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We consider exponential sums of the form X<p≤2X f (p)(log p)e(pα) ,

where the sum runs over the prime numbers p ∈ (X, 2X] and f is a multiplicative function satisfying certain growth conditions. As a consequence of our result, we consider the normalized Fourier coefficients (a g (n)) of any eulerian GL(n)cuspform g that satisfies the Ramanujan conjecture as well as an estimate of the form max α∈R | n≤X a g (n)e(nα)| ≤ X η for some η < 1. For such a form, we get that X<p≤2X a g (p)(log p)e(pα)

where α is a real number such that α -a q X -1+ 1-η 120 for some q ≤ X (1-η)/15 . Under stronger restrictions and the same conditions on α and a/q, we also prove that X< ≤2X a g ( )µ( )e(pα) X/ √ q .

Introduction

We are concerned here in getting estimates for the trigonometric polynomial p≤N τ (p)e(pα) where p is a prime number and τ the Ramanujan function. We consider more precisely phases α that are close to a rational a/q with a small denominator q. It can be seen in the general light of Sarnak's conjecture [START_REF] Sarnak | Three lectures on the Mobius function randomness and dynamics[END_REF] as showing that τ (p) do not correlate with the additive characters we consider, continuing the work [START_REF] Fouvry | Strong orthogonality between the Möbius function, additive characters and Fourier coefficients of cusp forms[END_REF] of É. Fouvry and S. Ganguly.

Our method fits in a more general framework and continues our previous query [START_REF] Ramaré | Modular ternary additive problems with irregular or prime numbers[END_REF] where we obtained 'optimal' bounds for p≤N e(pα) log p. We add a multiplicative function f as a coefficient to consider p≤N f (p)e(pα) log p and want to show that this sum is small provided reasonable hypotheses on the values of f over the integers are met. We present these assumptions just below, but we want to stress out that the main difficulty with respect to our previous work is that we do not assume |f (p)| ≤ 1.

Let us present the three assumptions we make on our multiplicative function f . (H 1 ) There exists an integer k ≥ 1 such that

|f (n)| ≤ τ k (n) for all n ≥ 1 .
Here and in what follows τ k denotes the kth divisor function defined by τ k (n) = d 1 •••d k =n 1. We fix such an integer k once and for all. (H 2 ) On denoting by f -1 the Dirichlet inverse of f , we assume that for each > 0,

|f -1 (n)| n .
(H 3 ) There exists an η ( 1 2 ≤ η < 1) such that n≤X f (n)e(nα) X η uniformly in α ∈ R. These hypotheses have for instance been investigated in the context of automorphic forms and we describe this situation some more below. The class C(k, η) of functions satisfying (H 1 ), (H 2 ) and (H 3 ) could be extended somewhat, but we keep it for simplicity. Notice that the convolution product of two multiplicative functions, one from C(k 1 , η 1 ) and the other from C(k 2 , η 2 ), belongs to

C k 1 + k 2 , 1-η 1 η 2 -(η 1 -η 2 ) 2 2-η 1 -η 2
(this is a simple consequence of the Dirichlet hyperbola formula). Broadly speaking, the question we address is to infer properties on the primes from properties on the integers as in sieve theory. Here is our first result, where ϕ denotes the Euler's function.

Corollary 1.1. Assume (H 1 ), (H 2 ) and (H 3 ). Let X ≥ 1 be a real number. Let q be a positive integer such that q ≤ X (1-η)/15 . Then for any real number α with |α -a q | X -1+ 1-η 120 we have

X< ≤2X f (p)(log p)e(pα) η √ qX ϕ(q) .
The constant implied in the η -symbol depends only on the constants implied in hypotheses (H 1 ), (H 2 ) and (H 3 ). This is a direct corollary of Theorem 1.4 below. Our proof goes by building in Section 3 (more precisely (19)) a family of bilinear representations of the characteristic function of the primes, a task for which we rely heavily on the prior work of Y. Motohashi in [START_REF] Motohashi | Sieve Methods and Prime Number Theory[END_REF] (see also [START_REF] Motohashi | Primes in arithmetic progressions[END_REF]). The averaging effect on this family will save the last log X.

Examples of the situation we consider is given by non-trivial Dirichlet characters; more interesting situations are given by cuspforms. For instance, we can consider a normalized Hecke eigen cuspform g of weight m on SL 2 (Z) and its sequence {a g (n)} of normalized Fourier coefficients (this means for instance that rather than considering the Ramanujan τ function, we prefer to investigate τ (n)n -11/2 ). Then it is known that a g is a multiplicative function that belongs to C(2, 1/2). Indeed, Deligne's bound says that a g satisfies (H 1 ) with k = 2. It can also be seen, looking at the Euler product of L-function associated to g, that the function a g satisfies (H 2 ). And it is proved by M. Jutila [START_REF] Jutila | On exponential sums involving the Ramanujan function[END_REF] that (H 3 ) is satisfied by a g with η = 1 2 , refining the work of J.R. Wilton in [18, Lemma 3]. Assumption (H 1 ) in this context would be a consequence of the Ramanujan Conjecture, which is known to hold in several cases. A similar setting can be developped for GL(n)-cuspforms; Assumption (H 1 ) would be a consequence of the proper Ramanujan Conjecture, Assumption (H 2 ) would be given by the rationality of the Euler-factor of the corresponding Dirichlet series. We refer to Chapter 9 by J.W. Cogdell from the book [START_REF] Bump | An introduction to the Langlands program[END_REF] for the theory of GL(n)-L-functions and in particular the eulerianity of Fourier expansions. These two 'size' hypotheses are somewhat stronger than the corresponding ones used for defining the Selberg class of [START_REF] Selberg | Old and new conjectures and results about a class of Dirichlet series[END_REF]. Assumption (H 3 ) has been investigated by S.D.

Miller in [START_REF] Stephen | Cancellation in additively twisted sums on GL(n)[END_REF] for GL(3)-forms and is believed to hold in general. The reader will find a discussion of this in the paper [START_REF] Lü | Exponential sums with Fourier coefficients of automorphic forms[END_REF] by Guangshi Lü.

Hence by Corollary 1.1 we have the following.

Corollary 1.2. Let g be an eulerian GL(n)-cuspform that satisfies the Ramanujan conjecture and (H 3 ) for some η < 1. Let q be a positive integer such that q ≤ X (1-η)/15 . Then for any real number α with |α -a q | X -1+ 1-η 120 we have X< ≤2X

a g (p)(log p)e(pα)

√ qX ϕ(q) .
Let us now be more precise. We introduce L(f, s) (for (s) > 1) the L-function associated to f , i.e.

L(f, s) = n≥1 f (n) n s = p 1 + f (p) p s + f (p 2 ) p 2s + • • • . Let L (f,s) L(f,s) = -n Λ f (n)n -s
be the logarithmic derivative of L(f, s), see [START_REF] Levin | Application of some integral equations to problems of number theory[END_REF]. Then clearly Λ f has support only on prime powers. In fact we have: Lemma 1.3. Let p be a prime number. For any integer m ≥ 1 we have

Λ f (p n ) = k+ =n ≥1 f -1 (p k )f (p ) log(p ) .
From (H 1 ) and (H 2 ) together with the above lemma and the well-known

τ k (n) n , we get (1) |Λ f (p n )| p n .
In view of this bound we have

(2)

X<p m ≤2X m≥2 |Λ f (p m )| X 1 2 +
for each > 0. Here is the main theorem of this paper when expressed in terms of Λ f . Theorem 1.4. Let X ≥ 1 be a real number and let f be a multiplicative function satisfying (H 1 ), (H 2 ) and (H 3 ). Let q be any positive integer such that q ≤ X (1-η)/15 . Then for any real number α with |α -a q | X -1+ 1-η 120 we have

X< ≤2X Λ f ( )e ( α) η √ qX ϕ(q) .
Since Λ f (p) = f (p) log p for all primes p, Corollary 1.1 can be easily obtained on using (2). We did not try to optimize the exponents that appear but only aimed at producing a clean proof.

The method of proving Theorem 1.4 is flexible enough to obtain similar results for the sum of f -1 over square-free integers. We however need to control n≤M |f (n)| 2 . Concerning holomorphic modular form, this (and more) follows from the work [START_REF] Rankin | Contributions to the theory of Ramanujan's function τ (n) and similar arithmetical functions. I. The zeros of the function ∞ n=1 τ (n)/n s on the line Rs = 13/2. II. The order of the Fourier coefficients of integral modular forms[END_REF] of Rankin. See also [START_REF] Fomenko | Mean value theorems for automorphic L-functions[END_REF] by O.M. Fomenko and [5] by H. Lao for symetric powers L-functions.

Theorem 1.5. Let X ≥ 1 be a real number and let f be a multiplicative function satisfying (H 1 ), (H 2 ) and (H 3 ). Let q be any positive integer such that q ≤ X (1-η)/15 . Then for any real number α with |α -a q | X -1+ 1-η 120 we have

X< ≤2X µ( )f ( )e ( α) η X √ q W f (X) (3) 
where

(4) W f (X) = max M ≤X M <m≤2M |f (m)| 2 /M .
Let us note here that, if considering convolutions in Theorem 1.4 is rather pointless as the corresponding value at the primes is simply the sum of the one of each factor. The situation changes drastically here. As already mentioned, Hypothesis (H 3 ) in this contexct has been investigated by Guangshi Lü in [START_REF] Lü | Exponential sums with Fourier coefficients of automorphic forms[END_REF]. Since the Möbius function satisfies our hypotheses under the Generalized Riemann Hypothesis, we see that the above theorem is conjecturally optimal at least when q = 1 and α = 0. The coefficient W f (X) is introduced to accomodate possible powers of log X. Notice that ( 5)

M <m≤2M |f (m)| ≤ 2 W f (X)M whenever M ≤ X.
Acknowledgements. This paper started in 2018 when the second author was suported by the Indo-French Institute of Mathematics, which we thank warmly for its support, on this occasion as well as for numerous other meetings where, among other things, this work has been pursued.

Organisation of the proof. The proof starts with Equation ( 27) which proposes a decomposition of the relevant trigonometric sum in three parts. The first part, L

r (α), is studied in Section 4, while the second one is studied in Section 5. These are technical but rather straightforward as no particular precision is required. The third and last part, which we call the bilinear sum is handled in Section 6. The sum S b in ( 6) is the central quantity and contains the averages over r (i.e. the averages over the family bilinear decompositions). We first need to reduce the evaluation to an L 2 -problem, then we localize the variables and finally we separate them properly (they are linked with a mild X < mn ≤ 2X). At the same time, we take care of the offset between α and a/q. This introduces the error terms E 1 (δ, r), E 2 (δ, r) and δE 3 (r). It is then a matter of bookkeeping to reduce the expression obtained to the hybrid large sieve inequality we have recalled earlier in Lemma 2.7. The proof of Theorem 1.5 is mutatis mutandis to the proof of Theorem 1.4. We give a sketch of it in Section 7.

Preliminaries

We state the following lemma of Motohashi, see [10, page 25].

Lemma 2.1. Let d be a square-free integer. Then for any positive integer n, we have

f (dn) = µ(d) u|n, u|d ∞ f n u f -1 (du) .
Here u | d ∞ means that u divides some power of d.

Lemma 2.2. Let and d be positive integers. Then for each > 0 we have

n≥1 n|[ ,d] ∞ f -1 ([ , d]n) n 1 2 (d ) .
Let θ > 0 (we shall finally choose θ = 1/k 2 ) and z > 1 be fixed. For any positive integers k and d, define Λ

(k ) d by Λ (k ) d = 1 k ! (θ log z) -k k j=0 (-1) k -j k j λ (j,k ) d , where λ (j,k ) d =    µ(d) log z 1+jθ d k if d < z 1+jθ ;
0 otherwise. We have the following lemma. (1)

Λ (k ) d = µ(d) if d < z.
(2) Let c > 0 be some parameter. We have

n≥1 τ k (n) d|n Λ (k ) d 2 n -ω 1 , provided ω ≥ 1 + c log z .
The weights Λ (k ) d further satisfy the following bound.

Lemma 2.4. Let θ > 0. Then

|Λ (k ) d | ≤ (2k ) k k ! .
Proof. Since the quantity on the right hand side is greater than 1, we can assume that d ≥ z. Then we have

|Λ (k ) d | ≤ 1 k !(θ log z) k k j=0 k j (log z jθ ) k .
Cancelling (log z θ ) k , using j ≤ k and k j=0 k j = 2 k gives the desired upper bound.

The function f being given to verify assumptions (H 1 ), (H 2 ) and (H 3 ). They imply the two parameters k and η that we keep fixed throughout the proof. We use the above weights with k = k 2 and some θ > 0 that we keep as a parameter until the end of the proof where we choose θ = 1 k 2 . For any r ≥ 1, let M r (s) be defined by

(6) M r (s) = d≤z 1+k 2 θ Λ (k 2 ) d |r µ r [ , d] s µ([ , d]) n≥1 f -1 [ ,d] (n) n s ,
where

f -1 [ ,d] (n) = f -1 ([ , d]n) when n | [ , d] ∞ ; 0 otherwise Lemma 2.5. Let (s) ≥ 1 2 . Then for each > 0 we have M r (s) r 1+ z (1+k 2 θ)( 1 2 + ) .
Proof. We have for (s)

≥ 1 2 , |M r (s)| ≤ d≤z 1+k 2 θ |Λ (k 2 ) d | |r [ , d] 1 2 n≥1 |f -1 [ ,d] (n)| n 1 2 k d≤z 1+k 2 θ 1 d 1 2 |r n≥1 n|[ ,d] ∞ f -1 ([ , d]n) n 1 2 . We have by Lemma 2.2 n≥1 n|[ ,d] ∞ f -1 ([ , d]n) n 1 2 ( d) .
From this we get

|M r (s)| d≤z 1+k 2 θ 1 d 1 2 - |r 1+ . Hence M r (s) ,k r 1+2 z (1+k 2 θ)( 1 2 + ) .
From (H 3 ) we obtain the following estimate by partial summation.

(

) n≤X f (n)(log n)e(nα) X η log X . 7 
Now we state one of the crucial lemmas.

Lemma 2.6 (Lemma 41, [START_REF] Ramaré | Modular ternary additive problems with irregular or prime numbers[END_REF]). Let δ ∈ (0, 1/2), β and X ≥ 1 be three real parameters. There exists a C 1 -function H such that for any sequence (a ) of complex numbers, we have

X< ≤2X a e(β ) = ∆ -∆ ≥1 a iu H(u)X iu du + O * X< ≤(1+δ)X, or (2-δ)X< ≤2X |a | + 2δ ≥1 |a | , where ∆ = 100 δ -1 +(βX) 2 δ . We have furthermore |H(u)| ≤ 25 73 (1 + |β|X)/(1 + |u|) and ∞ -∞ |H(u)| 2 du = (log 2) 2 (2 -2δ)/(4π) 2 .
For any positive integers r and n, the Ramanujan sum c r (n) is defined by

(8) c r (n) = a(mod) * r e an r ,
where the sum runs over all the coprime residue classes modulo r. It is known that c r (n) can also be expressed as

c r (n) = |n, |r µ r .
By definition of Ramanujan sum it is clear that |c r (n)| ≤ ϕ(r). Now we state the following version of Large sieve inequality:

Lemma 2.7 (Theorem 10, [START_REF] Ramaré | Modular ternary additive problems with irregular or prime numbers[END_REF]). Let q be some fixed modulus and N 0 be some real number. Let (u n ) n be a sequence of complex numbers that is such that

n (|u n | + n|u n | 2 ) < ∞.
Then we have, for any T ≥ 0, r≤R/q, (q,r)=1

1 ϕ(r) a mod q T -T n u n c r (n + N 0 )n it e(na/q) 2 dt ≤ 7 n |u n | 2 (n + R 2 max(T, 10)).
Let us recall the classical definition

(9) G q (D) = d≤D, (d,q)=1 µ 2 (d) ϕ(d) , G(D) = G 1 (D).
We quote from [START_REF] Van Lint | On primes in arithmetic progressions[END_REF]:

(10) G(D) ≤ q ϕ(q) G q (D) ≤ G(qD).
We quote from [11, Lemma 3.5] (see also [START_REF] Riesel | On sums of primes[END_REF])

(11) G(D) ≤ log D + 1.4709, (D ≥ 1)
and, concerning a lower bound, (

) log D + 1.06 ≤ G(D), (D ≥ 6). 12 
For any given integer r ≥ 1, we define

(13) ν r (n) = f (n)c r (n)   d|n Λ (k 2 ) d   .
We have the following estimate.

Lemma 2.8. Let B ≥ 1 be a real number. Then

r≤ R q µ 2 (r) ϕ(r) n≤B |ν r (n)| 2 n B c log z R q 2 for each c > 0.
Proof. By definition of ν r (n), we have

r≤ R q µ 2 (r) ϕ(r) n≤B |ν r (n)| 2 n = r≤ R q µ 2 (r) ϕ(r) n≤B f 2 (n)|c 2 r (n)| d|n Λ (k 2 ) d 2 n .
Let c > 0 be a real number. Then

r≤ R q µ 2 (r) ϕ(r) n≤B |ν r (n)| 2 n ≤ r≤ R q µ 2 (r)ϕ(r)B c log z n≤B f 2 (n) d|n Λ (k 2 ) d 2 n 1+ c log z . By Lemma 2.3 the last sum is bounded since f 2 (n) ≤ τ 2 k (n) ≤ τ k 2 (n), and hence r≤ R q µ 2 (r) ϕ(r) n≤B |ν r (n)| 2 n ≤ B c log z R q 2 .
The following lemma will be used in Section 6. Lemma 2.9. Let M be a sufficiently large real number and q be a positive integer. Then [START_REF] Riesel | On sums of primes[END_REF] b(mod)q m≡b(q) m∼M

Λ f (m) m iu 2 M 2 ϕ(q) .
Proof. We have

b mod q m≡b(q) m∼M Λ f (m) m iu 2 = b(mod) * q m≡b(q) m∼M Λ f (m) m iu 2 + b mod q (b,q)>1 m≡b(q) m∼M Λ f (m) m iu 2 . ( 15 
)
We have b(mod) * q m≡b(q) m∼M

Λ f (m) m iu 2 b(mod) * q p≡b(q) p∼M Λ f (p) p iu 2 + b(mod) * q p t ≡b(q) p t ∼M t≥2 Λ f (m) m iu 2 .
For the first sum we use |Λ f (p)| ≤ k log p after applying Cauchy-Schwarz inequality.

The sum inside the modulus in the second sum is trivially M 1+ in view of (2) . Hence we have * q m≡b(q) m∼M

Λ f (m) m iu 2 M ϕ(q) log M b(mod) * q p≡b(q) p∼M log 2 p + M 1+ ϕ(q) .
Hence by prime number theorem we have b(mod) * q m≡b(q) m∼M

Λ f (m) m iu 2 M 2 ϕ(q)
Similarly we can show that the second sum on the right hand side of ( 15) is

M 2 ϕ(q) .

Bilinear decomposition of Λ f and µf

For any square-free integer r ≥ 1, let

V r (s) = n≥2 ν r (n) n s ,
where ν r (n) be as in [START_REF] Rankin | Contributions to the theory of Ramanujan's function τ (n) and similar arithmetical functions. I. The zeros of the function ∞ n=1 τ (n)/n s on the line Rs = 13/2. II. The order of the Fourier coefficients of integral modular forms[END_REF]. By Lemma 2.3 we can see that ν r (n) = 0 if n ≤ z.

We have

1 + V r (s) = 1 + n≥2 f (n)c r (n) n s   d|n Λ (k 2 ) d   = d≤z 1+k 2 θ Λ (k 2 ) d |r µ r [ , d] s n≥1 f ([ , d]n) n s .
By Lemma 2.1 the above identity becomes

1 + V r (s) = d≤z 1+k 2 θ Λ (k 2 ) d |r µ r [ , d] s µ([ , d]) n≥1 f * f -1 [ ,d] (n) n s =L(f, s) m≥1 h r (m) m s . (16) Let M r (s) = m≥1 hr(m) m s . Write (17) 1 = -V r (s) + (1 + V r (s)) .
Multiplying both sides by -L (f,s) L(f,s) we get

(18) - L (f, s) L(f, s) = L (f, s) L(f, s) V r (s) -L (f, s)M r (s) .
This gives the following decomposition for Λ f (n):

(19) Λ f (n) = -(Λ f * ν r )(n) + (f log * h r )(n) . Define L (f, s) = n≥1 µ(n)f (n) n s = p 1 - f (p) p s .
We can write this L as

(20) L (f, s) = 1 L(f, s) p 1 + h≥2 f (p h ) -f (p h-1 )f (p) p hs . Denoting f (p h ) -f (p h-1 )f (p) by f 2 (p h ), we get that (21) L (f, s) = 1 L(f, s) p 1 + h≥2 f 2 (p h ) p hs := 1 L(f, s) n≥1 g(n) n s .
Multiplying both sides of [START_REF] Van Lint | On primes in arithmetic progressions[END_REF] with L (f, s) gives the following decomposition for µ( )f ( ):

(22) µ( )f ( ) = -(ν r * µf )( ) + (h r * g)( ) .
Now we consider the sum

(23) S(α) = ∼X Λ f ( )e ( α) ,
where ∼ X means X < ≤ 2X. Using (19) we get

S (α) = - ∼X (Λ f * ν r )( )e ( α) + ∼X (f log * h r )( )e ( α) = mn∼X f (n) log(n)h r (m)e (mnα) - mn∼X m≤M 0 Λ f (m)ν r (n)e (mnα) - mn∼X m>M 0 Λ f (m)ν r (n)e (mnα)
for some positive real number M 0 which will be chosen later.

Let

(24)

L (1) r (α) = mn∼X f (n) log(n)h r (m)e (mnα) (25) L (2) r (α) = mn∼X m≤M 0 Λ f (m)ν r (n)e (mnα)
and call these sums as first linear sum and second linear sum respectively. With these notations we have ( 26)

S (α) = L (1) r (α) -L (2) r (α) - mn∼X m>M 0 Λ f (m)ν r (n)e (mnα) .
We call the last sum the bilinear sum. Let R be a sufficiently large real number which we will choose later. Multiplying both sides of (26) by µ 2 (r) ϕ(r) and summing over 1 ≤ r ≤ R q with (r, q) = 1 gives us (27)

G q R q S (α) = r≤ R q (r,q)=1 µ 2 (r) ϕ(r) (L (1) r (α)-L (2) r (α))- r≤ R q (r,q)=1 µ 2 (r) ϕ(r) mn∼X m>M 0 Λ f (m)ν r (n)e (mnα) .

Estimating the first linear sum L

(1) r (α) We have

L (1) r (α) = mn∼X f (n) log(n)h r (m)e (mnα) = m≤2X h r (m) n∼ X m f (n) log(n)e (mnα) .
Use ( 7) and Lemma 2.5 to get 

L (1) r (α) X η log X m≤2X |h r (m)| m 1 2 X η r 1+ z (1+k 2 θ)( 1 2 + ) log(X) . ( 28 
L (2) r (α) = m≤M 0 mn∼X Λ f (m)   d|n Λ (k 2 ) d   f (n)c r (n)e (mnα) . Since Λ (k 2 ) d = 0 if d > z 1+k 2 θ
, the equation above can be written as

L (2) r (α) = m≤M 0 Λ f (m) d≤z 1+k 2 θ Λ (k 2 ) d n∼ X m d|n f (n)c r (n)e (mnα)
.

By the properties of Ramanujan sum c r (n) it can be written as

L (2) r (α) = m≤M 0 Λ f (m) d≤z 1+k 2 θ Λ (k 2 ) d n∼ X m d|n f (n)e (mnα)
|r, |n µ r

= m≤M 0 Λ f (m) d≤z 1+k 2 θ Λ (k 2 ) d |r µ r n∼ X m d|n, |n f (n)e(mnα)
.

By Lemma 2.1 we get

L (2) r (α) = m≤M 0 Λ f (m) d≤z 1+k 2 θ Λ (k 2 ) d |r µ r n∼ X m[d, ] f (n[ , d])e (mn[d, ]α) = m≤M 0 Λ f (m) d≤z 1+k 2 θ Λ (k 2 ) d |r µ r n∼ X m[d, ] e (mn[d, ]α) µ([d, ]) u|n u|[ ,d] ∞ f n u f -1 ([ , d]u) .
An interchange of summation yields

L (2) r (α) = m≤M 0 Λ f (m) d≤z 1+k 2 θ Λ (k 2 ) d |r µ r µ([ , d]) u|[ ,d] ∞ f -1 ([ , d]u) n∼ X mu[d, ] f (n)e (mnu[d, ]α) .
By our assumption we have

|L (2) r (α)| X η m≤M 0 |Λ f (m)| m η d≤z 1+k 2 θ |Λ (k 2 ) d | |r u|[ ,d] ∞ |f -1 ([ , d]u)| ([ , d]u) η X η m≤M 0 |Λ f (m)| m η d≤z 1+k 2 θ |Λ (k 2 ) d | d η |r u|[ ,d] ∞ |f -1 ([ , d]u)| u η .
We use Lemma 2.2 to estimate the last sum on the right hand side. This gives

|L (2) r (α)| X η m≤M 0 |Λ f (m)| m η d≤z 1+k 2 θ |Λ (k 2 ) d | d η- |r 1+ . Since η ≥ 1 2 , we get (29) |L (2) r (α)| X η r 1+2 z (1+k 2 θ) m≤M 0 |Λ f (m)| m 1 2   d≤z 1+k 2 θ |Λ (k 2 ) d | d 1 2   .
We use the bound (1) to estimate the first sum in the brackets and Lemma 2.4 for the second sum to get

|L (2) r (α)| X η r 1+2 z (1+k 2 θ)( 1 2 + ) M 1 2 + 0 . (30) 6. Estimating the bilinear sum Let (31) S r (α, M, N ) = mn∼X m∼M,n∼N Λ f (m)ν r (n)e (mnα) .
Let δ > 0 be a sufficiently small real number which we will choose later. Let a be such that (a, q) = 1. We apply Lemma 2.6 with β = α -a q and

ϕ = mn= m∼M,n∼N Λ f (m)ν r (n)e mna q to get S r (α, M, N ) = ∆ -∆ m∼M n∼N Λ f (m) m iu ν r (n) n iu e mna q H(u)X iu du (32) + (E 1 (δ, r) + E 2 (δ, r) + 2δE 3 (r)) ,
where

E 1 (δ, r) = X<mn≤2 δ X m∼M,n∼N |Λ f (m)ν r (n)|, (33) E 2 (δ, r) = 2X 2 δ <mn≤2X m∼M,n∼N |Λ f (m)ν r (n)|, (34) 
E 3 (r) = m∼M,n∼N |Λ f (m)ν r (n)|, (35) ∆ =100 δ -1 + (βX) 2 δ . (36) 
We have the following lemma concerning the error term in (32). Lemma 6.1.

E 1 (δ, r) + E 2 (δ, r) + 2δE 3 (r) δM n∼N |ν r (n)| .
Proof. We have

E 1 (δ, r) = n∼N |ν r (n)| m∼M X n <m≤ 2 δ X n |Λ f (m)| n∼N |ν r (n)| X n ≤m≤ X n + 7δM 5 |Λ f (m)| .
The second inequality follows since the interval [max(M, X n ), min(2M, 

2 δ X n )] is con- tained in [ X n , X n + 7δM 5 ].
E 3 (r) = n∼N |ν r (n)| m∼M |Λ f (m)| M n∼N |ν r (n)|
again by prime number theorem.

Consider the sum

S b = r≤ R q (r,q)=1 µ 2 (r) ϕ(r) mn∼X m>M 0 Λ f (m)ν r (n)e (mnα)
.

By using Cauchy Schwarz inequality we get (37)

S b ≤ G q R q      r≤ R q (r,q)=1 µ 2 (r) ϕ(r) mn∼X m>M 0 Λ f (m)ν r (n)e (mnα) 2      1 2
.

Consider the sum inside the brackets and call it S 1 , i.e.

S 1 = r≤ R q (r,q)=1 µ 2 (r) ϕ(r) mn∼X m>M 0 Λ f (m)ν r (n)e (mnα) 2 
.

We now examine the last sum and localize the variables m and n. Notice that n > z. So we start at N = z, go until 2z, etc until 2 t z ≤ 2X/M 0 < 2 t+1 z, i.e. 0 ≤ t ≤ log(2X/(M 0 z))/ log 2. Concerning M , we have N < n ≤ N ≤ 2N , and thus 1 2 (X/N ) ≤ X/n < m ≤ 2X/N . So for each N , we have two values of M , namely M 1 = 1 2 (X/N ) and M 2 = X/N .

After localizing the variables and applying Cauchy-Schwarz, we reach

S 1 log 2X M 0 z r≤ R q (r,q)=1 µ 2 (r) ϕ(r) M,N mn∼X m∼M,n∼N Λ f (m)ν r (n)e (mnα) 2 .
Using Equation (32) for the sum inside the modulus we get

S 1 log 2X M 0 z r≤ R q (r,q)=1 µ 2 (r) ϕ(r) M,N ∆ -∆ m∼M n∼N Λ f (m) m iu ν r (n) n iu e mna q H(u)X iu du 2 + log 2X M 0 z r≤ R q (r,q)=1 µ 2 (r) ϕ(r) M,N (E 1 (δ, r) + E 2 (δ, r) + 2δE 3 (r)) 2 .
By Lemma 6.1 the second term is

log 2X M 0 z r≤ R q (r,q)=1 µ 2 (r) ϕ(r) M,N δM n∼N |ν r (n)| 2 .
Hence we have (38)

S 1 log 2X M 0 z r≤ R q (r,q)=1 µ 2 (r) ϕ(r) M,N ∆ -∆ b(q) m≡b(q) m∼M Λ f (m) m iu n∼N ν r (n) n iu e abn q H(u)X iu du 2 + log 2X M 0 z r≤ R q (r,q)=1 µ 2 (r) ϕ(r) M,N δM n∼N |ν r (n)| 2 .
We consider the integral I( a q , M, N ) in the above equation and after an application of Cauchy -Schwarz inequality, we obtain

I a q , M, N ∆ -∆    b(q) m≡b(q) m∼M Λ f (m) m iu 2    1 2   b(q) n∼N ν r (n) n iu e bn q 2   1 2 |H(u)|du .
Since the sum in the first bracket inside the integral is M 2 ϕ(q) by Lemma 2.9, we get

I a q , M, N M 2 ϕ(q) 1 2 ∆ -∆   b(q) n∼N ν r (n) n iu e bn q 2   1 2 |H(u)|du .
We use the Cauchy-Schwarz inequality again to get

I a q , M, N M 2 ϕ(q) 1 2 ∆ -∆ |H(u)| 2 du 1 2   ∆ -∆ b(q) n∼N ν r (n) n iu e bn q 2 du   1 2
.

Using the fact that R |H(u)| 2 = R | H(u)| 2 = (2 -2δ) (log 2) 2 (4π) 2 leads to I a q , M, N M 2 ϕ(q) 1 2   ∆ -∆ b(q) n∼N ν r (n) n iu e bn q 2 du   1 2 
.

Put this estimate in (38) to get

S 1 2X M 0 z r≤ R q (r,q)=1 µ 2 (r) ϕ(r) M,N M 2 ϕ(q) ∆ -∆ b(q) n∼N ν r (n) n iu e bn q 2 du + log 2X M 0 z r≤ R q (r,q)=1 µ 2 (r) ϕ(r) M,N δM n∼N |ν r (n)| 2 .
An application of large sieve inequality (Lemma 2.7) gives

S 1 log 2X M 0 z M,N M 2 ϕ(q)   n∼N f 2 (n) d|n Λ (k 2 ) d 2 (n + R 2 4π∆ log 2 )   (39) + log 2X M 0 z r≤ R q (r,q)=1 µ 2 (r) ϕ(r) M,N δM n∼N |ν r (n)| 2 .
We assume that R 2 δ -2 z and |α -a q | (zR -2 δ)

1 2 X so that R 2 ∆ z. Hence S 1 log 2X M 0 z M,N M 2 N 2 ϕ(q)   n∼N f 2 (n) n d|n Λ (k 2 ) d 2   + log 2X M 0 z r≤ R q (r,q)=1 µ 2 (r) ϕ(r) M,N δ 2 M 2 N n∼N |ν r (n)| 2 .
Let c > 0 be a small real number. Since M N X we get

S 1 X 2 ϕ(q) log 2X M 0 z 2X z c log z   n≤ 2X z f 2 (n) n 1+ c log z d|n Λ (k 2 ) d 2   + δ 2 X 2 log 2X M 0 z r≤ R q (r,q)=1 µ 2 (r) ϕ(r) n≤ 2X z |ν r (n)| 2 n . Since |f 2 (n)| ≤ τ 2 k (n) and τ 2 k (n) ≤ τ k 2 (n), Lemma 2.3 gives us S 1 X 2 ϕ(q) log 2X M 0 z 2X z c log z + δ 2 X 2 log 2X M 0 z r≤ R q (r,q)=1 µ 2 (r) ϕ(r) n≤ 2X z |ν r (n)| 2 n .
By Lemma 2.8 we have

(40) S 1 X 2 ϕ(q) log 2X M 0 z 2X z c log z + δ 2 X 2 log 2X M 0 z 2X z c log z R q 2 .
On keeping this bound in (37), we obtain

(41) S b ≤ G q R q log 2X M 0 z X 2 ϕ(q) 2X z c log z + δ 2 X 2 2X z c log z R q 2 1 2
. Putting (28), (30), ( 41) and (27) together gives (with θ = 1/k 2 )

G q R q S (α) X η z (1+1)( 1 2 + ) G q R q R q 1+2 (log X + M 1 2 + 0 ) + X ϕ(q) G q R q log 2X M 0 z 2X z c log z 1 + δ 2 ϕ(q) R q 2 1 2
.

We choose δ -1 = R = z (1-η) to get

S (α) X η+ 1-η 2 (1+ (2+ 1 2 +1)) 1 q + X ϕ(q) log X G q R q
.

For sufficiently small positive , the power of X in the first sum will be smaller than 1 and for the second sum we use [START_REF] Motohashi | Sieve Methods and Prime Number Theory[END_REF] and ( 12) (with q ≤ R 14/15 = X (1-η)/15 ) together to get

S (α) √ qX ϕ(q) .
This completes the proof of Theorem 1.4.

7.

Proof of Theorem 1.5

Since the proof of Theorem 1.5 is similar to that of Theorem 1.4, we only give a sketch of the proof. We use |g(n)| log 2 n, g is supported only on square-full integers and the number of such integers upto X is X 1/2 while estimating the sum L

r . We can get L (1) r (α) X 1 2 r 1+ z (1+k 2 θ)( 1 2 + ) log 2 X .

The sum L 

|L (2) r (α)| X η r 1+2 z (1+k 2 θ)( 1 2 + ) M 1 2 + 0 . ( 43 
)
We can estimate the third sum on the right hand side as in Section 6 with some modifications which we will write down here. The corresponding bound for the bound in Lemma 6.1 will be E 1 (δ, r) + E 2 (δ, r) + 2δE 3 (r) W f (X)δM n∼N |ν r (n)| , when using [START_REF] Lao | Mean square estimates for coefficients of symmetric power L-functions[END_REF] . Instead of Lemma 2.9 one has to use (44) b(mod)q m≡b(q) m∼M f (m)

m iu 2 W f (X)M 2 q .
With these changes and choosing parameters exactly as in Section 6, we get the mentioned result.

Lemma 2 . 3 (

 23 Motohashi, Theorem 4,[START_REF] Motohashi | Sieve Methods and Prime Number Theory[END_REF]). The weights Λ (k ) d satisfy the following:

) 5 .

 5 Estimating the second linear sum L

1 4

 1 to ensure that R 2 δ -2 z and M 0 = z = X 2 7

  By (22), we have the following decomposition:(42) ∼X µ( )f ( )( )e( α) = L (1) r (α) -L (2) r (α) -mn∼X m>M 0 µ(m)f (m)ν r (n)e(mnα) )f (m)ν r (n)e(mnα).

( 2 )

 2 r (α) can be estimated exactly as in Section 5, where one has to use the bound follows from the bound |f (m)| m .

  The contribution from primes for the second sum of the above equation is δM since |Λ f (p)| ≤ k log p and by prime number theorem. It can be easily seen that the contribution from the higher prime powers is negligible.

	Hence we have	
	E 1 (δ, r)	δM .
	Similarly we can show that	
	E 2 (δ, r)	δM .
	The result follows since