel
captures a specific, realistic activity of a campus environment
as observed in the empirical data of the studied traces [36, 44].
We have categorized the realistic activities into the home,
study, eating, sports, and off-campus activities, respectively.
In addition to the submodels, a switching model plays an
important role in switching the status of nodes between the
submodels; this is referred to as intercluster movement. It
helps to capture the realistic nature of students’ lives on a
campus, which is viewed as repetitive and heterogeneous in
time and space. When a node changes its status (e.g., from
home to study), it uses the preferred method of transport to
move to its new destination. We adopted two methods of
transport in the model: walking and bus.
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The EPOM model captures personnel (e.g., faculty/de-
partmental staff) movement, such as walks to the cafeteria
for eating, and off-campus activities such as shopping.

One of the distinguishing features of EPOM from the
previous works in [7, 8, 19, 20] is the consideration of static
and moving obstacles along the movement path from the
source to the destination. The EPOM ensures collision-free
movement along the trajectories. We model this by strate-
gically placing objects of different shapes and sizes on the
movement trajectories and developing an algorithm that
generates detour paths. This is reasonable because there is a
need for a path to escape a non-moving pedestrian on the
movement path. The pictorial description of different sub-
models is depicted in Figure 9.

4.1. Home Submodel. Home is the starting point of the
simulation. Initially, a predefined location is assigned to each
node in the home location file. These locations are used for
sleeping or node’s free time. Daily routine activities of a node
start in the morning when it wakes up from the sleeping
state. Each node is assigned a wake-up time, which deter-
mines when the node should wake up from sleeping. The
wake-up time obeys a normal distribution with the mean
seven o’clock and configurable standard deviation.

After waking up, a node checks its lecture schedules and
decides whether to go for a lecture or do some in-home
activities such as cooking, watching the morning news,
laundry services, or visiting a friend at the nearby dormitory.
These short walks account for the possible evolution of the
first dynamic cluster. Some nodes leave their home without
doing any internal activities. Depending on the time of the
day and a node lecture schedules, a node can switch to other
submodels from home. For example, a node may switch to
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the sport submodel in the evening to play games; it can
switch to eating submodel for dinner or switch to off-
campus submodel for shopping or visiting a friend in an-
other location. This flexibility of EPOM captures social
influence and heterogeneity in time and space.

4.2. Study Submodel. We assigned specific locations on the
map as lecture rooms. If a node is in the lecture room, it
walks within the lecture room and pauses for the lecture
duration. The pause time distribution is location-dependent
in our model. The pause time for the lecture is different from
the pause time at the cafeteria. However, the pause time at
nonspecific locations is derived from the truncated power-
law distribution observed in the empirical data. We turn off
the pause time completely during the lecture period for 80
percent of the nodes; only 20 percent can make some
movement within the lecture room; this is to capture the
realistic behavior of students for changing desks or forming
discussion groups. At the end of the lecture, a node decides
to walk to the laboratory or library. This internal movement
is modeled as an intracluster walk within the vicinity of the
study area with the libraries, laboratories, and other study-
related locations as waypoints.

4.3. Eating Submodel. Some strategic locations on the map
are defined as cafeterias. When it is time for lunch or dinner,
a node may switch to eating submodel and move to the
cafeteria to eat. The time distribution for eating is uniformly
distributed, starting from 11:00 a.m. to 2:00 p.m. for lunch
and 6:00 p.m. to 8:00 p.m. for dinner. While in the cafeteria,
a node waits, makes some intracluster walks, gets served,
then eats, and switches to another submodel. During the
eating activities in a large cafeteria, we observed a large
crowd of students within a confined location, hence, the
need for collision avoidance to allow smooth flow of
students.

4.4. Sport Submodel. We define some points on the map as
playgrounds; the time for sport is also defined. A node in the
sport submodel spends some time at the playground
watching or doing some random intracluster movements
around the vicinity of the playground.

4.5. Off-Campus Submodel. The off-campus submodel
models all activities not included in the home, school, eating,
and sport submodels. These activities include shopping,
evening walk, or visiting friends. We define some points of
interest (Pols) on the map edges as meeting points. We have
two types of Pols: location preferences Pol and Bus Normal
Pol with uniform preferences. Mobile nodes visit such lo-
cations in a group to capture group mobility characteristics
and social influences of human mobility and individually to
capture independent mobility freedom. The minimum and

maximum sizes of a group are defined in the default setting
file.
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4.6. Transport Submodel. This submodel is used to move
between different submodels when a node switches mode.
We define two means of transport in our model: walking and
bus riding. Most nodes walk while a bus is mostly used for
oft-campus activities. The probability of moving with a bus is
configured in the setting. The heterogeneity in the transport
submodel has a great impact on the performance of routing
protocol for DTN; high-speed nodes can deliver messages to
a long-distance destination quickly.

Bus service is accessible by the node at predefined bus
stops. Initially, the node would walk to the nearest bus
station and wait for the bus; when the bus arrives, the node
enters the bus and drops at the bus stop closest to its
destination. The node switches to a walking submodel to
complete its journey to the final destination.

The nodes in our model move on the map; this is another
aspect of realism. The maps contain the homes, classes,
cafeterias, playgrounds, shops, Pols, and bus stops. The map
data are essential for restricting the movement of the nodes
to specific areas, which helps increase node localization. It is
used to distribute nodes in the simulation area uniformly.

The EPOM model generates mobility patterns through
intercluster and intracluster movements. Therefore, at each
time instant, a node is either in intercluster or intracluster
movement mode controlled by the two-step Markov model
in Figure 10. When a node is in the intracluster movement
mode, it explores the point of interest within its community
and walks to the preferred POIs or generates a travel distance
chosen from a lognormal distribution bounded by the
community size.

The direction of movement is chosen from a bias di-
rection symmetry distribution in the range [0, 27 [; see
Figure 2. The lognormal distribution of the intracluster

1-P L= Py

~ Vintra
Pitra

Inter-cluster Movement Intra-cluster Movement

Pintcr
FiGUure 10: Two steps Markov model for switching between the
intercluster and intracluster movements.

travel distance means nodes visit closer locations more
frequently than distant locations.

4.7. Obstacle Submodel. The obstacle submodel describes
how the EPOM model handles collision avoidance between
nodes and other obstructing objects along their movement
trajectories. In the case of static obstacles with zero speed,
such as pedestrians standing on the road, at the middle of the
corridors, or any other stationary object, we define the lo-
cation of different obstacles on the map using OpenJUMP
(http://openjump.org/) geographic information system
program as in Figure 11.

The transport submodel moves the node from the
current location (e.g., home) to the destination (e.g., class).

The Dijkstra shortest path algorithm calculates the
shortest path from the current location to the destination.
We have two scenarios here: in the first scenario, there is
no obstacle on the path, while in the second scenario, an
obstacle is encountered along the shortest path. In the
first scenario, a node would follow the shortest path to its
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destination without obstruction, but in the second sce-
nario, a node would explore the logic in Algorithm 2 to
generate an escape path using the following transitions:

Algorithm 2 avoids collision with an obstacle by gen-
erating an escape path as shown in Figure 12. In Algo-
rithm 2, line 1 gets the coordinates of an obstacle’s vertices
V=(A, C, D, F, E, B). Note that the shape of an obstacle
determines the number of vertices. In line 2, a user finds the
nearest vertex A. It moves to vertex A in line 4. It finds the
neighbors of vertex A (i.e., B and C) in line 5 and sets the
next escape vertex to the nearest neighbor B in line 6. It
then checks the condition in line 7; if the distance from its
current location A to the destination is less than the dis-
tance from its neighbors C and B to the destination, it
moves directly to the destination (line 8); otherwise, it
returns to line 3.

Considering a human movement behavior of walking
beside the edges of an obstructing body until it passes the
section of the obstacle that blocks it, the algorithm be-
haves similarly by creating a path beside (not on the
edges) the edges of the obstacle. Some existing works have
proposed a Bezier curve [32] or branching to the closest
neighbor node [28], which is not always realistic because a
human path of escaping obstacle cannot always be curved,
just like an isolated obstacle which may not have a closer
neighbor.

5. Model Implementation

The Escape Path Obstacle-based Movement model was
implemented on the Opportunistic Network Environment
(ONE) simulator [46, 47] as a collection of different sub-
models. ONE supported different movement models such as
the Random Waypoint Movement (RWP), Map-Based
Movement (MBM), Shortest Path Map-Based Movement
model (SPMBM), and Route-Based Movement model
(RBM). MBM is a special type of RW in which nodes move
along the map paths defined in Well-Known Text (WKT)
files. We used the Open-JUMP Geographic Information
System (GIS) program to define the location of obstacles,
homes, classes, cafeterias, playgrounds, shops, and points of
interest for off-campus activities. We created a main
movement model that inherited the extended movement
model of ONE and controlled the movement of nodes going
to school, going to the cafeteria, going to sport, going
shopping, or similar activities outside the campus, and fi-
nally returning home to sleep. The main model orders and
switches between submodels, passes the control to the
submodels responsible for different activities, facilitates the
movement to the destination by giving information about
the destination to the transport submodels, and decides on
the probability to walk or use bus based on the setting
configuration.
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Initially escapeVertex = ¢, neighbors = ¢, distToDest =
(1)  get obstacle’s vertices
(2) escapeVertex: = nearest vertex

(3) Repeat

(4) move to the escapeVertex

(5) neighbors: = neighbor vertices
(6) escapeVertex: = nearest neighbor

(8) move to the destination

(2) Generate an escape path using Algorithm 2.

(4) Repeat 2 and 3 until the final destination is reached.

(7) until distToDeste (escapeVertex) < distToDest (all neighbors)

(1) Move along the shortest path trajectories until an obstacle is reached, keeping a minimal distance to the obstacle.

(3) Complete the movement to the next obstacle (in case of more than one obstacle) or destination.

ALGORITHM 2: Escape path movement for node i.

D e E
!
Ca ) B
_A /
_S\_

FIGURE 12: Escape path generated with Algorithm 2.

In a real scenario, an obstacle, such as the floor, walls,
buildings, or mountains, exists and impacts mobility and
signal attenuation. To reflect this impact, we modify the
method “isWithinRange(DTNHost anotherHost)” for the
class NetworkLayer of the ONE simulator to reflect the
signal’s attenuation in the propagation model. When a
node’s signal propagates through an obstacle, it suffers at-
tenuation due to the effects of diffraction, reflection, and
scattering. Some attenuation results [33] are presented in
Table 4. The attenuated values are randomly taken from a
uniform distribution between 40 and 60 dB, which reflects
the fact that obstacles have at least double walls. A con-
nection is created when the radio signal is greater than a
fixed threshold (transmitting range).

6. Validation

Our goal is to show that our conceptual model (EPOM) is
generic enough to be fine-tuned with a few parameters to
show matching characteristics with the NCSU GPS traces
[36], in terms of the spatial features: intracluster travel
distance and intracluster direction of movement as well as
the temporal feature (i.e., pause time). We also show that

EPOM connectivity features matched those of iMote real
traces [44] in terms of contact duration and intercontact
time distribution.

After the wake-up, a node starts to walk using the current
mobility model; a node switches to different locations from
the current location using the five steps Markov model
depending on the time of the day. See Table 5 for the list of
simulation parameters.

We simulate the random waypoint model on the same
size simulation area with 1000 nodes uniformly distributed.
Each node randomly chooses a waypoint and move with a
speed of 0.5-5m/s; when a node reaches the destination, it
pauses for 1-3600s. Both the speed and pause time are
uniformly distributed.

The simulation was run for the length of T=5x10"s,
which is approximately five days. We assume all events are
uniformly distributed over a longer period of time and
consider the probability of an event of length x, p (x). We
record only events that begin and end within the observed
interval. We create the Complementary Cumulative
Density Function (CCDF, P [X > x]) for the distribution of
contact duration, intercontact time, intertravel distance,
intratravel distance, intracluster movement direction and
pause time.

Settings: our simulation environment is a map of parts of
the Université Paris Saclay campus, edited using OpenJUMP
geographic information system program with 1000 nodes
moving on the area of roughly 5000 x 3000 m*. We created
different WKT files for the map roads, homes, lecture rooms,
cafeterias, sport, off-campus activities locations, Pols, and
obstacles.

Each node is assigned with a unique home located on the
map as its starting point in the simulation, a wake-up time
drawn from a normal distribution to each node.

6.1. Spatiotemporal Features. We start with the intracluster
feature being one of the most important aspects of our study.
We divide the main simulation domain into a number of
equal size communities denoted by ¢ to account for the
dynamic clusters. Ce{l,. . . ., N. }, where N, is the total
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TABLE 4: Power attenuation values.

Home Office

Single wall 6-20dB 6-20dB
Double wall 40-50 dB 50-60 dB

TABLE 5: Summary of the simulation parameters.
Parameter Value
Number of nodes 1000
Simulation length 500,000 sec
Transmit range 10mb
Obstacle path transmit range [5, 10] mb
World size 5000 x 3000 m”
Walking speed [1, 3] m/s
Bus speed [7, 10] m/s
Transmit speed 250 kbs
Routing protocol Epidemic
Interface type Simple broadcast interface
Buffer size 50 mb
Message size [500 kb, 1 mb]
Message interval [25, 35] sec
Message TTL 1,430 sec

number of communities in the domain. During our analysis,
we find out that each walker is associated with an average of
three dynamic clusters per day, as shown in Figure 13
depending on the degree of the repetitiveness of the
user’s schedule; we can exploit this type of temporal mobility
feature to predict a possible user location. Similarly, it can be
used by the opportunistic routing protocol to schedule
package forwarding.

After tuning our model, it generates matching walking
clusters with the KAIST data. Figure 14 shows one-day
dynamic clusters of Node 4 generated from the EPOM
model. The generated clusters matched with that of the
KAIST trace in Figure 1 for the trace file sixteen [36].

Next, we focus on the intracluster travel distance to
capture the neighborhood exploration observed in the real
traces. In our model, at each time instant, a node is either in
intercluster or intracluster movement mode managed by a
two-step Markov model in Figure 15. When a node is in the
intracluster movement mode, it explores the point of interest
within its community and walks to the preferred Pols or
generates a travel distance uniformly chosen at random from
a lognormal distribution bounded by the community size.
The direction of movement is uniformly chosen at random
from the bias symmetry distribution of the empirical data
shown in Figure 2. The lognormal distribution of the
intracluster travel distance means nodes visit closer locations
more frequently than distant locations.

Figure 16 shows the distribution of direction angle
generated from the synthetic traces of the EPOM model. The
distribution is similar to the distribution of NCSU trace in
Figure 2. The main take-home message from the two dis-
tributions is the movement within dynamic clusters which is
not random but bias toward some Pols and popular loca-
tions within the community.

Number of Clusters

25

20

—
w
1

Trace Files

Ju—
(=}
1

0 1 2 3 4 5 6 7
Number of clusters

FIGURE 13: Number of dynamic clusters per trace file in KAIST
traces.

Figure 17 shows an intracluster travel distance generated
from our model compared to that of the empirical data. The
two distributions are similar for a longer period of time but
slightly differ at the tail.

This is a consequence of the size of the community in the
simulation domain. Therefore, EPOM replicates intracluster
travel distance as observed in the KAIST empirical data.

Next, we concentrate on the general domain by ana-
lyzing the intercluster travel distance distribution for the
whole domain generated by the EPOM model and compare
it with the empirical distribution observed from the
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FIGURE 17: Intracluster travel distance for the EPOM and KAIST
traces. Both curves follow a lognormal distribution, meaning
people visit some preferred nearby locations more than far distant
locations.

empirical data. This is the approach adopted by most of the
existing works in [48, 49].

Figure 18 shows the intercluster travel distance distri-
bution for the KAIST, EPOM, and RWP traces. The dis-
tribution of the EPOM and KAIST traces fits the truncated
power-law distribution. It shows that users tend to under-
take many short walks in a cluster and occasionally take
long-distance walks. We also note that such short-distance
walks that evolve over time are the consequence of intra-
cluster movements. In contrast, the curve for the conven-
tional RWP model fits uniform distribution, which does not
differentiate between short and long walks. This feature does
not resemble the realistic nature of human mobility patterns.
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FiGUre 18: The intercluster travel distance for the EPOM, KAIST,
and RWP models. The curves for the EPOM model and KAIST
traces exhibit power-law decay for a long period, supporting the
realistic nature of the human mobility pattern for taking short
walks more than a long journey. The RWP curve is uniformly
distributed and does not differentiate between short walks and long
journeys.

Mobility temporal characteristics analysis of user’s
temporal locations at a certain period gives us an insight into
the possibility of predicting users’ location, how long a user
could stay at a given location, that is, pause time, when the
user is expected to return to a given location, that is, return
time and why a user exhibits a skewed visiting behavior to
some locations, that is, dynamic community walk.

We study the pause time distribution of the KAIST
campus traces in [36] and tune the EPOM model to generate
a pause time distribution similar to the empirical distri-
bution observed. Figure 19 shows the pause time distribu-
tion of the KAIST trace and EPOM traces. The distribution is
found to be power law with a heavy tail. This shows that
students spent a long time at some locations, such as lecture
rooms but stayed for a short time at most locations such as
shopping malls and cafeterias. This distribution is consistent
with the distribution of pause time observed in Dartmouth
campus real traces in [23].

The fact that users pause for a long time at some pre-
ferred location also indicates that users predominantly take
short walks within the community of such locations.

We observed that users are associated with an average of
three dynamic clusters in one working day, which evolve
over time, as shown in Figure 13. This fact is true for all users,
except for stationary users.

6.2. Connectivity Features. In this section, we investigate
how closely the EPOM model reproduces the distribution of
the studied connectivity metrics as observed in the empirical
data of the realistic traces in [44]. We compare the distri-
bution generated by both EPOM, iMote traces, and Random
Waypoint on each plot.
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FiGUre 19: The pause time distribution of the KAIST and EPOM
traces. The figure indicates that humans mostly stay short in most
places they visit and stay at few locations.
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F1GURE 20: The PDF of the contact time distribution for the EPOM,
iMotes, and RWP model. The EPOM model follows power-law
distribution for a long time, just like the iMotes traces, but RWP
follows exponential distributions with very short contacts.

Figure 20 shows the aggregate distribution of contact
duration for EPOM, iMote traces, and RWP. Each plot
shows the complementary cumulative distribution function
of a contact duration using a log-log scale. We see that the
EPOM distribution follows power-law decay for a long time,
similar to the distribution of iMotes traces. This is consistent



Journal of Advanced Transportation

Inter-Contact Time
10°
107!
A
S
ll\
" n
% 102 !
~ HL
1 1
HL
1l
]
|
103 il
o |
ol
vl
il
104 i
10! 102 10° 10 10°
Time (s)
Models
—— EPOM
---- imote
——- RWP
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with the findings in most research on human mobility
contact distribution [50]. The distribution of RWP consists
of only a short time with exponential decay. The power-law
feature of human mobility indicates that more nodes have
contact opportunities for a shorter time while only a few
nodes stay connected for a longer time. A DTN routing
algorithm can be designed to exploit this feature in con-
junction with the spatiotemporal features to decide the best
way to route a message from the source to destination(s).

From Figure 21, we see the intercontact (ICTs) time dis-
tribution for EPOM, iMote traces, and RWP. Figure 21 shows
that both the EPOM and iMote traces curves exhibit power-law
decay with exponential cut-off, unlike RWP that entirely follows
an exponential distribution. The distribution of ICTs for the
EPOM is also consistent with the feature of the realistic ICTs
discovered in [51]. The power-law nature of ICTs plays an
important role in DTN as it fundamentally impacts the be-
havior of networking protocols [51]. Though shorter inter-
contact time means more frequent connection, nodes with
longer intercontact times are possibly assumed to have new data
to share.

Figure 22 presents contacts for each simulation hour.
Figure 22 shows the repetitiveness of hourly activities. We
use 43200 seconds as working day length. The contact per
hour RWP is uniform throughout the simulation. Observe
the repetitive behavior of the EPOM, which captures stu-
dents’ daily routine activities at specific hours of the day.

7. Conclusion and Future Work

In this paper, we conduct an in-depth study of human mobility
patterns using realistic datasets for Bluetooth encounters and
Global Positioning System (GPS) track-logs traces at the fine-
grain level to better understand human mobility properties and
uncover hidden patterns. Consequently, we have discovered
time-varying human mobility patterns associated with a dy-
namic evolution of movement clusters. We proposed a new
mobility model that mimics the realistic mobility patterns of
real-world traces in the presence of obstacles of different shapes
and sizes. The model describes various student activities that
routinely evolve over time, such as going to the lectures, going to
the cafeteria, sport, and shopping. We have shown that the
model produces the distribution of the intercluster travel dis-
tance, intracluster travel distance, intracluster direction of
movement, contact duration, intercontact time, and pause time,
similar to the distribution of realistic traces.

For future work, we intend to extend the model to the
urban scenario through an extensive study of dynamic
clusters evolution of pedestrians and bus commuters.
Consequently, we intend to design an efficient predicting
framework for human mobility. The new framework will
exploit the existing and new uncovered features to predict
the user’s subsequent displacement, stay duration, and
possible contact.
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