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Notes on the domain of exponent pairs

Julien Cassaigne, Sary Drappeau, Olivier Ramaré

October 7, 2022

Abstract

The theory of exponent pairs as initiated by Phillipps in 1933 proposes
pairs of exponents pκ, λq so that one has

ř

n„N e2iπφpnq
!ε Fκ`εNλ`ε,

for any positive ε, where φ is a ’monomial-like’ smooth function whose
first derivative is of size about F . We propose to explore the domain
of available pairs pκ, λq through a very geometrical approach. We prove
in particular that this domain is the convex hull of a connected curve
in the classical case. We also show that a possible choice for λ, for any
κ P r0, 1{2s, is given by λ “ 1 ´ κ

log 2
log 2κ`1

2κ
. We finally recall rapidly

how this theory has been adapted to the higher dimensional setting. In
passing, we take the opportunity of this slow-paced paper to describe some
usage of the SageMath software.

1 Introduction and results

Exponent pairs in the large

E. Phillipps developped in [8] a theory of exponent pairs by furthering and
simplifying the notion of exponent system introduced by J.G. van der Corput
in [12]. The reader will find a modern account of this theory in the reference
book [6] by S.W. Graham and G. Kolesnik. Roughly speaking a couple pκ, λq P

r0, 1
2 s ˆ r 12 , 1s is said to be an exponent pair when, given a regular function φ

that is ’monomial-like’ and whose first derivative on the interval rN, 2N s is of
size F , the upper bound

S “
ÿ

Nănď2N

e2iπφpnq !ε F
κ`εNλ`ε.

holds for any ε ą 0. The following exponent pairs are known:

p0, 1q,
´1

2
,
1

2

¯

,
´1

6
,
2

3

¯

,
´ 1

14
,
11

14

¯

,
´ 9

56
,
37

56

¯

,
´ 89

560
,
369

560

¯

. (1) {iniEP}{iniEP}

An example

In [2], Dekking and Mendès-France propose a geometrical approach to expo-
nential sums. The reader will find there several examples and some compelling

[8] E. Phillips, 1933, “The zeta-function of Riemann: Further developments of van der Cor-
put’s method.”
[12] J. van der Corput, 1922, “Verschärfung der Abschätzung beim Teilerproblem.”
[6] S. W. Graham and G. Kolesnik, 1991, Van der Corput’s Method of Exponential Sums.
[2] F. M. Dekking and M. Mendès France, 1981, “Uniform distribution modulo one: a geo-
metrical viewpoint”.
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drawings. A most classical example is φpnq “ tplog nq{p2πq where t is some
large parameter and for instance N “ t1{3. The sum S is then often called a
zeta-sum. A first trivial bound for S is N ` 1. Since φ1pnq “ t{p2πnq, we see
that t2{3 ă 4πφ1pnq ď 2t2{3, so that we may select F “ N2. We thus get the
bound S !ε N2κ`λ`ε, and with the pairs given in (1) above, this gives the
exponents

1,
3

2
, 1,

13

14
“ 0.928 ¨ ¨ ¨ ,

55

56
“ 0.982 ¨ ¨ ¨ ,

547

560
“ 0.976 ¨ ¨ ¨ (2){exampleexppo}{exampleexppo}

of which 13{14 is the best one for our problem.

The domain of exponent pairs

It follows from the theory that, given an exponent pair pκ, λq, we may build
another one by the two formulas

´ κ

2κ ` 2
,
κ ` λ ` 1

2κ ` 2

¯

,
´

λ ´
1

2
, κ `

1

2

¯

. (3){processi}{processi}

The first five pairs above are obtained by using these two processi while the
last two have been obtained respectively by M.N. Huxley and N. Watt in [7]
and by N. Watt in [13]. Furthermore, any convex combination of exponent
pairs is again an exponent pair. When using the pair p0, 1q and the processi
described in (3), we call the convex hull of the domain obtained the van der
Corput Domain denoted by D .

Theorem 1.1. The domain D is the convex hull of the curve C defined in (9)
and which is the graph of a continuous non-increasing function.

When we add the point
`

89
560 ,

369
560

˘

, the domain will be called the Watt Do-
main in the sequel and denoted by D˚.

In [9], R.A. Rankin started to describe the set of accessible exponent pairs,
a study furthered by S.W. Graham in [5]. The viewpoint taken in both papers
is to compute optimal values in a specific problem. The aim of the present note
is to continue this work from a more geometric viewpoint. Nonetheless it is fair
to say that a large part of the material we present here can be found in the
previous two papers in some form or some other.

Since we also strive to describe the situation with pictures, it may be better
to provide the readers with the means to play themselves with these pictures.
We shall be using the SageMath, see [10]; the script we use is available on the
web at:

https://ramare-olivier.github.io/Maths/ExpPairsNote-01.sage

Copy this code is a file named, say, ExpPairs.sage, without forgetting the sage
suffix, start SageMath and load this via the command load("ExpPairs.sage").
We give in the text some pointers on to how to code in SageMath, as well as
commands that we write in the form

[7] M. N. Huxley and N. Watt, 1988, “Exponential sums and the Riemann zeta function”.
[13] N. Watt, 1989, “Exponential sums and the Riemann zeta-function. II”..
[9] R. A. Rankin, 1955, “Van der Corput’s method and the theory of exponent pairs”.
[5] S. W. Graham, 1986, “An algorithm for computing optimal exponent pairs”.
[10] The Sage Developers, 2022, SageMath, the Sage Mathematics Software System (Version
9.5).
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ExpPairs.sage/plotC(12, 6)[1]

to mean that the reader should type the command plotC(12, 6)[1] in Sage-
Math, once the main file ExpPairs.sage has been duly loaded.

A simple continuous bound

A consequence of our study is the next flexible estimate.
{continuousEP}

Theorem 1.2. Let S be an exponential sum of monomial type and parameters N
and F . Then, for every κ P r0, 1

2 s and every ε ą 0, we have S !ε F
κ`εNϑ0pκq`ε

where

ϑ0pκq “ 1 ´
κ

log 2
log

2κ ` 1

2κ
.

We have ϑ0p0q “ 1, ϑ0p1{2q “ 1{2 and ϑ0p1{6q “ 2{3.

This is proved in Lemma 2.8 below. The upper bound S !ε F
φpλ` 1

2 q´ 1
2 `εNλ`ε

also holds true for every λ P r 12 , 1s and every ε ą 0, and this one is better than
the above one when λ ď 2{3. Theorem 5.1 belows offers a generalization of this
result to higher dimensional exponential sums. Contrarily to S.W. Graham’s
approach that leads to optimal values at some specific points, Theorem 1.2 al-
lows real-valued optimization at a small numerical loss in the exponent. The
approximation is however very tight as shown by Figure 1.

{CompareCH}

Figure 1: Difference between ϑ0 and the optimal exponent
pair from the van der Corput domain, drawing obtained via
ExpPairs.sage/compareModelConvHull(12).

On our example, we get S !ε N2κ`ϑ0pκq`ε, which is minimal when κ “

0.0566 865 ¨ ¨ ¨ with value N0.926¨¨¨, whence
ÿ

t1{3ănď2t1{3

nit ! t0.926{3 (4) {eq:4}{eq:4}

improving on (2), though still far from the expected t
1
6 `ε.
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Preparing for the proofs: a change of variables

We prefer to change of variables and to use

pu, vq “ p2κ, 2λ ´ 1q. (5) {defuv}{defuv}

The pairs above become in p0, 1q, p1, 0q, p 1
3 ,

1
3 q, p 1

7 ,
4
7 q, p 9

28 ,
9
28 q, p 89

280 ,
89
280 q, while

the transformations read

fpu, vq “

ˆ

u

u ` 2
,
v ` 1

u ` 2

˙

, cpu, vq “ pv, uq. (6){deffandg}{deffandg}

As c is an involution, it is better to consider the transform g “ c ˝ f and to
consider iterations of f and g. It is noteworthy that f and g preserve segments.
One can consider these transforms as restrictions of linear transforms on the
projective plane P2:

C “

¨

˝

1 0 0
0 1 1
1 0 2

˛

‚, D “

¨

˝

0 1 1
1 0 0
1 0 2

˛

‚ (7){eq:1}{eq:1}

so that fpu, vq can be read on the first two coordinates of C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u
v
1
(when we divide

by the third one); a similar link holds between g and D.

2 A first player: the curve C
There are two ways to describe the van der Corput Domain. Both rest on a
curve C that we now build: either by taking a limit from above, or by taking
the closure of the set of points obtained by iterating f and g when starting from
tp0, 1q, p1, 0qu.

Getting to C from outside

The construction we now describe will for instance make clear that we reach a
connected curve.

In this section, we consider the transformation of the unit square r0, 1s2

under the two transforms f and g. Let us first notice that these transforms are
contracting.

Lemma 2.1. When P,Q P r0, 1s2, we have }fpP q ´ fpQq} ď ρ}P ´ Q} where

ρ “

b

3`
?
5

8 ď 13{16. The same holds true for g.

Proof. The Jacobian reads, with U “ u ` 2 and V “ v ` 1,

J “

ˆ

2
U2 ´ V

U2

0 1
U ,

˙

so that U4JJ˚ “

ˆ

4 ` V 2 ´UV
´UV U2

˙

.

The largest eigenvalue of JJ˚ is

λ “
4 ` U2 ` V 2 `

a

U4 ` p2V 2 ´ 8qU2 ` p4 ` V 2q2

2U4
.
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It is largest when V “ 2, so we are left with finding the maximum overW P r4, 9s

of the quantity
8 ` W `

?
64 ` W 2

2W 2
.

As this function of W is non-increasing, the worst case is W “ 4. The lemma
follows readily.

LetKpr0, 1s2q be the compact space of the compact subsets of r0, 1s2, equipped
with the usual Hausdorff distance (see for instance Exercise 3 of Section 16,
Chapter 3 of the reference book [3] by J. Dieudonné) , i.e.

dpK1,K2q “ max
´

max
k1PK1

dpk1,K2q, max
k2PK2

dpk2,K1q

¯

. (8) {eq:2}{eq:2}

We, rather obviously, still call f the function induced by f on K. And f Y g is
the function that, to any set A, associates fpAq Y gpAq. This is a continuous
function. We set

C “
č

ně0

pf Y gq˝npr0, 1s2q (9) {defCcal}{defCcal}

where notation pf Y gq˝n means that we compose pf Y gq iteratively n times
with itself. This set C corresponds to the set P of S.W. Graham in [5]. Plotting
C is not difficult.

[3] J. Dieudonné, 1969, Foundations of modern analysis.
[5] S. W. Graham, 1986, “An algorithm for computing optimal exponent pairs”.
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Figure 2: The first three iterations, drawing obtained via
ExpPairs.sage/transformSquare([[0,0],[0,1],[1,1],[1,0]],3,2,False).

Here are some details on the SageMath code that produces it.

######### Common handlers ###################

def fC(p):

return([p[0]/(p[0]+2), (p[1]+1)/(p[0]+2)])

def gD(p):

return([(p[1]+1)/(p[0]+2), p[0]/(p[0]+2)])

######### Building of the C-curve from up ######

def actonD(InitDom, nbsteps, myz, doplot = True, shade = 0):

# When doplot = False, be sure nbsteps > 0

acolor = Color(0/255, (70 + 40*(nbsteps + shade))/255, 200/255)

DomfC = list(map(fC, InitDomain))

DomgD = list(map(gD, InitDomain))

ToPlot = Graphics() # empty graphical object

if doplot:

ToPlot = polygon(InitDom, color = acolor, zorder = myz)

if nbsteps > 0:

ToPlot += actonD(DomfC, nbsteps-1, myz+1, True, shade)

ToPlot += actonD(DomgD, nbsteps-1, myz+1, True, shade)

else:

if nbsteps > 0:
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ToPlot = actonD(DomfC, nbsteps-1, myz+1, True, shade)

ToPlot += actonD(DomgD, nbsteps-1, myz+1, True, shade)

return(ToPlot)

MyInitialDomain = [[0,0], [0,1], [1,1], [1,0]]

actonD(MyInitialDomain, 6, 2, False, 110,

figsize = 15, gridlines = "automatic",

xmin = 0, xmax = 1, ymin = 0, ymax = 1, aspect_ratio = 1)

Copy this code is a file CCurve.sage, without forgetting the sage suffix, start
SageMath and run the file by using the command load("CCurve.sage"). It
is then possible to increase nbsteps, say to 10, and to zoom on a particular
region by changing the quadruple (xmin, xmax, ymin, ymax). Let us take the
opportunity of this note to explain part of the help system of Sagemath. If we set
P = actonD(MyInitialDomain, 1, 1, False, 0), then we may use P.<tab>
to get access to all the methods associated with the object P (a plot). And
to see all the tons of options associated with the show method, enter P.show?.
The 2D-plotting reference guide is available there:

https://doc.sagemath.org/pdf/en/reference/plotting/plotting.pdf

Let us comment on this picture. Introducing an adhoc definition will sim-
plyfy our task.

Definition 2.2. A tile is the convex hull of four points.

Since the functions f and g transform segments into segments, tiles are
transformed into tiles by any composition-product of these two.

We starts from the tile r0, 1s2, which we transform by f , getting the new
tile Convpp0, 1q, p 1

3 ,
2
3 q, p 1

3 ,
1
3 q, p0, 1

2 qq and then similarly by g, getting the tile
Convpp 1

3 ,
1
3 q, p 2

3 ,
1
3 q, p1, 0q, p 1

2 , 0qqq. These resulting tiles join in p 1
3 ,

1
3 q. On ap-

plying repeatedly the transforms f and g, we get a connected necklace of tiles.
Here is a lemma that helps structure the situation.

Lemma 2.3. Let K be a connected compact subset of r0, 1s2 that contains the
points p0, 1q and p1, 0q. The set fpKq Y gpKq is again a connected compact
subset of r0, 1s2 that contains the points p0, 1q and p1, 0q.

Proof. Indeed fpKq and gpKq are both connected and compact. Both sets
contain the point fpp1, 0qq “ p 1

3 ,
1
3 q “ gpp0, 1qq.

At each step, we get a succession of tiles hp0, 1q ´ hp1, 1q ´ hp1, 0q ´ hp0, 0q;
the distance between hp1, 1q and hp0, 0q is at most ρn

?
2, when h is a product

of n terms from tf, gu. This shows an exponential rate, and the actual rate is
faster (meaning the practical ’ρ’ is smaller). One shows readily that we end
up with a curve. To plot it, we may only consider the transforms of the lower
part of the initial square. Let us state formally a theoretical consequence of this
discussion.

{Ccaliscontinuous}
Lemma 2.4. The curve C is the graph of a continuous non-increasing function.

We shall now see that this seemingly regular curve C contains a dense subset
of rational points (i.e. points whose coordinates are rational numbers).
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Getting to C from inside, I

We may get points that are on the final curve by two processi. Here is a first
one.

The construction above shows also that each point of C may be reached in a
unique manner either from any point with a infinite sequence of f and g, giving
an adapted ’binary’ writing for these points. For instance the point p1, 0q is
fff ¨ ¨ ¨ , while p0, 1q is ggg ¨ ¨ ¨ : indeed, the first f reduces the unit square r0, 1s2

to a smaller parallelepiped that lies inside r0, 1{3s ˆ r1{3, 1s. On applying f
again, we get an even smaller parallelepiped that still contains the point p0, 1q.
The intersection

č

ně1

f˝npr0, 1s2q

then reduces to the point p0, 1q. Please notice that when we associate the
sequence fff ¨ ¨ ¨ to this points, the order is reverse to the one we use for the
composition of functions.

The point p 1
3 ,

1
3 q is gffff ¨ ¨ ¨ “ fgggg ¨ ¨ ¨ . The same construction shows

that any finite combination of f and g applied to p0, 1q or p1, 0q belongs to
C. We get rational points by considering a finite sequence, say ffgfg, and
completing it on the right either by fff ¨ ¨ ¨ if we want to refer to the upper left
point of the parallelepiped gfgffpr0, 1s2q, or by ggg ¨ ¨ ¨ if we want to refer to
the lower right point of the same parallelepiped. We get in this manner rational
points that are on the curve C. The reader will readily see that we get a dense
family of such points. Indeed, specifying a prefix, like ffgfg, localizes the point
inside gfgffpr0, 1s2q and any continuation, say ffgfgffggffgg, leads to points
that are inside this set.

{fig2}

Figure 3: Approximation of the curve C with words of length 12, drawing ob-
tained through ExpPairs.sage/plotC(12, 6)[1].

Getting to C from inside, II

We now describe a second processus to get points that are on the final curve.
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A point of the curve may be attained by some sequence, say ffgfg ¨ ¨ ¨ .
Rather than considering the transforms f and g, we could equivalently make the
corresponding product of matrices C and D. These and the resulting product is
a non-singular matrix with (integer) non-negative coefficients. As such it has a
single dominant eigenvalue, the so-called Perron-Frobenius (see Chapter XIII of
the book [4] by Gantmacher) eigenvalue and a corresponding eigenvector. So,
if we iterate the transform g ˝ f ˝ g ˝ f ˝ f , or equivalently DCDCC, the image
in P2 of the cone corresponding to the square r0, 1s2 accumulates around the
line containing this eigenvector. This line is indeed a point of C; it corresponds
to the code ffgfgffgfgffgfg ¨ ¨ ¨ where we repeat the pattern ffgfg. The
points we now obtain are cubic, since so is the eigenvalue as a root of a cubic
polynomial, namely the characteristic polynomial (of DCDCC in our example).
Here again, we can localize these points by choosing a proper prefix.

Additional properties

Here are three additional properties of C.
{inj}

Lemma 2.5. If fpP q belongs to C, then P belongs to C.

Proof. We may assume that fpP q ‰ p 1
3 ,

1
3 q. Indeed, if fpP q is in C, then fpP q

is a limit point of a sequence fa1ga1fa2ga2 ¨ ¨ ¨ . As fpP q ‰ p1
3 ,

1
3 q and the image

of r0, 1s2 by f and g only intersect on this point, we deduce that a1 ą 0. By
injectivity, we see that P “ fa1´1ga1fa2ga2 ¨ ¨ ¨ , completing the proof. We note
for verification that ϑ0pκq “ pθ0p2κq ` 1q{2.

{separation}
Lemma 2.6. The three areas that are (1) the points that are strictly above C,
(2) the points that are on C and (3) the points that are strictly below C are stable
under the action of f and g.

Proof. Indeed f and g are injective maps. Let P “ pu, vq be above C. This
means that the segment rP, P0s where P0 “ pu, 1q does not cross C. The segment
rp0, 1q, p1, 1qs on which P0 lies remains above our curve by construction after
applying f or g. The segment rfpP q, fpP0qs may not cross C, as a crossing point
would be a fpQq, and by Lemma 2.5, Q would belong to C and to rP, P0s, a
contradiction.

{split}
Lemma 2.7. If a point P is below (resp. up of) the curve C, then fpP q and
gpP q are also there.

A simple continuous bound

We now present a readily exploited upper bound for C.
{upperbd}

Lemma 2.8. The graph of the function θ0 : x ÞÑ 1 ´ x logp1 ` 1{xq{ log 2 is
stable under f and remains above C. It crosses C in three points: p0, 1q, p 1

3 ,
1
3 q

and p1, 0q.

[4] F. R. Gantmacher, 1959, The theory of matrices. Vols. 1, 2.
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Figure 4: The curve C in green (below) and the graph of θ0 in red (above),
drawing obtained through ExpPairs.sage/plotC(12, 6)[1]+plotUpper(6).

{Compare}

Figure 5: Difference between θ0 and C, drawing obtained by using
ExpPairs.sage/compareModelCurve(12).

Proof. Indeed, let us consider the region R “ tpu, vq, v ď θ0puqu. If a point P
belongs to the region R “ tpu, vq, v ď θ0puqu, then fpP q also belongs to this

10



region. Indeed, we compute that

v ` 1

u ` 2
´

ˆ

1 ´
u

pu ` 2q log 2
log

2u ` 2

u

˙

“
1

pu ` 2q log 2

ˆ

pv ´ 1q log 2 ` u log
u ` 1

u

˙

ď
1

pu ` 2q log 2

ˆ

´u log
u ` 1

u
` u log

u ` 1

u

˙

“ 0.

This proof also shows that the graph of θ0 is invariant under f . It is easy to
show that this graph is above C when u P r1{2, 1s. The other parts of this graph
are obtained by applying f , and since the region upper to C is stable under f ,
the graph of θ0 remains there.

Remark 2.9. When P belongs to this region then gpP q also belongs to it. In-
deed, we have

u

u ` 2
´

ˆ

1 ´
v ` 1

pu ` 2q log 2
log

v ` u ` 3

v ` 1

˙

“
1

pu ` 2q log 2

ˆ

´2 ` pv ` 1q log
v ` u ` 3

v ` 1

˙

.

The function w ÞÑ w logp1 ` U{wq is non-decreasing when w P r1, 2s and U P

r2, 3s (its derivative is plog zq ` 1
z ´ 1 for z “ pw `Uq{w P r2, 4s). We thus only

have to prove our assertion when v “ θ0puq and a simple plot is enough.

Proof of Theorem 1.2. Translating Lemma 2.8 in terms of pκ, λq and the defini-
tion of exponent pairs are all that is required to complete this proof.

3 Convex hull

Given a symmetric subset S Ă r0, 1s2 that contains p0, 1q, we consider the
smallest closed convex set C pSq that contains all the images of S under f and g.
Since our set contains p0, 1q it contains p1, 0q and p1{3, 1{3q. These are the
vertices of the image of r0, 1s2 by f and g. On iterating, we find all the (opposite)
vertices of the small parallepipedes that we used to build C, from which we
conclude that the convex hull of C is indeed in C ptp0, 1quq which we denote
by D . Note that, since f and g preserve segments, it is enough to first iterate
f and g and, in a second step, to take the convex hull of the final set.

As we see in Figure 2, the curve C has a singular point at p 1
3 ,

1
3 q. But since

any other location on the curve in a smooth image of the full curve, the set of
points where this phenomenom occurs is in fact dense on C.

Let us describe an algorithmical way of computing D . We start from p0, 1q

and p1, 0q, apply f and g, get the convex hull and repeat on the set of vertices
obtained. Here is a plot of the first three steps.
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Figure 6: Approximate domain D with words of length 3, drawing obtained via
ExpPairs.sage/plotDomainC(1)+plotDomainC(2)+plotDomainC(3).

At this level, the point p 1
3 ,

1
3 q is becoming useless, and in later steps, it will

even become an interior point. So have reached the points

p0, 1q, p1{15, 11{15q, p1{7, 4{7q, p2{9, 4{9q, p4{9, 2{9q, p4{7, 1{7q, p11{15, 1{15q, p1, 0q

Here is the situation when we reached the step 6, and which shows that finding a
pattern to determine which points to keep and which to discard may be intricate.
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(a) (b)

Figure 7: Approximate Domain D . In blue round shape, the
points of C that are on the border, and in red star shape, the
ones that are not needed anymore; zoom in (b) on the central part,
drawing obtained via ExpPairs.sage/plotDomainC(5, False) and adding
.show(xmin=0.2,xmax=0.5,ymin=0.2,ymax=0.5, aspect ratio=1) for the
second one.

4 Adding the Huxley and Watt point

In [1], E. Bombieri and H. Iwaniec improved the Lindelöf exponent beyond what
was accessible through the exponent pair method. Their work was extended to
yield an exponent pair by M.N. Huxley and N. Watt in [7] and by N. Watt
in [13]. This gives us the two pu, vq-points

´ 9

28
,
9

28

¯

,
´ 89

280
,
89

280

¯

. (10) {HWW}{HWW}

We should thus consider D˚ “ C ptp0, 1q, p 89
280 ,

89
280 quq. We find that

f
´´ 89

280
,
89

280

¯¯

“

´ 89

649
,
369

649

¯

, g
´´ 89

280
,
89

280

¯¯

“

´369

649
,
89

649

¯

.

Since the points given in (10) are below the curve C, and further point obtained
by applying f and or g still stays there. Moreover, as we saw previously, a start
like ffgfg localizes the image.

[1] E. Bombieri and H. Iwaniec, 1986, “On the order of ζp 1
2

` itq”.
[7] M. N. Huxley and N. Watt, 1988, “Exponential sums and the Riemann zeta function”.
[13] N. Watt, 1989, “Exponential sums and the Riemann zeta-function. II”..
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Figure 8: Domain D˚. In blue, the part added by Watt’s exponent pair,
drawing obtained through ExpPairs.sage/plotSimpleDomainCS([[0,1],

[89/280,89/280]],12, 6, ’blue’) + plotSimpleDomainCS([[0,1]], 12).

The next figure (in pκ, λq) shows that the adequation of our model θ0 to this
case is not as good as before but still within an acceptable magin.

{CompareCHW}

Figure 9: Difference between ϑ0 and the optimal expo-
nent pair from the Watt (resp. van der Corput) domain
in red [top] (resp. in blue [below]),, drawing obtained via
ExpPairs.sage/compareModelConvHull(8)+compareModelConvHull(8).
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The question then is to find some equivalent form to Theorem 1.2. The func-
tion θ0 (resp. ϑ0 if we express it in the variables pκ, λq) has (rather strickingly) a
simple form, but we may as well replace it by θ˚ (resp. ϑ˚) which parametrizes
the (lower) border of D˚.

{continuousEPstar}
Theorem 4.1. The θ˚ be the continuous decreasing convex function on r0, 1s

that parametrizes the lower border of D˚ and ϑ˚ be the continuous decreasing
convex function on r0, 1{2s defined by ϑ˚pκq “ p2θ˚p2κq ` 1q{2. Let S be an
exponential sum of monomial type and parameters N and F . Then, for every
κ P r0, 1

2 s and every ε ą 0, we have S !ε Fκ`εNϑ˚
pκq`ε. The functional

equation θ˚ ˝ θ˚ “ θ˚ holds, as a consequence of the symetry pu, vq ÞÑ pv, uq.

An upper bound for θ˚ is provided by the step-function θ1 (or ϑ1 in the
variables pκ, λq) that links the following points:

r0, 1s ,

„

89

1387
,
1018

1387

ȷ

,

„

89

649
,
369

649

ȷ

,

„

369

1667
,
738

1667

ȷ

,

„

89

280
,
89

280

ȷ

,

„

738

1667
,
369

1667

ȷ

,

„

369

649
,
89

649

ȷ

,

„

1018

1387
,

89

1387

ȷ

, r1, 0s .

This leads to a rather decent approximation of our border, as shown by the next
plots.

Figure 10: The Watt (resp. van der Corput) domain in blue (resp. in green)
and the rational upper bound in brown.

This is obtained via

BasePlot = plotSimpleDomainCS([[0,1], [89/280,89/280]],10, 6, ’blue’)

BasePlot += plotSimpleDomainCS([[0,1]], 10)
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BasePlot += list_plot(rationalCHullW(2), zorder=3, color=’brown’,

plotjoined = True, figsize =6)

BasePlot.show()

Figure 11: Difference minpϑ0, ϑ1q and the optimal expo-
nent pair from the Watt domain,, drawing obtained via
ExpPairs.sage/compareFiniteModelConvHull(8)

5 A remark concerning p-dimensional exponent
pairs

In [11], B.R. Srinivasan developped a multi-dimensional theory of exponent
pairs. Roughly speaking, let φpx1, x2, . . . , xpq be a smooth ’polynomial-like’
function whose partial derivative with respect to xi remains of size Fi when
xi is about Ni. Then a pair pκ, λq P r0, 1

2pp`1q
s ˆ r

2p´1
2p , 1s is said to be a

p-dimensional exponent pair when, given the above data and ε ą 0, we have
ÿ

@i,ni„Ni

e2iπφpn1,¨¨¨ ,npq !ε

`

ź

i

Fi

˘κ`ε`

ź

i

Ni

˘λ`ε
.

B.R. Srinivasan continues by showing that one can form two other p-dimensional
exponent pairs from a given one, say pκ, λq, by the expressions

ˆ

κ

2p1 ` pκq
,

p2p ´ 1qκ ` λ ` 1

2p1 ` pκq

˙

,
`

λ ´ 1
2 , κ ` 1

2

˘

.

The change of variables

u “ 2pκ, v “ 2pλ ´ 2p ` 1

[11] B. R. Srinivasan, 1965, “The lattice point problem of many dimensional hyperboloids.
III”..
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leads to the rules (6), and the geometrical problem is thus unchanged! We then
infer the next result from Theorem 1.2 and Theorem 4.1.

{continuousEPp}
Theorem 5.1. For any κ P r0, 1

2pp`1q
s, the couple

`

κ, ϑ0ppκq`p´1
p

˘

is a p-dimen-

sional exponent pair. The same is true of
`

κ, ϑ˚
ppκq`p´1

p

˘

, where ϑ˚ is defined
in Theorem 4.1.
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