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Introduction and results

Exponent pairs in the large E. Phillipps developped in [8] a theory of exponent pairs by furthering and simplifying the notion of exponent system introduced by J.G. van der Corput in [12]. The reader will find a modern account of this theory in the reference book [6] by S.W. Graham and G. Kolesnik. Roughly speaking a couple pκ, λq P r0, 1 2 s ˆr 1 2 , 1s is said to be an exponent pair when, given a regular function φ that is 'monomial-like' and whose first derivative on the interval rN, 2N s is of size F , the upper bound

S " ÿ N ănď2N e 2iπφpnq ! ε F κ`ε N λ`ε .
holds for any ε ą 0. The following exponent pairs are known: 

p0, 1q, ´1 2 

An example

In [2], Dekking and Mendès-France propose a geometrical approach to exponential sums. The reader will find there several examples and some compelling drawings. A most classical example is φpnq " tplog nq{p2πq where t is some large parameter and for instance N " t 1{3 . The sum S is then often called a zeta-sum. A first trivial bound for S is N `1. Since φ 1 pnq " t{p2πnq, we see that t 2{3 ă 4πφ 1 pnq ď 2t 2{3 , so that we may select F " N 2 . We thus get the bound S ! ε N 2κ`λ`ε , and with the pairs given in (1) above, this gives the exponents of which 13{14 is the best one for our problem.

The domain of exponent pairs

It follows from the theory that, given an exponent pair pκ, λq, we may build another one by the two formulas

´κ 2κ `2 , κ `λ `1 2κ `2 ¯, ´λ ´1 2 , κ `1 2 ¯. ( 3 
)
{processi} {processi}

The first five pairs above are obtained by using these two processi while the last two have been obtained respectively by M.N. Huxley and N. Watt in [7] and by N. Watt in [13]. Furthermore, any convex combination of exponent pairs is again an exponent pair. When using the pair p0, 1q and the processi described in (3), we call the convex hull of the domain obtained the van der Corput Domain denoted by D.

Theorem 1.1. The domain D is the convex hull of the curve C defined in [START_REF] Rankin | Van der Corput's method and the theory of exponent pairs[END_REF] and which is the graph of a continuous non-increasing function.

When we add the point `89 560 , 369 560 ˘, the domain will be called the Watt Domain in the sequel and denoted by D ˚.

In [START_REF] Rankin | Van der Corput's method and the theory of exponent pairs[END_REF], R.A. Rankin started to describe the set of accessible exponent pairs, a study furthered by S.W. Graham in [START_REF] Graham | An algorithm for computing optimal exponent pairs[END_REF]. The viewpoint taken in both papers is to compute optimal values in a specific problem. The aim of the present note is to continue this work from a more geometric viewpoint. Nonetheless it is fair to say that a large part of the material we present here can be found in the previous two papers in some form or some other.

Since we also strive to describe the situation with pictures, it may be better to provide the readers with the means to play themselves with these pictures. We shall be using the SageMath, see [START_REF]SageMath, the Sage Mathematics Software System[END_REF]; the script we use is available on the web at: https://ramare-olivier.github.io/Maths/ExpPairsNote-01.sage

Copy this code is a file named, say, ExpPairs.sage, without forgetting the sage suffix, start SageMath and load this via the command load("ExpPairs.sage"). We give in the text some pointers on to how to code in SageMath, as well as commands that we write in the form [7] M. N. Huxley and N. Watt, 1988, "Exponential sums and the Riemann zeta function".

[13] N. Watt, 1989, "Exponential sums and the Riemann zeta-function. II".. [9] R. A. [START_REF] Rankin | Van der Corput's method and the theory of exponent pairs[END_REF], "Van der Corput's method and the theory of exponent pairs".

[5] S. W. [START_REF] Graham | An algorithm for computing optimal exponent pairs[END_REF], "An algorithm for computing optimal exponent pairs". [START_REF]SageMath, the Sage Mathematics Software System[END_REF] The Sage Developers, 2022, SageMath, the Sage Mathematics Software System (Version 9.5).

ExpPairs.sage/plotC (12,6) [1] to mean that the reader should type the command plotC (12,6) [1] in Sage-Math, once the main file ExpPairs.sage has been duly loaded.

A simple continuous bound

A consequence of our study is the next flexible estimate. {continuousEP} Theorem 1.2. Let S be an exponential sum of monomial type and parameters N and F . Then, for every κ P r0, 1 2 s and every ε ą 0, we have

S ! ε F κ`ε N ϑ0pκq`ε where ϑ 0 pκq " 1 ´κ log 2 log 2κ `1 2κ .
We have ϑ 0 p0q " 1, ϑ 0 p1{2q " 1{2 and ϑ 0 p1{6q " 2{3. This is proved in Lemma 2.8 below. The upper bound S ! ε F φpλ`1 2 q´1 2 `εN λ`ε also holds true for every λ P r 1 2 , 1s and every ε ą 0, and this one is better than the above one when λ ď 2{3. Theorem 5.1 belows offers a generalization of this result to higher dimensional exponential sums. Contrarily to S.W. Graham's approach that leads to optimal values at some specific points, Theorem 1.2 allows real-valued optimization at a small numerical loss in the exponent. The approximation is however very tight as shown by Figure 1. Difference between ϑ 0 and the optimal exponent pair from the van der Corput domain, drawing obtained via ExpPairs.sage/compareModelConvHull(12).

On our example, we get S ! ε N 2κ`ϑ0pκq`ε , which is minimal when κ " 0.0566 865 ¨¨¨with value N 0.926¨¨¨, whence ÿ 

t 1{3 ănď2t 1{3 n it ! t 0.926{3 ( 

Preparing for the proofs: a change of variables

We prefer to change of variables and to use pu, vq " p2κ, 2λ ´1q.

(5) {defuv} {defuv}

The pairs above become in p0, 1q, p1, 0q, p 1 3 , 1 3 q, p 1 7 , 4 7 q, p 9 28 , 9 28 q, p 89 280 , 89 280 q, while the transformations read

f pu, vq " ˆu u `2 , v `1 u `2 ˙, cpu, vq " pv, uq. (6) 
{deffandg} {deffandg}

As c is an involution, it is better to consider the transform g " c ˝f and to consider iterations of f and g. It is noteworthy that f and g preserve segments.

One can consider these transforms as restrictions of linear transforms on the projective plane P 2 :

C "

¨1 0 0 0 1 1 1 0 2 ', D " ¨0 1 1 1 0 0 1 0 2 ' ( 7 
)
{eq:1} {eq:1} so that f pu, vq can be read on the first two coordinates of C ˇˇˇˇˇu v 1

(when we divide by the third one); a similar link holds between g and D.

A first player: the curve C

There are two ways to describe the van der Corput Domain. Both rest on a curve C that we now build: either by taking a limit from above, or by taking the closure of the set of points obtained by iterating f and g when starting from tp0, 1q, p1, 0qu.

Getting to C from outside

The construction we now describe will for instance make clear that we reach a connected curve.

In this section, we consider the transformation of the unit square r0, 1s 2 under the two transforms f and g. Let us first notice that these transforms are contracting.

Lemma 2.1. When P, Q P r0, 1s 2 , we have }f pP q ´f pQq} ď ρ}P ´Q} where ρ " b 3`? 5 8 ď 13{16. The same holds true for g.

Proof. The Jacobian reads, with U " u `2 and V " v `1,

J " ˆ2 U 2 ´V U 2 0 1 U , ˙so that U 4 JJ ˚" ˆ4 `V 2 ´U V ´U V U 2 ˙.
The largest eigenvalue of JJ ˚is

λ " 4 `U 2 `V 2 `aU 4 `p2V 2 ´8qU 2 `p4 `V 2 q 2 2U 4 .
It is largest when V " 2, so we are left with finding the maximum over W P r4, 9s of the quantity 8 `W `?64 `W 2 2W 2 .

As this function of W is non-increasing, the worst case is W " 4. The lemma follows readily.

Let Kpr0, 1s 2 q be the compact space of the compact subsets of r0, 1s 2 , equipped with the usual Hausdorff distance (see for instance Exercise 3 of Section 16, Chapter 3 of the reference book [START_REF] Dieudonné | Foundations of modern analysis[END_REF] by J. Dieudonné) , i.e. where notation pf Y gq ˝n means that we compose pf Y gq iteratively n times with itself. This set C corresponds to the set P of S.W. Graham in [START_REF] Graham | An algorithm for computing optimal exponent pairs[END_REF]. Plotting C is not difficult.

dpK 1 , K 2 q " max ´max k1PK1 dpk 1 , K 2 q, max k2PK2 dpk 2 , K 1 q ¯. ( 8 
[3] J. [START_REF] Dieudonné | Foundations of modern analysis[END_REF], Foundations of modern analysis.

[5] S. W. [START_REF] Graham | An algorithm for computing optimal exponent pairs[END_REF], "An algorithm for computing optimal exponent pairs". if nbsteps > 0:

Getting to C from inside, I

We may get points that are on the final curve by two processi. Here is a first one.

The construction above shows also that each point of C may be reached in a unique manner either from any point with a infinite sequence of f and g, giving an adapted 'binary' writing for these points. For instance the point p1, 0q is f f f ¨¨¨, while p0, 1q is ggg ¨¨¨: indeed, the first f reduces the unit square r0, 1s 2 to a smaller parallelepiped that lies inside r0, 1{3s ˆr1{3, 1s. On applying f again, we get an even smaller parallelepiped that still contains the point p0, 1q. The intersection č ně1 f ˝npr0, 1s 2 q then reduces to the point p0, 1q. Please notice that when we associate the sequence f f f ¨¨¨to this points, the order is reverse to the one we use for the composition of functions. The point p 1 3 , 1 3 q is gf f f f ¨¨¨" f gggg ¨¨¨. The same construction shows that any finite combination of f and g applied to p0, 1q or p1, 0q belongs to C. We get rational points by considering a finite sequence, say f f gf g, and completing it on the right either by f f f ¨¨¨if we want to refer to the upper left point of the parallelepiped gf gf f pr0, 1s 2 q, or by ggg ¨¨¨if we want to refer to the lower right point of the same parallelepiped. We get in this manner rational points that are on the curve C. The reader will readily see that we get a dense family of such points. Indeed, specifying a prefix, like f f gf g, localizes the point inside gf gf f pr0, 1s 2 q and any continuation, say f f gf gf f ggf f gg, leads to points that are inside this set. 

Getting to C from inside, II

We now describe a second processus to get points that are on the final curve.

A point of the curve may be attained by some sequence, say f f gf g ¨¨¨. Rather than considering the transforms f and g, we could equivalently make the corresponding product of matrices C and D. These and the resulting product is a non-singular matrix with (integer) non-negative coefficients. As such it has a single dominant eigenvalue, the so-called Perron-Frobenius (see Chapter XIII of the book [START_REF] Gantmacher | The theory of matrices[END_REF] by Gantmacher) eigenvalue and a corresponding eigenvector. So, if we iterate the transform g ˝f ˝g ˝f ˝f , or equivalently DCDCC, the image in P 2 of the cone corresponding to the square r0, 1s 2 accumulates around the line containing this eigenvector. This line is indeed a point of C; it corresponds to the code f f gf gf f gf gf f gf g ¨¨¨where we repeat the pattern f f gf g. The points we now obtain are cubic, since so is the eigenvalue as a root of a cubic polynomial, namely the characteristic polynomial (of DCDCC in our example).

Here again, we can localize these points by choosing a proper prefix. Proof. Indeed, let us consider the region R " tpu, vq, v ď θ 0 puqu. If a point P belongs to the region R " tpu, vq, v ď θ 0 puqu, then f pP q also belongs to this At this level, the point p 1 3 , 1 3 q is becoming useless, and in later steps, it will even become an interior point. So have reached the points p0, 1q, p1{15, 11{15q, p1{7, 4{7q, p2{9, 4{9q, p4{9, 2{9q, p4{7, 1{7q, p11{15, 1{15q, p1, 0q

Here is the situation when we reached the step 6, and which shows that finding a pattern to determine which points to keep and which to discard may be intricate. The next figure (in pκ, λq) shows that the adequation of our model θ 0 to this case is not as good as before but still within an acceptable magin. 

  {CompareCH}

Figure 1 :

 1 Figure 1:Difference between ϑ 0 and the optimal exponent pair from the van der Corput domain, drawing obtained via ExpPairs.sage/compareModelConvHull(12).

1 6

 1 4) {eq:4} {eq:4}improving on (2), though still far from the expected t `ε.

Figure 2 :

 2 Figure 2: The first three iterations, drawing obtained via ExpPairs.sage/transformSquare([[0,0],[0,1],[1,1],[1,0]],3,2,False).

  {fig2}

Figure 3 :

 3 Figure 3: Approximation of the curve C with words of length 12, drawing obtained through ExpPairs.sage/plotC(12, 6)[1].

Figure 4 :

 4 Figure 4: The curve C in green (below) and the graph of θ 0 in red (above), drawing obtained through ExpPairs.sage/plotC(12, 6)[1]+plotUpper(6).

  {Compare}

Figure 5 :

 5 Figure 5: Difference between θ 0 and C, drawing obtained by using ExpPairs.sage/compareModelCurve(12).

Figure 6 :

 6 Figure 6: Approximate domain D with words of length 3, drawing obtained via ExpPairs.sage/plotDomainC(1)+plotDomainC(2)+plotDomainC(3).

Figure 8 :

 8 Figure 8: Domain D ˚. In blue, the part added by Watt's exponent pair, drawing obtained through ExpPairs.sage/plotSimpleDomainCS([[0,1], [89/280,89/280]],12, 6, 'blue') + plotSimpleDomainCS([[0,1]], 12).

  {CompareCHW}

Figure 9 :

 9 Figure 9:Difference between ϑ 0 and the optimal exponent pair from the Watt (resp. van der Corput) domain in red [top] (resp.in blue [below]),, drawing obtained via ExpPairs.sage/compareModelConvHull(8)+compareModelConvHull(8).

Theorem 5 . 1 .

 51 leads to the rules(6), and the geometrical problem is thus unchanged! We then infer the next result from Theorem 1.2 and Theorem 4.1.{continuousEPp} For any κ P r0, 1 2pp`1q s, the couple `κ, ϑ0ppκq`p´1 p ˘is a p-dimensional exponent pair. The same is true of `κ, ϑ ˚ppκq`p´1 p ˘, where ϑ ˚is defined in Theorem 4.1.

  

ToPlot = actonD(DomfC, nbsteps-1, myz+1, True, shade) ToPlot += actonD(DomgD, nbsteps-1, myz+1, True, shade) return(ToPlot) MyInitialDomain = [[0,0], [0,1], [1,1], [1,0]] actonD(MyInitialDomain, 6, 2, False, 110, figsize = 15, gridlines = "automatic", xmin = 0, xmax = 1, ymin = 0, ymax = 1, aspect_ratio = 1)

Copy this code is a file CCurve.sage, without forgetting the sage suffix, start SageMath and run the file by using the command load("CCurve.sage"). It is then possible to increase nbsteps, say to 10, and to zoom on a particular region by changing the quadruple (xmin, xmax, ymin, ymax). Let us take the opportunity of this note to explain part of the help system of Sagemath. If we set P = actonD(MyInitialDomain, 1, 1, False, 0), then we may use P.<tab> to get access to all the methods associated with the object P (a plot). And to see all the tons of options associated with the show method, enter P.show?.

The 2D-plotting reference guide is available there: https://doc.sagemath.org/pdf/en/reference/plotting/plotting.pdf

Let us comment on this picture. Introducing an adhoc definition will simplyfy our task. Definition 2.2. A tile is the convex hull of four points.

Since the functions f and g transform segments into segments, tiles are transformed into tiles by any composition-product of these two.

We starts from the tile r0, 1s 2 , which we transform by f , getting the new tile Convpp0, 1q, p 1 3 , 2 3 q, p 1 3 , 1 3 q, p0, 1 2 qq and then similarly by g, getting the tile Convpp 1 3 , 1 3 q, p 2 3 , 1 3 q, p1, 0q, p 1 2 , 0qqq. These resulting tiles join in p 1 3 , 1 3 q. On applying repeatedly the transforms f and g, we get a connected necklace of tiles.

Here is a lemma that helps structure the situation.

Lemma 2.3. Let K be a connected compact subset of r0, 1s 2 that contains the points p0, 1q and p1, 0q. The set f pKq Y gpKq is again a connected compact subset of r0, 1s 2 that contains the points p0, 1q and p1, 0q.

Proof. Indeed f pKq and gpKq are both connected and compact. Both sets contain the point f pp1, 0qq " p 1 3 , 1 3 q " gpp0, 1qq.

At each step, we get a succession of tiles hp0, 1q ´hp1, 1q ´hp1, 0q ´hp0, 0q; the distance between hp1, 1q and hp0, 0q is at most ρ n ? 2, when h is a product of n terms from tf, gu. This shows an exponential rate, and the actual rate is faster (meaning the practical 'ρ' is smaller). One shows readily that we end up with a curve. To plot it, we may only consider the transforms of the lower part of the initial square. Let us state formally a theoretical consequence of this discussion. {Ccaliscontinuous} Lemma 2.4. The curve C is the graph of a continuous non-increasing function.

We shall now see that this seemingly regular curve C contains a dense subset of rational points (i.e. points whose coordinates are rational numbers).

Additional properties

Here are three additional properties of C. {inj} Lemma 2.5. If f pP q belongs to C, then P belongs to C.

Proof. We may assume that f pP q ‰ p 1 3 , 1 3 q. Indeed, if f pP q is in C, then f pP q is a limit point of a sequence f a1 g a1 f a2 g a2 ¨¨¨. As f pP q ‰ p 1 3 , 1 3 q and the image of r0, 1s 2 by f and g only intersect on this point, we deduce that a 1 ą 0. By injectivity, we see that P " f a1´1 g a1 f a2 g a2 ¨¨¨, completing the proof. We note for verification that ϑ 0 pκq " pθ 0 p2κq `1q{2. {separation} Lemma 2.6. The three areas that are (1) the points that are strictly above C, (2) the points that are on C and (3) the points that are strictly below C are stable under the action of f and g.

Proof. Indeed f and g are injective maps. Let P " pu, vq be above C. This means that the segment rP, P 0 s where P 0 " pu, 1q does not cross C. The segment rp0, 1q, p1, 1qs on which P 0 lies remains above our curve by construction after applying f or g. The segment rf pP q, f pP 0 qs may not cross C, as a crossing point would be a f pQq, and by Lemma 2.5, Q would belong to C and to rP, P 0 s, a contradiction. {split} Lemma 2.7. If a point P is below (resp. up of ) the curve C, then f pP q and gpP q are also there.

A simple continuous bound

We now present a readily exploited upper bound for C. {upperbd} Lemma 2.8. The graph of the function θ 0 : x Þ Ñ 1 ´x logp1 `1{xq{ log 2 is stable under f and remains above C. It crosses C in three points: p0, 1q, p 1 3 , 1 3 q and p1, 0q.

[4] F. R. [START_REF] Gantmacher | The theory of matrices[END_REF], The theory of matrices. Vols. 1, 2.

region. Indeed, we compute that

This proof also shows that the graph of θ 0 is invariant under f . It is easy to show that this graph is above C when u P r1{2, 1s. The other parts of this graph are obtained by applying f , and since the region upper to C is stable under f , the graph of θ 0 remains there.

Remark 2.9. When P belongs to this region then gpP q also belongs to it. Indeed, we have

The function w Þ Ñ w logp1 `U {wq is non-decreasing when w P r1, 2s and U P r2, 3s (its derivative is plog zq `1 z ´1 for z " pw `U q{w P r2, 4s). We thus only have to prove our assertion when v " θ 0 puq and a simple plot is enough.

Proof of Theorem 1.2. Translating Lemma 2.8 in terms of pκ, λq and the definition of exponent pairs are all that is required to complete this proof.

Convex hull

Given a symmetric subset S Ă r0, 1s 2 that contains p0, 1q, we consider the smallest closed convex set C pSq that contains all the images of S under f and g. Since our set contains p0, 1q it contains p1, 0q and p1{3, 1{3q. These are the vertices of the image of r0, 1s 2 by f and g. On iterating, we find all the (opposite) vertices of the small parallepipedes that we used to build C, from which we conclude that the convex hull of C is indeed in C ptp0, 1quq which we denote by D. Note that, since f and g preserve segments, it is enough to first iterate f and g and, in a second step, to take the convex hull of the final set.

As we see in Figure 2, the curve C has a singular point at p 1 3 , 1 3 q. But since any other location on the curve in a smooth image of the full curve, the set of points where this phenomenom occurs is in fact dense on C.

Let us describe an algorithmical way of computing D. We start from p0, 1q and p1, 0q, apply f and g, get the convex hull and repeat on the set of vertices obtained. Here is a plot of the first three steps. In blue round shape, the points of C that are on the border, and in red star shape, the ones that are not needed anymore; zoom in (b) on the central part, drawing obtained via ExpPairs.sage/plotDomainC(5, False) and adding .show(xmin=0.2,xmax=0.5,ymin=0.2,ymax=0.5, aspect ratio=1) for the second one.

Adding the Huxley and Watt point

In [1], E. Bombieri and H. Iwaniec improved the Lindelöf exponent beyond what was accessible through the exponent pair method. Their work was extended to yield an exponent pair by M.N. Huxley and N. Watt in [7] and by N. Watt in [13]. This gives us the two pu, vq-points Since the points given in [START_REF]SageMath, the Sage Mathematics Software System[END_REF] are below the curve C, and further point obtained by applying f and or g still stays there. Moreover, as we saw previously, a start like f f gf g localizes the image.

The question then is to find some equivalent form to Theorem 1.2. The function θ 0 (resp. ϑ 0 if we express it in the variables pκ, λq) has (rather strickingly) a simple form, but we may as well replace it by θ ˚(resp. ϑ ˚) which parametrizes the (lower) border of D ˚. {continuousEPstar} Theorem 4.1. The θ ˚be the continuous decreasing convex function on r0, 1s that parametrizes the lower border of D ˚and ϑ ˚be the continuous decreasing convex function on r0, 1{2s defined by ϑ ˚pκq " p2θ ˚p2κq `1q{2. Let S be an exponential sum of monomial type and parameters N and F . Then, for every κ P r0, 1 2 s and every ε ą 0, we have S ! ε F κ`ε N ϑ ˚pκq`ε . The functional equation θ ˚˝θ ˚" θ ˚holds, as a consequence of the symetry pu, vq Þ Ñ pv, uq.

An upper bound for θ ˚is provided by the step-function θ 1 (or ϑ 1 in the variables pκ, λq) that links the following points: This leads to a rather decent approximation of our border, as shown by the next plots. 

A remark concerning p-dimensional exponent pairs

In [START_REF] Srinivasan | The lattice point problem of many dimensional hyperboloids. III[END_REF], B.R. Srinivasan developped a multi-dimensional theory of exponent pairs. Roughly speaking, let φpx 1 , x 2 , . . . , x p q be a smooth 'polynomial-like' function whose partial derivative with respect to x i remains of size F i when x i is about N i . Then a pair pκ, λq P r0, 1 2pp`1q s ˆr 2p´1 2p , 1s is said to be a p-dimensional exponent pair when, given the above data and ε ą 0, we have