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Centre Borelli, ENS Paris-Saclay

Gif-sur-Yvette, France

Abstract—The standard paired-sample testing approach in the
multidimensional setting applies multiple univariate tests on the
individual features, followed by p-value adjustments. Such an
approach suffers when the data carry numerous features. A
number of studies have shown that classification accuracy can
be seen as a proxy for two-sample testing. However, neither
theoretical foundations nor practical recipes have been proposed
so far on how this strategy could be extended to multidimensional
paired-sample testing. In this work, we put forward the idea that
scoring functions can be produced by the decision rules defined
by the perpendicular bisecting hyperplanes of the line segments
connecting each pair of instances. Then, the optimal scoring
function can be obtained by the pseudomedian of those rules,
which we estimate by extending naturally the Hodges-Lehmann
estimator. We accordingly propose a framework of a two-step
testing procedure. First, we estimate the bisecting hyperplanes for
each pair of instances and an aggregated rule derived through
the Hodges-Lehmann estimator. The paired samples are scored by
this aggregated rule to produce a unidimensional representation.
Second, we perform a Wilcoxon signed-rank test on the obtained
representation. Our experiments indicate that our approach has
substantial performance gains in testing accuracy compared to
the traditional multivariate and multiple testing, while at the
same time estimates each feature’s contribution to the final result.

Index Terms—statistical hypothesis testing, paired-sample
testing, p-value correction, Hodges-Lehmann estimator, pseudo-
median, multidimensional data.

I. INTRODUCTION

In many situations, it occurs that the data instances of two
samples are paired, as they correspond to two measurements
of the same population of subjects. The problem of testing
the homogeneity of two paired samples arises in various
applications, ranging from medicine to finance. Especially
in medicine, comparing a cohort before and after a specific
treatment is very common. Scientists are interested in knowing
if there is any statistical difference between the paired samples,
and they investigate that either by multivariate hypothesis
testing (e.g. using the multivariate Hotelling T 2-test, HT2
for short) or by relying on a multiple testing (MT) strategy
that performs a series of univariate tests. For instance, one can
apply the MT strategy using the paired t-test, which comes
with a normality assumption about the data. Another possibility
is to use the well-known one-sample Wilcoxon signed-rank
test (WSR), which is based on linear rank statistics. WSR is
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one of the most widely-used nonparametric approach in paired-
sample hypothesis testing (a resource for several univariate
tests can be found in [12]). Rank statistics have been introduced
to avoid making assumptions about the distribution of a data
sample under the null hypothesis. However, the MT strategy
has raised a well-known scientific debate concerning mainly
the significant increase of Type I error (false positive rate).
Therefore, MT is usually followed by p-value adjustments that
aim to control this increase [9]. Among the various proposed
p-value adjustments, Bonferroni correction is the one used in
the vast majority of studies, as it is simple to comprehend
and easy to calculate, although it is slightly less powerful than
others [10].

Besides the natural interest in Statistics, the Machine
Learning community has shown an increasing interest in
hypothesis testing. For instance, in the case of two-sample
testing, they have proposed meaningful solutions of how to
learn an optimal decision function (i.e. a classifier) with which
the dataset can be optimally scored and -in a second step- tested
for any significant change between the samples [11, 16, 17, 21].
Many studies have stressed the importance of choosing a
suitable classification criterion for this purpose. For example,
the fact that the empirical AUC can be viewed as the extension
of Mann-Whitney U -statistic in the multivariate setup [6, 8],
brought the conclusion about the superiority of maximizing the
area under the ROC curve (AUC) criterion in non-parametric
two-sample testing. This result led to a number of algorithms
for two-sample testing for multidimensional data, based on the
AUC maximization [4, 7].

Despite the excessive need for paired-sample analysis, neither
theoretical foundations nor practical recipes have been proposed
for how such an optimal decision function can be defined for
paired data samples. The general goal of this work is to rely on
pairs of instances for defining an optimal scoring function that
will allow the scoring of the dataset, the application of paired-
sample testing, and the identification of data features that have
significantly changed between the two samples. To this end,
we present a framework for multidimensional paired sample
testing, which is inspired by the testing procedures introduced
in prior works for the two-sample setting [4, 7, 11]. At the
core of our approach lies the definition we introduce for the
pseudomedian hyperplane, formulated by the Hodges-Lehmann
estimator, which essentially allows us to see the paired-sample
testing problem from the classification viewpoint.
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Motivational example
When researchers want to compare a cohort before and after
a specific medical treatment using multiple features, they
can employ already proposed multivariate hypothesis tests.
Despite their usefulness, such tests often have limitations
in several dimensions [2], or they might exhibit inadequate
power when dealing with slightly difficult cases, such as
heavy-tailed multivariate data [19]. For this reason, the use
of multivariate tests, e.g. the HT2 test and its variants, is
less common. Researchers usually rely on an MT procedure
to find those features that change significantly after the
treatment. Nevertheless, the plethora of acquisition modalities
and computed features challenge the hypothesis testing when
following this approach. Many works either fail to correctly use
MT by adjusting the p-values [25], or they do not proceed to
such adjustment because it is criticized for a significant increase
in Type II error (false negative rate) [9, 18]. For that reason,
several biostatisticians recommend disclosing all the results
(significant or non-significant) of the conducted analysis. The
violation of this recommendation, the habitual misuse of those
tests [22], the little agreement on when or how to adjust the
p-values, combined with the relatively small available cohorts,
may lead to false conclusions, lack of reproducibility, and, as a
consequence, a significant delay to reach scientific consensus.
Such problems led certain scientific communities to redefine
statistical significance and to embrace debatable guidelines [5].

Contribution
This work proposes a framework for multivariate paired-
sample hypothesis testing by aggregating information extracted
independently from each pair of instances. For each pair,
we compute a perpendicular bisecting hyperplane, which is
perpendicular to the line segment connecting the two instances
and passes from the segment’s midpoint. By definition, any
point on such a hyperplane is equidistant to the two associated
instances, and also separates the data space in two parts,
similar to what the midpoint does in the unidimensional
setting. We propose an aggregation of those hyperplanes
in the vain of a pseudomedian estimated by the Hodges-
Lehmann estimator, which is directly related to the Wilcoxon
signed rank (WSR) test, where it has been proven to be a
consistent estimator for the unidimensional case. We call our
test Multivariate WSR (MWSR), since its principle can be seen
as a multivariate extension of the WSR test, where the Hodges-
Lehmann pseudomedian hyperplane provides a scoring of the
data. Although the perpendicular bisecting hyperplanes provide
‘naive’ linear decision rules that separate the two samples, yet
their pseudomedian can be an adequate decision rule that can
be used for scoring and ranking the instances. Our approach
avoids the p-value adjustment, and the contribution of every
feature to the final result can be measured using the linear
coefficients of the pseudomedian hyperplane.

Finally, we provide empirical evidence that our test con-
stitutes an important alternative to multivariate test or MT
(especially for marginally separated cases) as it leads to clearly
improved performance.

II. BACKGROUND

A. Wilcoxon Signed Rank test (WSR)
Suppose we are in the univariate setting, the two paired

samples are denoted by X,Y ∈ R, and (Xi,Yi) is the i-th
out of the N pairs of data instances that corresponds to two
measurements of the same subject, the i-th of the population.
The WSR test has been designed to test whether a population
is symmetric around a given median. In the context of the two-
sample testing, the WSR test is used to study the population
Z = {Z1, ...,ZN} comprising the paired differences Zi =Yi−
Xi, for i=1, ...,N .
Assumptions
1) The differences Z1, ...,ZN are independent and identically

distributed (i.i.d.), i.e. Zi ∼ F , where F represents their
continuous probability density function.

2) F should be a symmetric distribution around its median θ,
which is usually referred to as effect size (e.g. the effect
size of a certain medical procedure) [12]. Formally, this
suggests that: θ: F (θ+x)=F (θ−x), ∀x∈R.

Null and alternative hypotheses
The type of change the WSR detects is a distribution shift
from X to Y by a quantity θ, which is defined as the median
of the differences contained in Z. Thinking in regard to the
pairwise differences Zi, essentially converts the paired-sample
testing problem to one-sample testing over the population Z.
Consequently, the null and the alternative hypotheses of the
WSR paired-sample test can be derived from those of the
one-sample test. The two-sided WSR test [24] considers:

H0 : θ=0, the Zi’s are symmetric around θ=0;

H1 : θ ̸=0, the Zi’s are symmetric around θ ̸=0.
(1)

Under the null hypothesis H0, there is no difference between
the two samples, and therefore the considered treatment or
intervention caused a zero shift (θ=0) in location. This simply
asserts that the Zi’s are symmetrically distributed around 0.
Procedure
The WSR statistic T+

Z is calculated from the absolute values
|Z1|, ..., |ZN | of the differences and their signs. The absolute
values are sorted in ascending order, and let Ri denote the
rank of |Zi|, i=1, ...,N , in that latter order. Let the positive
sign indicator variables ψi, i=1, ...,N, where ψi =1 if Zi> 0,
and 0 if Zi< 0. The product ψiRi is the positive signed rank
of Zi. The WSR statistic T+

Z is then the sum of the positive
signed ranks:

T+
Z =

N∑
i=1

ψiRi. (2)

According to the two-sided version of the test, and at a given
significance level α, if the X and Y samples differ only by a
location shift θ, then the (Zi−θ)’s have a distribution that is
symmetric around 0. The default procedure is for testing with
θ=0. To test with θ= θ0 ̸=0, one needs to subtract a given θ0
of interest from each Zi difference to form a modified sample
Z(θ0) = {Z1− θ0, ...,ZN − θ0}. Then, T+

Z(θ0) is computed as
the sum of the positive signed ranks for Z(θ0).



B. Hodges-Lehmann estimator as effect size

The effect size θ associated with the WSR statistic T+
Z , is

estimated by the pseudomedian of the differences, which is in
turn estimated by the Hodges-Lehmann estimator θ̂ [15]:

θ̂=median
{
1

2
(Zi+Zj); ∀i≤ j=1, ...,N

}
. (3)

In words, this is the median of all the M = 1
2N(N+1) pairs of

midpoints of the differences. The vector WZ = [ 12 (Zi+Zj)]ij ,
∀i ≤ j = 1, ...,N is known as the vector of Walsh averages
[23]. Supposing there are no ties and no zeros among the Zi’s,
the number of positive Walsh averages (W+

Z ) is equal to the
WSR statistic T+

Z [14]. Without loss of generality, suppose
that F satisfies the fact that the median of differences (θ)
and the pseudomedian are unique. Then, the Hodges-Lehmann
estimator θ̂ is a consistent estimator of the pseudomedian, which
can generally be different from the median θ [15]. However,
when F is symmetric, the median and the pseudomedian
coincide.

As we mentioned above, θ̂ is associated with the WSR
test. When θ=0, then the distribution of the statistic T+

Z is
symmetric around its mean rank M

2 . An empirical estimator
of θ is the amount θ̂ that should be subtracted from each
Zi so that the value of T+

Z(θ0) is as close to M
2 as possible.

Briefly, one needs to calculate the amount that Z should be
shifted in order to become a sample with median 0. Recall
that, under Assumption l and 2, each of the (Zi−θ)’s comes
from a population with median that is equal to 0.

C. Approaches for multivariate paired-sample testing

Here, we present the basic ideas behind two of the most
widely-used approaches for multivariate paired-sample testing,
where X,Y ∈Rd, d> 1. One option is to use MT with p-value
correction. For instance, to test with a target significance level
α, the Bonferroni correction considers d independent tests,
one per dimension, and uses in each of them the ‘corrected’
significance α

d [1]. Another alternative is the multivariate Paired
Hotelling T 2-test (HT2) [13], which is a generalization of
paired t-test. Its null hypothesis asserts that the mean vectors
µX , µY , of the population are equal against the alternative
hypothesis that these mean vectors are not equal, hence H0 :
µX = µY against H1 : µX ̸= µY . Same as in the univariate
case, the differences between the paired instances are Zi =
Yi−Xi, for i= 1, ...,N and the hypothesis testing becomes
H0 :µZ =0 against H1 :µZ ̸=0 where µZ =µY −µX . Under
the assumption of normality for Z, the HT2 test statistic is
given by:

T 2 =NZ̄TΣ−1
Z Z̄, (4)

which is proportional to the distance between mZ and 0, where
Z̄ is the sample mean vector and Σ−1

Z is the inverse covariance
matrix (or precision matrix).

III. PROPOSED PAIRED-SAMPLE TESTING FRAMEWORK

Testing in multiple dimensions
Let us start by establishing that, in the unidimensional case,
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(a) Example in 1d. This is the typical paired-sample setting. We draw
as dotted lines the intervals of the differences Z1, Z2, Z3 between the
instances of three pairs. The midpoints and the pseudomedian rules are
shown as continuous lines vertical to the axis.
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(b) Example in 2d. Here, each distance associated to a pair of instances
is shown as a dotted line, while the 1d midpoint rule is now a hyperplane
(continuous lines) that is a perpendicular bisector to the line segment
connecting the pair, and hence pass from the segment’s midpoint.

Figure 1: An illustrative example of how we extend the WSR
paired-sample hypothesis testing from one dimension (a) to multiple
dimensions with the MWSR test (b). We see each pair’s midpoint as
a decision rule separating the data space, and we generalize this in
multiple dimensions by means of perpendicular bisecting hyperplanes.

by adding θ̂
2 to the median of X , we can get what we term as

a pseudomedian decision rule separating the space in two
parts. This is a notion that we generalize to propose our
paired-sample framework for multiple dimensions, and the
Multivariate WSR test (MWSR). For d > 1, we deal with
the point-cloud of X,Y ∈ Rd, thus the Euclidean distance
Zi = ||Yi−Xi||2 between pairs of instances (Xi,Yi) can be
seen as the analogue to the difference Zi = Yi−Xi we saw
earlier in 1d. Further, each separating rule associated with a
midpoint of the 1d case, now becomes a (d−1)-dimensional
perpendicular bisecting hyperplane: it is perpendicular to the
line segment connecting the pair and also passes from its
midpoint. Each such hyperplane is computed by taking into
account only one specific pair of instances, yet it splits the
space in two parts, and therefore it can be seen as a decision
rule that could hopefully classify the data in two parts, the
X and the Y part. Fig. 1 shows an insightful visual example:
Fig. 1a presents the 1d setting, as discussed in the earlier
sections: the paired samples lie on a line, each difference Zi

is a distance on that line, and midpoints can be computed for
each (Xi,Yi) pair. Fig. 1b shows how our approach operates in
multiple dimensions. The decision rule for a pair (Xi,Yi) is its
perpendicular bisecting hyperplane Ci : w

T
i x+bi =0, x∈Rd,

where wi are the coefficients of the hyperplane, and bi is its
intercept. With the known elements, it is easy to compute the
exact wi and bi; then, sign(Ci(x)) classifies an input datapoint
x, while the signed distance from x to Ci can be seen as a
score for x based on this hyperplane.



In simple terms, we propose to see the scoring function
derived from the hyperplane of the i-th pair as an analogue
to the half of the empirical effect size calculated by this
specific pair of instances. Furthermore, the aggregation of
all the N rules can provide a more robust scoring function.
This aggregation can be computed by directly defining the
pseudomedian decision rule in multiple dimensions: The linear
coefficients wi and the intercept bi of each Ci rule are used
for estimating the Hodges-Lehmann pseudomedian hyperplane
through the ŵ, using the same procedure as θ̂ (see Sec. II-B).

The two-step MWSR testing procedure
We compute a linear decision rule for each pair (Xi,Yi),
hence we gather N such models. In order to extend the
procedure presented in Sec. II-B to the general d-dimensional
setting, we need to define first the Walsh model-wise average
WC =

[
1
2 (Ci+Cj)

]
ij

, ∀i≤ j=1, ...,N , as the average of the
coefficients and intercepts for pairs of linear models. For the
linear decision rules that we employ, this is: Having specified
how we can pass from averaging instances to averaging model
parameters, we can now express the Hodges-Lehmann estimator
in the same form as before:

Ĉ∗ =median
{
1

2
(Ci+Cj); ∀i≤ j=1, ...,N

}
, (5)

which computes the median coefficient-wise. The estimated
Ĉ∗ is the empirical optimal scoring function where the final
classification scores (Ŝ1, Ŝ2) are calculated for X and Y ,
respectively. Note that the operation of finding Ĉ∗ from a set
of N decision rules can be seen as model aggregation, which
in this case is not a generic one (e.g. like the voting used in
Ensemble Learning), but rather a special aggregation, directly
linked to the WSR test that we employ next.

The last step amounts to performing a WSR test on Ŝ1 and
Ŝ2. In addition to the given p∗-value and the effect size θ∗,
the user also gets informed about the contribution of each
dimension to the final result (through the coefficients of the
linear model Ĉ∗).

The feature importance can be easily obtained considering
that the more orthogonal is a decision rule (hyperplane) to a
certain feature axis, the higher the associated coefficient will
be. Furthermore, the sign indicates the positive or negative
relationship with the response. The procedure of the proposed
framework is detailed in Alg. 1.

IV. EXPERIMENTS

The experiments in this section compare the performance of
our testing method, the MWSR test, to the classical multiple
testing (MT) procedure with Bonferroni p-value adjustment,
and the HT2 test. We use several synthetic scenarios and one
real clinical dataset. The synthetic scenarios have increasing
difficulty and allow us to check the limits of the proposed
test. The comparison is two-fold: i) in terms of sensitivity in
detecting a difference between the paired samples (p-value,
effect size), and ii) in terms of estimating accurately the
contribution of each feature to the test’s outcome, which is
helpful for the user to interpret the results.

Algorithm 1 The MWSR paired-sample testing framework

Input: X,Y ∈RN×d are the 2 ·N paired samples;
Output: Ĉ∗, (Ŝ∗

1 , Ŝ∗
2 ), p∗-value, θ∗, I∗

First step: Compute a scoring
for i=1, ..,N do

Ci← perpendicular_bisector(Xi,Yi)
end for
k← 1; M←0N×N

for i=1, ..,N do
for j= i, ..,N do

WC,k← 1
2
(Ci+Cj) ▷ the Walsh average of hyperplanes

k← k+1
end for

end for
Ĉ∗←median(WC) ▷ the pseudomedian aggregate, see Eq. 5
Ŝ∗
1 , Ŝ

∗
2← get_scores(Ĉ∗(X,Y )) ▷ classification-based scoring

Second step: Paired-sample test over the computed scores
p∗-value, θ∗ ← WSR(Ŝ∗

1 , Ŝ
∗
2 ) ▷ p-value and effect size

I∗←w(Ĉ∗) ▷ feature importance index
return Ĉ∗, (Ŝ∗

1 , Ŝ∗
2 ), p∗-value, θ∗, I∗

Synthetic datasets
Synthetic data are simulated by pairing two samples coming
from two Gaussian distributions, with feature-wise correlation:

RX(k),Y (k) =
cov(X(k),Y (k))

σX(k)σY (k)

=0.5, (6)

where X(k), Y (k) are vectors representing the paired samples
with only the k-th feature, cov(·, ·) is their covariance, and
σX(k) , σY (k) are the respective standard deviations. To produce
the dataset for each scenario, we set:
• a fixed population size, N =30 pairs of data instances;
• the dimensions d= {10,20,30,60}, mimicking the number

of features that a usual study may have;
• a standard deviation std= {1,2};
• the first 90% of the dimensions to have no statistical

difference between the two samples, and hence to be
randomly drawn (separately) from N (0,std);

• the last 10% of the dimensions to present the same
difference in mean value, hence producing a linear shift.
We allow this shift to also increase progressively from 0 to
1 to investigate the detection sensitivity of the methods.

Given a scenario, we generate 20 cases and apply all statistical
tests. We report the average performance, namely the percentage
of cases with a significant shift obtained by each statistical
test, as a function of the size of the shift (referred to as
average difference in the figures). Moreover, we provide results
regarding the inferred feature importance. Both elements should
be examined jointly to validate the acquired results further.

Real dataset
We extend our empirical validation by employing a typical real
clinical dataset, with a relatively low population and multiple
features. It concerns posturographic assessment for subjects
with Parkinson’s syndrome (PS). This dataset, initially used in
[3], includes 30 subjects (mean age: 79.6±4.4 years) from the
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(b) d=20, N =30, std=1
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(c) d=30, N =30, std=1
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(d) d=60, N =30, std=1
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(e) d=10, N =30, std=2
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(f) d=20, N =30, std=2
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(g) d=30, N =30, std=2
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Figure 2: The average performance of paired-sample testing approaches in synthetic datasets with N =30 pairs of instances coming from
two Gaussian distributions, both with either std=1 or 2 (first and second row, respectively). The performance is presented as a function of
the separation distance between the two distributions (average difference on x-axis). On the y-axis it appears the % of significant results
detected by each method, and on the x-axis the progressive difference in the mean value for the 10% of the dimensions (d).
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(a) Average hyperplane coefficients (ŵ) for each feature (d = 60)
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Figure 3: The relative feature importance in the paired-sample testing result of different approaches, and their corresponding average
performance for N = 30 pairs coming from two Gaussian distributions with std= 1, in d= 60 dimensions (corresponds to the case of
Fig. 2d). The performance is presented as a function of the separation distance between the two distributions (average difference on x-axis).

Neurology department of the HIA, Percy hospital in Clamart,
France, who were diagnosed with PS. The subjects underwent
a posturography assessment using a force platform (here a
Wii Balance Board (Nintendo, Kyoto, Japan)) that captures
the trajectory of the center of pressure (CoP) exerted by the
entire body over time when an individual stands on them.
The assessment comprises two examinations with a 6-month
difference in time, which are the paired samples we use in our
experiment. Each time their postural stability was recorded for
25 seconds while maintaining an upright position on a force
platform with eyes open.

To characterize subjects’ postural control, the dataset pro-
vides 16 features that had been previously proposed as indica-
tors of postural stability [20]. In detail: Percentiles (95% and
5%) (cm), Range (cm), Variance (cm2), Mean Instant Velocity
(cm/s), Acceleration (cm/s2) and Frequency (Hz) below which
95% of the signal energy is found, for both X-medio-lateral
(ML) and Y-antero-posterior (AP) axes, confidence ellipse area
(cm2) that covers the 95% of the points of the trajectory and
the angular deviation (in degrees◦).

Results and discussion
In all the synthetic cases in Fig. 2, the proposed MWSR test is
always by far superior to the MT and the multivariate HT2 test
in detecting the difference between the paired samples. The
MWSR is more sensitive than the compared tests, as it manages
to detect much smaller shifts. Moreover, it reports no false
positive results in the case of no shift in location. Worth noting
that when d>N , the classical HT2 test fails completely due
to the non-existence of the inverse of the sample covariance
matrix (see in Fig. 2 the four cases with d≥ 30). The difference
in performance between the MWSR and the MT increases in
higher dimensions as well as when the variance is higher (see
Fig. 2, e-h), which indicates a robust behavior to that kind
noise. Note that the MWSR has no particular computational
overhead; it runs in less than 0.05s for the small real dataset,
and this increases slightly with N .

Concerning the feature importance indexes obtained by the
MWSR, they are effectively recognizing the last 10% of the
features that contribute to the distribution shift (see in Fig. 3
the features x55-x60). This is made clear by the higher weights
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Figure 4: The relative importance of each feature as indicated by our approach and the MT on the posturographic dataset (d=16 features).

(i.e. larger stacks) assigned to those features.
In the real dataset, the MWSR test found that the Parkinso-

nians changed significantly after 6 months, while the MT did
not detect any significant change.

Despite the above notable advantages, the proposed method-
ology is designed and limited for linear shifts in location
between the paired samples, same as the univariate WSR test.
Moreover, a point that needs attention is to normalize the data
so that the feature importance indexes are better estimated
and are easier to interpret. The weight assigned to a particular
feature is influenced by the other features, particularly when
there are correlations among them.

V. CONCLUSIONS

We presented a sound strategy for paired-sample testing
for multidimensional data, which outperforms the classical
multivariate approaches (Hotelling T 2 test, the multiple testing
with p-value adjustment) in our experiments. Our method
has two additional advantages: i) it is generally simple and
understandable, and ii) it offers a tool that allows the user to
interpret the actual contribution of every feature to the final
result. Beyond the illustrative preliminary experiments in real
and synthetic datasets that we presented in this paper, we intend
to investigate the relative efficiency of this test to other setups.
We also plan to investigate theoretically the regime in which
this method is qualitatively superior.
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