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EXPONENTIAL SUMS OVER PRIMES WITH MULTIPLICATIVE
COEFFICIENTS

OLIVIER RAMARÉ AND G. K. VISWANADHAM

Abstract. We consider exponential sums of the form∑
X<p≤2X

f(p)(log p)e(pα) ,

where the sum runs over the prime numbers p ∈ (X, 2X] and f is a multiplicative
function satisfying certain growth conditions. As a consequence of our result,
we consider the normalized Fourier coefficients (ag(n)) of any eulerian GL(n)-
cuspform g that satisfies the Ramanujan conjecture as well as an estimate of the
form maxα∈R |

∑
n≤X ag(n)e(nα)| ≤ Xη for some η < 1. For such a form, we get

that ∑
X<p≤2X

ag(p)(log p)e(pα)�
√
q

ϕ(q)
X ,

where α is a real number such that
∣∣∣α− a

q

∣∣∣� X−1+
1−η
120 for some q ≤ X(1−η)/15.

Under stronger restrictions and the same conditions on α and a/q, we also prove
that ∑

X<`≤2X

ag(`)µ(`)e(pα)� X/
√
q .

1. Introduction

We are concerned here in getting estimates for the trigonometric polynomial∑
p≤N τ(p)e(pα) where p is a prime number and τ the Ramanujan function. We

consider more precisely phases α that are close to a rational a/q with a small de-
nominator q. It can be seen in the general light of Sarnak’s conjecture [15] as showing
that τ(p) do not correlate with the additive characters we consider, continuing the

work [3] of É. Fouvry and S. Ganguly.

Our method fits in a more general framework and continues our previous query [12]
where we obtained ’optimal’ bounds for

∑
p≤N e(pα) log p. We add a multiplicative

function f as a coefficient to consider
∑

p≤N f(p)e(pα) log p and want to show that
this sum is small provided reasonable hypotheses on the values of f over the integers
are met. We present these assumptions just below, but we want to stress out that
the main difficulty with respect to our previous work is that we do not assume
|f(p)| ≤ 1.

Let us present the three assumptions we make on our multiplicative function f .

2010 Mathematics Subject Classification. 11L07,11N13 (11L20).
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2 OLIVIER RAMARÉ AND G. K. VISWANADHAM

(H1) There exists an integer k ≥ 1 such that

|f(n)| ≤ τk(n) for all n ≥ 1 .

Here and in what follows τk denotes the kth divisor function defined by
τk(n) =

∑
d1···dk=n 1. We fix such an integer k once and for all.

(H2) On denoting by f−1 the Dirichlet inverse of f , we assume that for each ε > 0,

|f−1(n)| �ε n
ε.

(H3) There exists an η (1
2
≤ η < 1) such that∑

n≤X

f(n)e(nα)� Xη

uniformly in α ∈ R.

These hypotheses have for instance been investigated in the context of automorphic
forms and we describe this situation some more below. The class C(k, η) of functions
satisfying (H1), (H2) and (H3) could be extended somewhat, but we keep it for
simplicity. Notice that the convolution product of two multiplicative functions, one

from C(k1, η1) and the other from C(k2, η2), belongs to C
(
k1 + k2,

1−η1η2−(η1−η2)2

2−η1−η2

)
(this is a simple consequence of the Dirichlet hyperbola formula). Broadly speaking,
the question we address is to infer properties on the primes from properties on the
integers as in sieve theory. Here is our first result, where ϕ denotes the Euler’s
function.

Corollary 1.1. Assume (H1), (H2) and (H3). Let X ≥ 1 be a real number. Let
q be a positive integer such that q ≤ X(1−η)/15. Then for any real number α with

|α− a
q
| � X−1+ 1−η

120 we have∑
X<`≤2X

f(p)(log p)e(pα)�η

√
qX

ϕ(q)
.

The constant implied in the �η-symbol depends only on the constants implied in
hypotheses (H1), (H2) and (H3).

This is a direct corollary of Theorem 1.4 below. Our proof goes by building in
Section 3 (more precisely (19)) a family of bilinear representations of the character-
istic function of the primes, a task for which we rely heavily on the prior work of
Y. Motohashi in [10] (see also [9]). The averaging effect on this family will save the
last logX.

Examples of the situation we consider is given by non-trivial Dirichlet characters;
more interesting situations are given by cuspforms. For instance, we can consider
a normalized Hecke eigen cuspform g of weight m on SL2(Z) and its sequence
{ag(n)} of normalized Fourier coefficients (this means for instance that rather than
considering the Ramanujan τ function, we prefer to investigate τ(n)n−11/2). Then
it is known that ag is a multiplicative function that belongs to C(2, 1/2). Indeed,
Deligne’s bound says that ag satisfies (H1) with k = 2. It can also be seen, looking at
the Euler product of L-function associated to g, that the function ag satisfies (H2).
And it is proved by M. Jutila [4] that (H3) is satisfied by ag with η = 1

2
, refining
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the work of J.R. Wilton in [18, Lemma 3]. Assumption (H1) in this context would
be a consequence of the Ramanujan Conjecture, which is known to hold in several
cases. A similar setting can be developped for GL(n)-cuspforms; Assumption (H1)
would be a consequence of the proper Ramanujan Conjecture, Assumption (H2)
would be given by the rationality of the Euler-factor of the corresponding Dirichlet
series. We refer to Chapter 9 by J.W. Cogdell from the book [1] for the theory of
GL(n)-L-functions and in particular the eulerianity of Fourier expansions. These
two ’size’ hypotheses are somewhat stronger than the corresponding ones used for
defining the Selberg class of [16]. Assumption (H3) has been investigated by S.D.
Miller in [8] for GL(3)-forms and is believed to hold in general. The reader will find
a discussion of this in the paper [7] by Guangshi Lü.

Hence by Corollary 1.1 we have the following.

Corollary 1.2. Let g be an eulerian GL(n)-cuspform that satisfies the Ramanujan
conjecture and (H3) for some η < 1. Let q be a positive integer such that q ≤
X(1−η)/15. Then for any real number α with |α− a

q
| � X−1+ 1−η

120 we have∑
X<`≤2X

ag(p)(log p)e(pα)�
√
qX

ϕ(q)
.

Let us now be more precise. We introduce L(f, s) (for <(s) > 1) the L-function
associated to f , i.e.

L(f, s) =
∑
n≥1

f(n)

ns
=
∏
p

(
1 +

f(p)

ps
+
f(p2)

p2s
+ · · ·

)
.

Let L
′
(f,s)

L(f,s)
= −

∑
n Λf (n)n−s be the logarithmic derivative of L(f, s), see [6]. Then

clearly Λf has support only on prime powers. In fact we have:

Lemma 1.3. Let p be a prime number. For any integer m ≥ 1 we have

Λf (p
n) =

∑
k+`=n
`≥1

f−1(pk)f(p`) log(p`) .

From (H1) and (H2) together with the above lemma and the well-known τk(n)�ε n
ε,

we get

(1) |Λf (p
n)| �ε p

nε .

In view of this bound we have

(2)
∑

X<pm≤2X
m≥2

|Λf (p
m)| �ε X

1
2

+ε

for each ε > 0. Here is the main theorem of this paper when expressed in terms
of Λf .
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Theorem 1.4. Let X ≥ 1 be a real number and let f be a multiplicative function
satisfying (H1), (H2) and (H3). Let q be any positive integer such that q ≤ X(1−η)/15.

Then for any real number α with |α− a
q
| � X−1+ 1−η

120 we have∑
X<`≤2X

Λf (`)e (`α)�η

√
qX

ϕ(q)
.

Since Λf (p) = f(p) log p for all primes p, Corollary 1.1 can be easily obtained on
using (2). We did not try to optimize the exponents that appear but only aimed at
producing a clean proof.

The method of proving Theorem 1.4 is flexible enough to obtain similar results for
the sum of f−1 over square-free integers. We however need to control

∑
n≤M |f(n)|2.

Concerning holomorphic modular form, this (and more) follows from the work [13]
of Rankin. See also [2] by O.M. Fomenko and [5] by H. Lao for symetric powers
L-functions.

Theorem 1.5. Let X ≥ 1 be a real number and let f be a multiplicative function
satisfying (H1), (H2) and (H3). Let q be any positive integer such that q ≤ X(1−η)/15.

Then for any real number α with |α− a
q
| � X−1+ 1−η

120 we have

(3)
∑

X<`≤2X

µ(`)f(`)e (`α)�η
X
√
q

√
Wf (X)

where

(4) Wf (X) = max
M≤X

∑
M<m≤2M

|f(m)|2/M .

Let us note here that, if considering convolutions in Theorem 1.4 is rather pointless
as the corresponding value at the primes is simply the sum of the one of each factor.
The situation changes drastically here. As already mentioned, Hypothesis (H3)
in this contexct has been investigated by Guangshi Lü in [7]. Since the Möbius
function satisfies our hypotheses under the Generalized Riemann Hypothesis, we
see that the above theorem is conjecturally optimal at least when q = 1 and α = 0.
The coefficient Wf (X) is introduced to accomodate possible powers of logX. Notice
that

(5)
∑

M<m≤2M

|f(m)| ≤ 2
√
Wf (X)M

whenever M ≤ X.

Acknowledgements. This paper started in 2018 when the second author was su-
ported by the Indo–French Institute of Mathematics, which we thank warmly for
its support, on this occasion as well as for numerous other meetings where, among
other things, this work has been pursued.
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Organisation of the proof. The proof starts with Equation (27) which proposes
a decomposition of the relevant trigonometric sum in three parts. The first part,

L
(1)
r (α), is studied in Section 4, while the second one is studied in Section 5. These

are technical but rather straightforward as no particular precision is required. The
third and last part, which we call the bilinear sum is handled in Section 6. The sum
Sb in (6) is the central quantity and contains the averages over r (i.e. the averages
over the family bilinear decompositions). We first need to reduce the evaluation to
an L2-problem, then we localize the variables and finally we separate them properly
(they are linked with a mild X < mn ≤ 2X). At the same time, we take care of
the offset between α and a/q. This introduces the error terms E1(δ, r), E2(δ, r) and
δE3(r). It is then a matter of bookkeeping to reduce the expression obtained to the
hybrid large sieve inequality we have recalled earlier in Lemma 2.7. The proof of
Theorem 1.5 is mutatis mutandis to the proof of Theorem 1.4. We give a sketch of
it in Section 7.

2. Preliminaries

We state the following lemma of Motohashi, see [10, page 25].

Lemma 2.1. Let d be a square-free integer. Then for any positive integer n, we
have

f(dn) = µ(d)
∑

u|n, u|d∞
f
(n
u

)
f−1(du) .

Here u | d∞ means that u divides some power of d.

Lemma 2.2. Let ` and d be positive integers. Then for each ε > 0 we have∑
n≥1

n|[`,d]∞

f−1([`, d]n)

n
1
2

�ε (d`)ε .

Let θ > 0 (we shall finally choose θ = 1/k2) and z > 1 be fixed. For any positive

integers k′ and d, define Λ
(k′)
d by

Λ
(k′)
d =

1

k′!
(θ log z)−k

′
k′∑
j=0

(−1)k
′−j
(
k′

j

)
λ

(j,k′)
d ,

where

λ
(j,k′)
d =

µ(d)
(

log z1+jθ

d

)k′
if d < z1+jθ;

0 otherwise.

We have the following lemma.

Lemma 2.3 (Motohashi, Theorem 4, [10]). The weights Λ
(k′)
d satisfy the following:

(1) Λ
(k′)
d = µ(d) if d < z.

(2) Let c > 0 be some parameter. We have
∑

n≥1 τk′(n)
(∑

d|n Λ
(k′)
d

)2

n−ω � 1 ,

provided ω ≥ 1 + c
log z

.
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The weights Λ
(k′)
d further satisfy the following bound.

Lemma 2.4. Let θ > 0. Then

|Λ(k′)
d | ≤

(2k′)k
′

k′!
.

Proof. Since the quantity on the right hand side is greater than 1, we can assume
that d ≥ z. Then we have

|Λ(k′)
d | ≤

1

k′!(θ log z)k′

k′∑
j=0

(
k′

j

)
(log zjθ)k

′
.

Cancelling (log zθ)k
′
, using j ≤ k′ and

∑k′

j=0

(
k′

j

)
= 2k

′
gives the desired upper

bound. �

The function f being given to verify assumptions (H1), (H2) and (H3). They imply
the two parameters k and η that we keep fixed throughout the proof. We use the
above weights with k′ = k2 and some θ > 0 that we keep as a parameter until the
end of the proof where we choose θ = 1

k2
. For any r ≥ 1, let Mr(s) be defined by

(6) Mr(s) =
∑

d≤z1+k2θ

Λ
(k2)
d

∑
`|r

`µ
(
r
`

)
[`, d]s

µ([`, d])
∑
n≥1

f−1
[`,d](n)

ns
,

where

f−1
[`,d](n) =

{
f−1([`, d]n) when n | [`, d]∞;

0 otherwise

Lemma 2.5. Let <(s) ≥ 1
2
. Then for each ε > 0 we have

Mr(s)�ε r
1+εz(1+k2θ)( 1

2
+ε) .

Proof. We have for <(s) ≥ 1
2
,

|Mr(s)| ≤
∑

d≤z1+k2θ

|Λ(k2)
d |

∑
`|r

`

[`, d]
1
2

∑
n≥1

|f−1
[`,d](n)|

n
1
2

�k

∑
d≤z1+k2θ

1

d
1
2

∑
`|r

`
∑
n≥1

n|[`,d]∞

f−1([`, d]n)

n
1
2

.

We have by Lemma 2.2 ∑
n≥1

n|[`,d]∞

f−1([`, d]n)

n
1
2

�ε (`d)ε .

From this we get

|Mr(s)| �ε

∑
d≤z1+k2θ

1

d
1
2
−ε

∑
`|r

`1+ε .
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Hence
Mr(s)�ε,k r

1+2εz(1+k2θ)( 1
2

+ε) .

�

From (H3) we obtain the following estimate by partial summation.

(7)
∑
n≤X

f(n)(log n)e(nα)� Xη logX .

Now we state one of the crucial lemmas.

Lemma 2.6 (Lemma 41, [12]). Let δ ∈ (0, 1/2), β and X ≥ 1 be three real pa-
rameters. There exists a C1-function H such that for any sequence (a`) of complex
numbers, we have∑

X<`≤2X

a` e(β`) =

∫ ∆

−∆

∑
`≥1

a`
`iu

H(u)X iudu+O∗
( ∑

X<`≤(1+δ)X,
or (2−δ)X<`≤2X

|a`|+ 2δ
∑
`≥1

|a`|
)
,

where ∆ = 100 δ
−1+(βX)2

δ
. We have furthermore |H(u)| ≤ 25

73
(1 + |β|X)/(1 + |u|) and∫∞

−∞ |H(u)|2du = (log 2)2(2− 2δ)/(4π)2.

For any positive integers r and n, the Ramanujan sum cr(n) is defined by

(8) cr(n) =
∑

a(mod)∗r

e
(an
r

)
,

where the sum runs over all the coprime residue classes modulo r. It is known that
cr(n) can also be expressed as

cr(n) =
∑
`|n,`|r

`µ
(r
`

)
.

By definition of Ramanujan sum it is clear that |cr(n)| ≤ ϕ(r). Now we state the
following version of Large sieve inequality:

Lemma 2.7 (Theorem 10, [12]). Let q be some fixed modulus and N0 be some real
number. Let (un)n be a sequence of complex numbers that is such that

∑
n(|un| +

n|un|2) <∞. Then we have, for any T ≥ 0,∑
r≤R/q,
(q,r)=1

1

ϕ(r)

∑
a mod q

∫ T

−T

∣∣∣∑
n

uncr(n+N0)nite(na/q)
∣∣∣2dt

≤ 7
∑
n

|un|2(n+R2 max(T, 10)).

Let us recall the classical definition

(9) Gq(D) =
∑
d≤D,

(d,q)=1

µ2(d)

ϕ(d)
, G(D) = G1(D).
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We quote from [17]:

(10) G(D) ≤ q

ϕ(q)
Gq(D) ≤ G(qD).

We quote from [11, Lemma 3.5] (see also [14])

(11) G(D) ≤ logD + 1.4709, (D ≥ 1)

and, concerning a lower bound,

(12) logD + 1.06 ≤ G(D), (D ≥ 6).

For any given integer r ≥ 1, we define

(13) νr(n) = f(n)cr(n)

∑
d|n

Λ
(k2)
d

 .

We have the following estimate.

Lemma 2.8. Let B ≥ 1 be a real number. Then∑
r≤R

q

µ2(r)

ϕ(r)

∑
n≤B

|νr(n)|2

n
� B

c
log z

(
R

q

)2

for each c > 0.

Proof. By definition of νr(n), we have

∑
r≤R

q

µ2(r)

ϕ(r)

∑
n≤B

|νr(n)|2

n
=
∑
r≤R

q

µ2(r)

ϕ(r)

∑
n≤B

f 2(n)|c2
r(n)|

(∑
d|n Λ

(k2)
d

)2

n
.

Let c > 0 be a real number. Then

∑
r≤R

q

µ2(r)

ϕ(r)

∑
n≤B

|νr(n)|2

n
≤
∑
r≤R

q

µ2(r)ϕ(r)B
c

log z

∑
n≤B

f 2(n)
(∑

d|n Λ
(k2)
d

)2

n1+ c
log z

.

By Lemma 2.3 the last sum is bounded since f 2(n) ≤ τ 2
k (n) ≤ τk2(n), and hence∑

r≤R
q

µ2(r)

ϕ(r)

∑
n≤B

|νr(n)|2

n
≤ B

c
log z

(
R

q

)2

.

�

The following lemma will be used in Section 6.

Lemma 2.9. Let M be a sufficiently large real number and q be a positive integer.
Then

(14)
∑

b(mod)q

∣∣∣∣∣∣∣
∑

m≡b(q)
m∼M

Λf (m)

miu

∣∣∣∣∣∣∣
2

� M2

ϕ(q)
.
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Proof. We have

∑
b mod q

∣∣∣∣∣∣∣
∑

m≡b(q)
m∼M

Λf (m)

miu

∣∣∣∣∣∣∣
2

=
∑

b(mod)∗q

∣∣∣∣∣∣∣
∑

m≡b(q)
m∼M

Λf (m)

miu

∣∣∣∣∣∣∣
2

+
∑

b mod q
(b,q)>1

∣∣∣∣∣∣∣
∑

m≡b(q)
m∼M

Λf (m)

miu

∣∣∣∣∣∣∣
2

.(15)

We have

∑
b(mod)∗q

∣∣∣∣∣∣∣
∑

m≡b(q)
m∼M

Λf (m)

miu

∣∣∣∣∣∣∣
2

�
∑

b(mod)∗q

∣∣∣∣∣∣∣∣
∑
p≡b(q)
p∼M

Λf (p)

piu

∣∣∣∣∣∣∣∣
2

+
∑

b(mod)∗q

∣∣∣∣∣∣∣∣∣∣
∑

pt≡b(q)
pt∼M
t≥2

Λf (m)

miu

∣∣∣∣∣∣∣∣∣∣

2

.

For the first sum we use |Λf (p)| ≤ k log p after applying Cauchy-Schwarz inequality.
The sum inside the modulus in the second sum is trivially �M1+ε in view of (2) .
Hence we have

∑
b(mod)∗q

∣∣∣∣∣∣∣
∑

m≡b(q)
m∼M

Λf (m)

miu

∣∣∣∣∣∣∣
2

� M

ϕ(q) logM

∑
b(mod)∗q

∑
p≡b(q)
p∼M

log2 p+M1+εϕ(q) .

Hence by prime number theorem we have

∑
b(mod)∗q

∣∣∣∣∣∣∣
∑

m≡b(q)
m∼M

Λf (m)

miu

∣∣∣∣∣∣∣
2

� M2

ϕ(q)

Similarly we can show that the second sum on the right hand side of (15) is �
M2

ϕ(q)
. �

3. Bilinear decomposition of Λf and µf

For any square-free integer r ≥ 1, let

Vr(s) =
∑
n≥2

νr(n)

ns
,

where νr(n) be as in (13). By Lemma 2.3 we can see that νr(n) = 0 if n ≤ z.

We have

1 + Vr(s) = 1 +
∑
n≥2

f(n)cr(n)

ns

∑
d|n

Λ
(k2)
d


=

∑
d≤z1+k2θ

Λ
(k2)
d

∑
`|r

`µ
(
r
`

)
[`, d]s

∑
n≥1

f([`, d]n)

ns
.



10 OLIVIER RAMARÉ AND G. K. VISWANADHAM

By Lemma 2.1 the above identity becomes

1 + Vr(s) =
∑

d≤z1+k2θ

Λ
(k2)
d

∑
`|r

`µ
(
r
`

)
[`, d]s

µ([`, d])
∑
n≥1

f ∗ f−1
[`,d](n)

ns

=L(f, s)
∑
m≥1

hr(m)

ms
.(16)

Let Mr(s) =
∑

m≥1
hr(m)
ms

. Write

(17) 1 = −Vr(s) + (1 + Vr(s)) .

Multiplying both sides by −L
′
(f,s)

L(f,s)
we get

(18) − L
′
(f, s)

L(f, s)
=
L
′
(f, s)

L(f, s)
Vr(s)− L

′
(f, s)Mr(s) .

This gives the following decomposition for Λf (n):

(19) Λf (n) = −(Λf ∗ νr)(n) + (f log ∗hr)(n) .

Define

L?(f, s) =
∑
n≥1

µ(n)f(n)

ns
=
∏
p

(
1− f(p)

ps

)
.

We can write this L? as

(20) L?(f, s) =
1

L(f, s)

∏
p

(
1 +

∑
h≥2

f(ph)− f(ph−1)f(p)

phs

)
.

Denoting f(ph)− f(ph−1)f(p) by f2(ph), we get that

(21) L?(f, s) =
1

L(f, s)

∏
p

(
1 +

∑
h≥2

f2(ph)

phs

)
:=

1

L(f, s)

∑
n≥1

g(n)

ns
.

Multiplying both sides of (17) with L?(f, s) gives the following decomposition for
µ(`)f(`):

(22) µ(`)f(`) = −(νr ∗ µf)(`) + (hr ∗ g)(`) .

Now we consider the sum

(23) S(α) =
∑
`∼X

Λf (`)e (`α) ,

where ` ∼ X means X < ` ≤ 2X. Using (19) we get

S (α) = −
∑
`∼X

(Λf ∗ νr)(`)e (`α) +
∑
`∼X

(f log ∗hr)(`)e (`α)

=
∑
mn∼X

f(n) log(n)hr(m)e (mnα)−
∑
mn∼X
m≤M0

Λf (m)νr(n)e (mnα)
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−
∑
mn∼X
m>M0

Λf (m)νr(n)e (mnα)

for some positive real number M0 which will be chosen later.

Let

(24) L(1)
r (α) =

∑
mn∼X

f(n) log(n)hr(m)e (mnα)

(25) L(2)
r (α) =

∑
mn∼X
m≤M0

Λf (m)νr(n)e (mnα)

and call these sums as first linear sum and second linear sum respectively. With
these notations we have

(26) S (α) = L(1)
r (α)− L(2)

r (α)−
∑
mn∼X
m>M0

Λf (m)νr(n)e (mnα) .

We call the last sum the bilinear sum. Let R be a sufficiently large real number

which we will choose later. Multiplying both sides of (26) by µ2(r)
ϕ(r)

and summing

over 1 ≤ r ≤ R
q

with (r, q) = 1 gives us

(27)

Gq

(
R

q

)
S (α) =

∑
r≤R

q

(r,q)=1

µ2(r)

ϕ(r)
(L(1)

r (α)−L(2)
r (α))−

∑
r≤R

q

(r,q)=1

µ2(r)

ϕ(r)

∑
mn∼X
m>M0

Λf (m)νr(n)e (mnα) .

4. Estimating the first linear sum L
(1)
r (α)

We have

L(1)
r (α) =

∑
mn∼X

f(n) log(n)hr(m)e (mnα)

=
∑
m≤2X

hr(m)
∑
n∼X

m

f(n) log(n)e (mnα) .

Use (7) and Lemma 2.5 to get

L(1)
r (α) � Xη logX

∑
m≤2X

|hr(m)|
m

1
2

�Xηr1+εz(1+k2θ)( 1
2

+ε) log(X) .(28)

5. Estimating the second linear sum L
(2)
r (α)

By definition

L(2)
r (α) =

∑
m≤M0
mn∼X

Λf (m)

∑
d|n

Λ
(k2)
d

 f(n)cr(n)e (mnα) .
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Since Λ
(k2)
d = 0 if d > z1+k2θ, the equation above can be written as

L(2)
r (α) =

∑
m≤M0

Λf (m)
∑

d≤z1+k2θ

Λ
(k2)
d

∑
n∼X

m
d|n

f(n)cr(n)e (mnα) .

By the properties of Ramanujan sum cr(n) it can be written as

L(2)
r (α) =

∑
m≤M0

Λf (m)
∑

d≤z1+k2θ

Λ
(k2)
d

∑
n∼X

m
d|n

f(n)e (mnα)
∑
`|r,`|n

`µ
(r
`

)

=
∑
m≤M0

Λf (m)
∑

d≤z1+k2θ

Λ
(k2)
d

∑
`|r

`µ
(r
`

) ∑
n∼X

m
d|n,`|n

f(n)e(mnα) .

By Lemma 2.1 we get

L(2)
r (α) =

∑
m≤M0

Λf (m)
∑

d≤z1+k2θ

Λ
(k2)
d

∑
`|r

`µ
(r
`

) ∑
n∼ X

m[d,`]

f(n[`, d])e (mn[d, `]α)

=
∑
m≤M0

Λf (m)
∑

d≤z1+k2θ

Λ
(k2)
d

∑
`|r

`µ
(r
`

)
∑

n∼ X
m[d,`]

e (mn[d, `]α)µ([d, `])
∑
u|n

u|[`,d]∞

f
(n
u

)
f−1([`, d]u) .

An interchange of summation yields

L(2)
r (α) =

∑
m≤M0

Λf (m)
∑

d≤z1+k2θ

Λ
(k2)
d

∑
`|r

`µ
(r
`

)
µ([`, d])

∑
u|[`,d]∞

f−1([`, d]u)
∑

n∼ X
mu[d,`]

f(n)e (mnu[d, `]α) .

By our assumption we have

|L(2)
r (α)| � Xη

∑
m≤M0

|Λf (m)|
mη

∑
d≤z1+k2θ

|Λ(k2)
d |

∑
`|r

`
∑

u|[`,d]∞

|f−1([`, d]u)|
([`, d]u)η

� Xη
∑
m≤M0

|Λf (m)|
mη

∑
d≤z1+k2θ

|Λ(k2)
d |
dη

∑
`|r

`
∑

u|[`,d]∞

|f−1([`, d]u)|
uη

.

We use Lemma 2.2 to estimate the last sum on the right hand side. This gives

|L(2)
r (α)| � Xη

∑
m≤M0

|Λf (m)|
mη

∑
d≤z1+k2θ

|Λ(k2)
d |
dη−ε

∑
`|r

`1+ε .
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Since η ≥ 1
2
, we get

(29) |L(2)
r (α)| � Xηr1+2εz(1+k2θ)ε

( ∑
m≤M0

|Λf (m)|
m

1
2

) ∑
d≤z1+k2θ

|Λ(k2)
d |
d

1
2

 .

We use the bound (1) to estimate the first sum in the brackets and Lemma 2.4 for
the second sum to get

|L(2)
r (α)| � Xηr1+2εz(1+k2θ)( 1

2
+ε)M

1
2

+ε

0 .(30)

6. Estimating the bilinear sum

Let

(31) Sr(α,M,N) =
∑
mn∼X

m∼M,n∼N

Λf (m)νr(n)e (mnα) .

Let δ > 0 be a sufficiently small real number which we will choose later. Let a be
such that (a, q) = 1. We apply Lemma 2.6 with β = α− a

q
and

ϕ` =
∑
mn=`

m∼M,n∼N

Λf (m)νr(n)e

(
mna

q

)
to get

Sr(α,M,N) =

∫ ∆

−∆

∑
m∼M
n∼N

Λf (m)

miu

νr(n)

niu
e

(
mna

q

)
H(u)X iudu(32)

+ (E1(δ, r) + E2(δ, r) + 2δE3(r)) ,

where

E1(δ, r) =
∑

X<mn≤2δX
m∼M,n∼N

|Λf (m)νr(n)|,(33)

E2(δ, r) =
∑

2X

2δ
<mn≤2X

m∼M,n∼N

|Λf (m)νr(n)|,(34)

E3(r) =
∑

m∼M,n∼N

|Λf (m)νr(n)|,(35)

∆ =100
δ−1 + (βX)2

δ
.(36)

We have the following lemma concerning the error term in (32).

Lemma 6.1.

E1(δ, r) + E2(δ, r) + 2δE3(r)� δM
∑
n∼N

|νr(n)| .
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Proof. We have

E1(δ, r) =
∑
n∼N

|νr(n)|
∑
m∼M

X
n
<m≤ 2δX

n

|Λf (m)|

�
∑
n∼N

|νr(n)|
∑

X
n
≤m≤X

n
+ 7δM

5

|Λf (m)| .

The second inequality follows since the interval [max(M, X
n

),min(2M, 2δX
n

)] is con-

tained in [X
n
, X
n

+ 7δM
5

]. The contribution from primes for the second sum of the
above equation is � δM since |Λf (p)| ≤ k log p and by prime number theorem. It
can be easily seen that the contribution from the higher prime powers is negligible.
Hence we have

E1(δ, r)� δM .

Similarly we can show that
E2(δ, r)� δM .

The result follows since

E3(r) =

(∑
n∼N

|νr(n)|

)(∑
m∼M

|Λf (m)|

)
�M

(∑
n∼N

|νr(n)|

)
again by prime number theorem. �

Consider the sum

Sb =
∑
r≤R

q

(r,q)=1

µ2(r)

ϕ(r)

∑
mn∼X
m>M0

Λf (m)νr(n)e (mnα) .

By using Cauchy Schwarz inequality we get

(37) Sb ≤

√
Gq

(
R

q

) ∑
r≤R

q

(r,q)=1

µ2(r)

ϕ(r)

∣∣∣∣∣∣∣
∑
mn∼X
m>M0

Λf (m)νr(n)e (mnα)

∣∣∣∣∣∣∣
2


1
2

.

Consider the sum inside the brackets and call it S1, i.e.

S1 =
∑
r≤R

q

(r,q)=1

µ2(r)

ϕ(r)

∣∣∣∣∣∣∣
∑
mn∼X
m>M0

Λf (m)νr(n)e (mnα)

∣∣∣∣∣∣∣
2

.

We now examine the last sum and localize the variables m and n. Notice that
n > z. So we start at N = z, go until 2z, etc until 2tz ≤ 2X/M0 < 2t+1z, i.e.
0 ≤ t ≤ log(2X/(M0z))/ log 2. Concerning M , we have N < n ≤ N ′ ≤ 2N , and
thus 1

2
(X/N) ≤ X/n < m ≤ 2X/N . So for each N , we have two values of M ,

namely M1 = 1
2
(X/N) and M2 = X/N .
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After localizing the variables and applying Cauchy-Schwarz, we reach

S1 � log

(
2X

M0z

) ∑
r≤R

q

(r,q)=1

µ2(r)

ϕ(r)

∑
M,N

∣∣∣∣∣∣∣
∑
mn∼X

m∼M,n∼N

Λf (m)νr(n)e (mnα)

∣∣∣∣∣∣∣
2

.

Using Equation (32) for the sum inside the modulus we get

S1 � log

(
2X

M0z

) ∑
r≤R

q

(r,q)=1

µ2(r)

ϕ(r)

∑
M,N

∣∣∣∣∣∣∣
∫ ∆

−∆

∑
m∼M
n∼N

Λf (m)

miu

νr(n)

niu
e

(
mna

q

)
H(u)X iudu

∣∣∣∣∣∣∣
2

+ log

(
2X

M0z

) ∑
r≤R

q

(r,q)=1

µ2(r)

ϕ(r)

∑
M,N

(E1(δ, r) + E2(δ, r) + 2δE3(r))2 .

By Lemma 6.1 the second term is

� log

(
2X

M0z

) ∑
r≤R

q

(r,q)=1

µ2(r)

ϕ(r)

∑
M,N

(
δM

∑
n∼N

|νr(n)|

)2

.

Hence we have

(38)

S1 � log
2X

M0z

∑
r≤R

q

(r,q)=1

µ2(r)

ϕ(r)

∑
M,N

∣∣∣∣∣∣∣
∫ ∆

−∆

∑
b(q)

∑
m≡b(q)
m∼M

Λf (m)

miu

∑
n∼N

νr(n)

niu
e

(
abn

q

)
H(u)X iudu

∣∣∣∣∣∣∣
2

+ log

(
2X

M0z

) ∑
r≤R

q

(r,q)=1

µ2(r)

ϕ(r)

∑
M,N

(
δM

∑
n∼N

|νr(n)|

)2

.

We consider the integral I(a
q
,M,N) in the above equation and after an application

of Cauchy -Schwarz inequality, we obtain

I
(a
q
,M,N

)
�
∫ ∆

−∆

∑
b(q)

∣∣∣∣∣∣∣
∑

m≡b(q)
m∼M

Λf (m)

miu

∣∣∣∣∣∣∣
2

1
2 ∑

b(q)

∣∣∣∣∣∑
n∼N

νr(n)

niu
e

(
bn

q

)∣∣∣∣∣
2
 1

2

|H(u)|du .

Since the sum in the first bracket inside the integral is� M2

ϕ(q)
by Lemma 2.9, we get

I
(a
q
,M,N

)
�
(
M2

ϕ(q)

) 1
2
∫ ∆

−∆

∑
b(q)

∣∣∣∣∣∑
n∼N

νr(n)

niu
e

(
bn

q

)∣∣∣∣∣
2
 1

2

|H(u)|du .
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We use the Cauchy-Schwarz inequality again to get

I
(a
q
,M,N

)
�
(
M2

ϕ(q)

) 1
2
(∫ ∆

−∆

|H(u)|2du
) 1

2

∫ ∆

−∆

∑
b(q)

∣∣∣∣∣∑
n∼N

νr(n)

niu
e

(
bn

q

)∣∣∣∣∣
2

du

 1
2

.

Using the fact that
∫
R |H(u)|2 =

∫
R |Ĥ(u)|2 = (2− 2δ) (log 2)2

(4π)2
leads to

I
(a
q
,M,N

)
�
(
M2

ϕ(q)

) 1
2

∫ ∆

−∆

∑
b(q)

∣∣∣∣∣∑
n∼N

νr(n)

niu
e

(
bn

q

)∣∣∣∣∣
2

du

 1
2

.

Put this estimate in (38) to get

S1 � log

(
2X

M0z

) ∑
r≤R

q

(r,q)=1

µ2(r)

ϕ(r)

∑
M,N

M2

ϕ(q)

∫ ∆

−∆

∑
b(q)

∣∣∣∣∣∑
n∼N

νr(n)

niu
e

(
bn

q

)∣∣∣∣∣
2

du

+ log

(
2X

M0z

) ∑
r≤R

q

(r,q)=1

µ2(r)

ϕ(r)

∑
M,N

(
δM

∑
n∼N

|νr(n)|

)2

.

An application of large sieve inequality (Lemma 2.7) gives

S1 � log

(
2X

M0z

)∑
M,N

M2

ϕ(q)

∑
n∼N

f 2(n)
(∑
d|n

Λ
(k2)
d

)2

(n+R2 4π∆

log 2
)


(39)

+ log

(
2X

M0z

) ∑
r≤R

q

(r,q)=1

µ2(r)

ϕ(r)

∑
M,N

(
δM

∑
n∼N

|νr(n)|

)2

.

We assume that R2δ−2 � z and |α− a
q
| � (zR−2δ)

1
2

X
so that R2∆� z. Hence

S1 � log

(
2X

M0z

)∑
M,N

M2N2

ϕ(q)

∑
n∼N

f 2(n)

n

(∑
d|n

Λ
(k2)
d

)2


+ log

(
2X

M0z

) ∑
r≤R

q

(r,q)=1

µ2(r)

ϕ(r)

∑
M,N

(
δ2M2N

∑
n∼N

|νr(n)|2
)
.

Let c > 0 be a small real number. Since MN � X we get

S1 �
X2

ϕ(q)
log

(
2X

M0z

)(
2X

z

) c
log z

∑
n≤ 2X

z

f 2(n)

n1+ c
log z

(∑
d|n

Λ
(k2)
d

)2


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+ δ2X2 log

(
2X

M0z

) ∑
r≤R

q

(r,q)=1

µ2(r)

ϕ(r)

∑
n≤ 2X

z

|νr(n)|2

n
.

Since |f 2(n)| ≤ τ 2
k (n) and τ 2

k (n) ≤ τk2(n), Lemma 2.3 gives us

S1 �
X2

ϕ(q)
log

(
2X

M0z

)(
2X

z

) c
log z

+ δ2X2 log

(
2X

M0z

) ∑
r≤R

q

(r,q)=1

µ2(r)

ϕ(r)

∑
n≤ 2X

z

|νr(n)|2

n
.

By Lemma 2.8 we have

(40) S1 �
X2

ϕ(q)
log

(
2X

M0z

)(
2X

z

) c
log z

+ δ2X2 log

(
2X

M0z

)(
2X

z

) c
log z
(
R

q

)2

.

On keeping this bound in (37), we obtain

(41) Sb ≤

√
Gq

(
R

q

)
log

(
2X

M0z

)(
X2

ϕ(q)

(2X

z

) c
log z

+ δ2X2
(2X

z

) c
log z

(
R

q

)2
) 1

2

.

Putting (28), (30), (41) and (27) together gives (with θ = 1/k2)

Gq

(
R

q

)
S (α) � Xηz(1+1)( 1

2
+ε)Gq

(
R

q

)(R
q

)1+2ε

(logX +M
1
2

+ε

0 )

+
X√
ϕ(q)

√
Gq

(
R

q

)
log

(
2X

M0z

)(2X

z

) c
log z

(
1 + δ2ϕ(q)

(
R

q

)2
) 1

2

.

We choose δ−1 = R = z
1
4 to ensure that R2δ−2 � z and M0 = z = X

2
7

(1−η) to get

S (α)� Xη+ 1−η
2

(1+ε(2+ 1
2

+1)) 1

q
+

X√
ϕ(q)

√√√√ logX

Gq

(
R
q

) .
For sufficiently small positive ε, the power of X in the first sum will be smaller
than 1 and for the second sum we use (10) and (12) (with q ≤ R14/15 = X(1−η)/15)
together to get

S (α)�
√
qX

ϕ(q)
.

This completes the proof of Theorem 1.4.

7. Proof of Theorem 1.5

Since the proof of Theorem 1.5 is similar to that of Theorem 1.4, we only give a
sketch of the proof.

By (22), we have the following decomposition:

(42)
∑
`∼X

µ(`)f(`)(`)e(`α) = L(1)
r (α)− L(2)

r (α)−
∑
mn∼X
m>M0

µ(m)f(m)νr(n)e(mnα)
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where

L(1)
r (α) =

∑
`∼X

(hr ∗ g)(`)e(`α),

L(2)
r (α) =

∑
mn∼X
m≤M0

µ(m)f(m)νr(n)e(mnα).

We use |g(n)| � log2 n, g is supported only on square-full integers and the number

of such integers upto X is � X1/2 while estimating the sum L
(1)
r . We can get

L(1)
r (α)� X

1
2 r1+εz(1+k2θ)( 1

2
+ε) log2X .

The sum L
(2)
r (α) can be estimated exactly as in Section 5, where one has to use the

bound ∑
m≤M0

|f(m)|
m

1
2

�M
1
2

+ε

0

which follows from the bound |f(m)| � mε.

|L(2)
r (α)| � Xηr1+2εz(1+k2θ)( 1

2
+ε)M

1
2

+ε

0 .(43)

We can estimate the third sum on the right hand side as in Section 6 with some
modifications which we will write down here. The corresponding bound for the
bound in Lemma 6.1 will be

E1(δ, r) + E2(δ, r) + 2δE3(r)�
√
Wf (X)δM

∑
n∼N

|νr(n)| ,

when using (5) . Instead of Lemma 2.9 one has to use

(44)
∑

b(mod)q

∣∣∣∣∣∣∣
∑

m≡b(q)
m∼M

f(m)

miu

∣∣∣∣∣∣∣
2

� Wf (X)M2

q
.

With these changes and choosing parameters exactly as in Section 6, we get the
mentioned result.
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