
HAL Id: hal-04467195
https://hal.science/hal-04467195v1

Submitted on 20 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Explicit bounds for products of primes in AP
Ramachandran Balasubramanian, Olivier Ramaré, Priyamvad Srivastav

To cite this version:
Ramachandran Balasubramanian, Olivier Ramaré, Priyamvad Srivastav. Explicit bounds for products
of primes in AP. Mathematics of Computation, 2023, 92 (243), pp.2381 - 2411. �10.1090/mcom/3853�.
�hal-04467195�

https://hal.science/hal-04467195v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


MATHEMATICS OF COMPUTATION
Volume 00, Number 0, Pages 000–000
S 0025-5718(XX)0000-0

EXPLICIT BOUNDS FOR PRODUCTS OF PRIMES IN AP

RAMACHANDRAN BALASUBRAMANIAN, OLIVIER RAMARÉ,
AND PRIYAMVAD SRIVASTAV

Abstract. For all q ≥ 2 and for all invertible residue classes a modulo q,

there exists a natural number that is congruent to a modulo q and that is the
product of exactly three primes, all of which are below (1015q)5/2.

1. Introduction and results

In this paper we investigate the representation of reduced residue classes mod-
ulo q by a product of exactly three small primes. We improve on [16, 17] by
introducing an explicit vertical Brun–Titchmarsh inequality in Theorem 1.4. Its
proof takes most of our efforts and Theorem 6.1 has no predecessor. Please note
that this result is new even if one omits the explicit aspect.

Theorem 1.1. For any q ≥ 2 and any invertible residue class a modulo q, there
exists a natural number that is congruent to a modulo q and that is the product of
exactly three primes, all of which are below (1015q)5/2.

We thus go beyond the bound O(q3) that was a barrier in [16]. Varying the
constant 1015 is the subject of Theorem 13.2 where it is for instance proved that,
for q ≥ 1088, the primes may be assumed to be below (30q)5/2. We present in
Section 12 some computations for small values of the parameter q. Here is one
result that is established there.

Theorem 1.2. For every q ∈ [5208, 2·107], every invertible class modulo q contains
a product of three primes, each of which being of size at most q(log q)2.

To prove Theorem 1.1, we first prove an explicit version of a vertical Brun–
Titchmarsh Theorem, i.e. an almost-everywhere, in a-aspect, individual upper
bound in the Brun–Titchmarsh style. The result in itself is essentially due to
Hooley in [8, Theorem 5], but since our phrasing is more precise, we prefer to state
it explicitly.
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Theorem 1.3 (Hooley [8]). Let q ≥ 1 be an integer. Let X ≥ q3/2(log q)12 be some
real number. For every invertible class a modulo q, we have∑

p≤X,
p≡a[q]

1 ≤ 2(1 + ϵ(a)) ·X
φ(q) log(X/

√
q)

where
∑

amod∗q

ϵ(a)2 ≪ φ(q)/ log q

where “p ≡ a[q]” means that p is congruent to a modulo q while “a mod∗ q” means
that a ranges through a complete set of reduced residue classes modulo q.

Our proof differs from the one of Hooley and is closer to the work [12] by Mo-
tohashi. However, a noticeable distinction is that we avoid using the fourth power
moment upper bound for L-functions. For efficiency on the explicit side, we prove
a smoothed version of Theorem 1.3. From now on, the symbols η∗ and κ shall be
kept for the functions defined by
(1)

η∗(t) =


3t2, 0 ≤ t ≤ 1/3,

−6t2 + 6t− 1, 1/3 < t ≤ 2/3,

3(1− t)2, 2/3 < t ≤ 1,

0, otherwise,

κ(t) =


−3t2, 0 ≤ t ≤ 1/3,

6t2 − 1, 1/3 < t ≤ 2/3,

3(1− t2), 2/3 < t ≤ 1,

0, otherwise.

This choice is explained in Section 2. We have ∥η∗∥1 = 2/9. A large part of this
paper is dedicated to the proof of the next theorem.

Theorem 1.4. Let q ≥ 2 · 107 be an integer. Let X ≥ (1013q)5/2 be some real
number. For every invertible class a modulo q, we have∑

p≡a[q]

η∗(p/X) ≤ 2(1.004 + ϵ(a)) · 2X/9

φ(q) log X
109

√
q

where
∑

amod∗q

ϵ(a)2 ≤ φ(q)/4250.

The proof uses directly the Parseval identity for Mellin transforms rather than the
more usual result by Gallagher, namely [7, Theorem 1]. A major input is Theo-
rem 6.1 that gives a sharp upper bound for S(z) =

∑
n(
∑

[d1,d2]=n |λd1
λd1

|)2 where

the λd’s are closely related to some Selberg parameters. We modify these though
and this modification is instrumental in our proof. Let us mention that the trivial
bound for S(z) is of size z2(log z)8 while the bound we prove is of order z2/(log z)3.
Computations described in Section 7 support the fact that S(z)(log z)3/z2 is in-
deed asymptotic to some positive constant. Theorem 13.1 presents variants of
Theorem 1.4.

We recall the definition of the Mellin transform:

(2) η̌(s) =

∫ ∞

0

η(x)xs−1dx

and further introduce a notation: f = O∗(g) is equivalent to |f | ≤ g.

2. Smoothings

Let us quote from Rényi’s book [19] the formula:

1
(∗m)
[−1,1](t) =


⌊(m+|t|)/2⌋∑

j=0

(−1)j

(m− 1)!

(
m

j

)
(m+ |t| − 2j)m−1 when 0 ≤ |t| ≤ m,

0 when m < |t|.
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Guessing this expression is not obvious, but checking it by recursion is only a matter
of routine. The Fourier transform of 1[−1,1] is sin(2πu)/(πu), so the transform of

1
(∗m)
[−1,1] is sin(2πu)m/(πu)m. In the previous paper [16], we used the above with

m = 2, but we need a smoother function here. By specifying m = 3, we get

1
(∗3)
[−1,1](t) =


3− t2 when 0 ≤ |t| < 1,

(3− |t|)2/2 when 1 ≤ |t| < 3,

0 when 3 ≤ |t|.

As indicated in the introduction, the symbol η∗ shall be kept for the function defined
by

(3) η∗(t) = 1
(∗3)
[−1,1](6t− 3)/6.

In this section, we use the Bernoulli polynomials (Bm)m≥0 that are defined by

text

et − 1
=
∑
m≥0

Bm(x)
tn

n!
.

It is straightforward to compute the first of these:

B0(x) = 1, B1(x) = x− 1
2 , B2(x) = x2 − x+ 1

6 , B3(x) = x3 − 3
2x

2 + 1
2x.

The Bernoulli functions are then defined by bm(x) = Bm({x}) where {x} is the
fractional part of x. These functions are periodic modulo 1, and their Fourier series
expansion is well-known.

Lemma 2.1. We have, when m ≥ 1,∑
n≥1

1(∗m)

((
2n

X
− 1

)
m

)
=

2m−1X

m
− (2m)m−1

Xm−1m!

∑
0≤k≤m

(−1)m−k

(
m

k

)
bm
(
2kX/m

)
.

Proof. Indeed the Fourier transform of g(u) = 1(∗m)((2(u/X)− 1)m) is given by

ĝ(v) =

∫ ∞

−∞
1(∗m)((2(u/X)− 1)m)e(uv)du

=
X

2m

∫ ∞

−∞
1(∗m)(w)e

(
Xvw

2m
+

Xv

2

)
dw =

X

2m
e(Xv/2)

(
2m sin πXv

m

πXv

)m

.

By the Poisson summation formula, we get

S =
∑
n≥1

1(∗m)

((
2n

X
− 1

)
m

)
=

X

2m

(2m)m

Xm

∑
ℓ∈Z

e(Xℓ/2)

(
sin πXℓ

m

πℓ

)m

.

Next notice that, with x = Xℓ/(2m),

(2i)me(mx)(sin 2πx)m = e(mx)
∑

0≤k≤m

(−1)m−k

(
m

k

)
e((2k −m)x)

=
∑

0≤k≤m

(−1)m−k

(
m

k

)
e(2kx).
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Hence with y = X/m

S =
2m−1X

m
+

X

2m

(2m)m

Xm

1

(2iπ)m

∑
ℓ∈Z,
ℓ̸=0

∑
0≤k≤m

(−1)m−k

(
m

k

)
e(2kyℓ)

ℓm

=
2m−1X

m
− X

2m

(2m)m

Xmm!

∑
0≤k≤m

(−1)m−k

(
m

k

)
bm
(
2kX/m

)
.

This completes the proof. □

This lemma may be compared with [21, Lemma 3.1] which corresponds to the case
m = 2. We now concentrate on the case m = 3.

Lemma 2.2. With ρ3(y) =
∑

0≤k≤3(−1)k
(
3
k

)
b3(ky), we have

ρ3(y) =

{
−6{y}3 when {y} ≤ 1/3,

3(1− 2{y})({y}2 − 4{y}+ 1) when 1/3 < {y} ≤ 1/2,

and ρ3(1 − y) = −ρ3(y). Here {y} is the fractional part of y. In particular this

quantity lies in [3(11− 5
√
5)/2, 3(5

√
5− 11)/20].

Proof. The property of the Bernoulli polynomials Bm(1 − X) = (−1)mBm(X)
implies that bm(1− y) = (−1)mbm(y), so we may restrict our attention to the case
0 ≤ y ≤ 1/2. When y ∈ [0, 1/3), we find that

2ρ3(y) = −3(2y3 − 3y2 + y) + 3(16y3 − 12y2 + 2y)− (54y3 − 27y2 + 3y) = −12y3.

We continue with the case y ∈ [1/3, 1/2) where {2y} = 2y but {3y} = 3y − 1.
Therefore

2ρ3(y) = −3(2y3 − 3y2 + y) + 3(16y3 − 12y2 + 2y)

− (2(3y − 1)3 − 3(3y − 1)2 + 3y − 1)

= 6(1− 2y)(y2 − 4y + 1).

The derivative of ρ3(y) with respect to y in this interval is 18(−y2 + 3y − 1). The

minimum is at y0 = (3−
√
5)/2 with value 3(11− 5

√
5)/2, and this concludes the

proof of this lemma. □

On collecting (3), Lemma 2.1 and with Lemma 2.2, we obtain the next lemma.

Lemma 2.3. We have
2X

9
− θ

X2
≤
∑
m≥1

η∗(m/X) ≤ 2X

9
+

θ

X2

where θ = 3(5
√
5− 11)/2 ≤ 0.28.

Lemma 2.4. When X ≥ 3 · 107 and X ≥ q, we have∑
(p,q)=1

η∗(p/X) ≥ (1− 0.003)
2X/9

logX
.

Proof. Let us call S the sum on the left side. We first find that, as η∗ has its
support within [0, 1], we have∑

(p,q)=1

η∗(p/X) logX =
∑

(p,q)=1

η∗(p/X)

(
log p+ log

X

p

)
≥

∑
(p,q)=1

η∗(p/X) log p.
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We next notice that∑
(p,q)=1

η∗(p/X) log p ≥
∑
p

η∗(p/X) log p− ∥η∗∥∞
∑
p|q

log p

and this last summand is at most (logX)/2. Hence, with the notation ϑ(t) =∑
p≤t log p, we find that

(S + 1
2 ) logX ≥

∑
p≥1

log p

(
−
∫ 1

p/X

η∗′(t)dt

)

≥ −
∫ 1

0

ϑ(tX)η∗′(t)dt = −
∫ X

0

ϑ(u)η∗′(u/X)du/X.

We note that −η∗′(t) is non-positive when t ≤ 1/2 and non-negative afterwards,
hence we need an upper bound for ϑ(u) when u ≤ X/2 and a lower bound when
u ≥ X/2. Concerning the upper bound, we recall [20, equation (5.1)]:

(4) ϑ(u) =
∑
p≤u

log p ≤ 1.001102u (u > 0)

and concerning the lower bound, we use [20, equation (5.2)]:

(5) ϑ(u) ≥ (1− 0.0013156)u (u ≥ 1 319 007).

We mention here that a better lower bound may be found in [2]. We set ϵ∗ =
0.0013156 and on assuming X/2 ≥ 1 319 007, we get

(S + 1
2 ) logX ≥ −

∫ X

0

uη∗′(u/X)
du

X
− ϵ∗

∫ X

0

|uη∗′(u/X)|du
X

≥ −X

∫ 1

0

tη∗′(t)dt− ϵ∗X

∫ 1

0

|η∗′(t)|dt = X

∫ 1

0

η∗(t)dt− ϵ∗η∗(1/2)X

=

(
2

9
− ϵ∗

2

)
X.

This gives us a lower estimates for S. □

2.1. Mellin transforms.

Lemma 2.5. We have κ̌(s) = (s+ 1)η̌∗(s).

Proof. Indeed, by summation by parts, we find that

η̌∗(s) =

∫ 1

0

(η∗(t)/t)tsdt = −
∫ 1

0

(η∗(t)/t)′ts+1 dt

s+ 1

and we swiftly check that κ(t) = −t2(η∗(t)/t)′. □

2.2. Fourier transforms. We need also the Fourier transform of κ. We set

(6) κ̂(α) =

∫ 1

0

κ(t)e(αt)dt.

Lemma 2.6. We have

κ̂(α) = 6e(2α/3)

(
sinπα/3

πα

)2

− 6e(α/2)

(
sinπα/3

πα

)3

.
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Figure 1. η∗(t) Figure 2. κ(t)

As a sanity check, the above expression ensures that κ̂(0) = 4/9 while we also
have κ̌(1) = 2η̌∗(1) = 4/9.

Proof. We readily compute that (with β = 2iπα)

−β

6
κ̂(α) = 1

6

∫ 1

0

κ′(t)e(αt)dt = −
∫ 1/3

0

te(αt)dt+ 2

∫ 2/3

1/3

te(αt)dt−
∫ 1

2/3

te(αt)dt

= −
∫ 1

0

te(αt)dt+ 3

∫ 2/3

1/3

te(αt)dt.

Since ∫
te(αt)dt =

te(αt)

β
− e(αt)

β2
+ C,

we find that

−β3

6
κ̂(α) = −e(α)β + e(α)− 1 + 3

(
2
3e(2α/3)β − e(2α/3)− 1

3e(α/3)β + e(α/3)
)

= −β(e(α)− 2e(2α/3) + e(α/3)) + e(α)− 3e(2α/3) + 3e(α/3)− 1

= −βe(α/3)(e(α/3)− 1)2 + (e(α/3)− 1)3.

The lemma follows readily. □

3. Some auxiliary lemmas

Lemma 3.1. Let f be an absolutely continuous function on [0, 1] such that f(0) =
0. For y, c ≥ 0, we have∑

n≤cy

f(n/y) = y

∫ c

0

f(t)dt+ ({cy} − 1
2 )f(c) +

∫ c

0

({ty} − 1
2 )f

′(t)dt

where {u} denotes the integer part of u.

Proof. Since f is absolutely continuous, we have f(x) = f(c)−
∫ c

x
f ′(t)dt. The next

steps are routine:∑
n≤cy

f(n/y) = −
∫ c

0

∑
n≤ty

f ′(t)dt+[y]f(c) = −
∫ c

0

(
ty− 1

2−{ty}+ 1
2

)
f ′(t)dt+[y]f(c).

The lemma follows readily. □

Lemma 3.2. For v > 0, we have
∑

n≤1/v

|κ(nv)| ≤ 2
√
6

9v
+ 4.
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Proof. We use Lemma 3.1 with c = 1 and f(t) = |κ(t)|. We readily check that∫ 1

0
|κ(t)|dt = 2

√
6/9. Furthermore

|κ|′(t) =



6t, 0 ≤ t ≤ 1/3,

−12t, 1/3 < t ≤ 1/
√
6,

12t, 1/
√
6 < t ≤ 2/3,

−6t, 2/3 ≤ t ≤ 1,

0, otherwise.

and, after a short calculation, this readily implies that
∫ 1

0
||κ|′(t)|dt = 8. □

3.1. Constant recognition. Here is an abstraction of an idea contained in [5,
Lemma 2.9].

Lemma 3.3. Let D(s) =
∑

n≥1 un/n
s be a Dirichlet series that is absolutely con-

vergent for ℜs > 1, has a simple pole of residue ρ at s = 1 and is analytically con-
tinuable to ℜs > c for some c ∈ (0, 1). We assume that

∑
n≤X un = ρX +O(Xc).

Then for ℜs = σ > c, we have∑
n≤X

un

ns
=

ρ

(1− s)Xs−1
+D(s) +O(Xc−σ).

Proof. We first notice that D(s) equals∑
n≤X

un

ns
+ s

∫ ∞

X

( ∑
X<n≤t

un − ρt
) s

ts+1
dt+

sρ

(s− 1)Xs−1
.

We infer from this expression that

D(s) =
∑
n≤X

un

ns
−
∑

n≤X un

Xs
+ s

∫ ∞

X

(∑
n≤t

un − ρt
) dt

ts+1
+

sρ

(s− 1)Xs−1

=
∑
n≤X

un

ns
+

ρ

(s− 1)Xs−1
−
∑

n≤X un − ρX

Xs
+ s

∫ ∞

X

(∑
n≤t

un − ρt
) dt

ts+1
.

This is valid at first for ℜs > 1, but by analytic continuation and since
∑

n≤t un −
ρt ≪ tc, also when ℜs > c. In particular, when c < ℜs < 1, we have∑

n≤X

un

ns
=

ρ

(1− s)Xs−1
+D(s) +O(Xc−σ)

as required. □

3.2. On squarefree numbers. The next lemma is proved, for the first part in [10]
and for the second one in [4].

Lemma 3.4. When x ≥ 1, we have
∑

n≤x µ
2(n) = 6

π2x + O∗(
√
x) while, when

x ≥ 438653, we have
∑

n≤x µ
2(n) = 6

π2x+O∗(0.02767
√
x).

For a better error term in the range x ∈ [0, 1018], we refer the reader to [11] by
Mossinghoff, Oliveira e Silva and Trudgian.

Lemma 3.5. When x ≥ 1, we have
∑
n≤x

µ2(n)

n
≤ 6

π2
log x+ 1.166.

See [15, Lemma 3.4].
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Lemma 3.6. When y ≥ 1, we have
∑
n≤y

µ2(n)

n2/3
≤ 6

π2
· 3y1/3.

Proof. We readily check that

S =
∑
n≤y

µ2(n)

n2/3
=

∫ y

1

∑
n≤t

µ2(n)
2dt/3

t5/3
+

∑
n≤y µ

2(n)

y2/3

=
6

π2
3y1/3 − 2 +

∫ ∞

1

r(t)
2dt/3

t5/3
−
∫ ∞

y

r(t)
2dt/3

t5/3
+

r(y)

y2/3

where
∑

n≤t µ
2(n) = 6

π2 t+r(t). We apply Lemma 3.3. In our case, this means that

the constant we seek is ζ(2/3)/ζ(4/3), which is negative! We have thus proved that

S =
6

π2
3y1/3 +

ζ(2/3)

ζ(4/3)
+O∗(5/y1/6)

by using the simple bound of Lemma 3.4. Pari-GP gives us that ζ(2/3)/ζ(4/3) =
−0.679 · · · . This ensures us that our error term is negative when y ≥ 160000. This
last range is easily covered by direct computations. □

Lemma 3.7. When 1 ≤ a ≤ 10 and x ≥ 1, we have
∑
n≤x

µ2(n)
(
log

x

n

)a
≤ a!ca x

where

c1 0.6715 c6 0.6108
c2 0.6365 c7 0.6097
c3 0.6227 c8 0.6101
c4 0.6161 c9 0.6127
c5 0.6127 c10 0.6175

.

Table 1

When a ≥ 8, the initial computations that we ran were not enough to make the ’er-
ror term’ negligible. This explains why our values increase from this point onwards.
There is little doubt that heavier computations would cure this defect.

Proof. We numerically checked that, when 1 ≤ x ≤ 108,

1

a!x

∑
n≤x

µ2(n)
(
log

x

n

)a
≤



0.6715 when a = 1,

0.6365 when a = 2,

0.6227 when a = 3,

0.6161 when a = 4,

0.6127 when a = 5,



0.6108 when a = 6,

0.6097 when a = 7,

0.6091 when a = 8,

0.6087 when a = 9,

0.6077 when a = 10.

Let us comment somewhat on this script. We enumerate the squarefree integers to-
gether with their prime factorisation through the forsquarefree-loop of Pari/GP.
At each of them, we compute the vector (

∑
ℓ≤n µ

2(ℓ)(log ℓ)a)a≤10. We then study

the extrema of the functions
∑

ℓ≤n µ
2(ℓ)(log(x/ℓ))a/x between two squarefree inte-

gers, say n and its successor n+, a problem which is readily seen as computing the
zeros of a polynomial of degree a. As a good amount of time may be spent com-
puting logarithms, we store them and compute them when needed: after an initial
precomputation till n = 105, we compute and store the log p when new n = p and
otherwise get log n through

∑
p|n log p.
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For larger values of x, we employ summation by parts in the form∑
n≤x

µ2(n)
(
log

x

n

)a
=

∫ x

1

∑
n≤x/t

µ2(n)
a loga−1 t

t
dt

≤ 6x

π2

∫ x

1

a loga−1(x/t)

t2
dt+

√
x

∫ x

1

a loga−1(x/t)

t3/2
dt

≤ 6x

π2
· a!
(
1 +

2aπ2

6
√
x

)
.

This is enough when a ≤ 5. Otherwise, we have to resort to a somewhat more
sophisticated bound (with x0 = 450000 and ε = 0.02767):∑
n≤x

µ2(n)
(
log

x

n

)a
=

∫ x/x0

1

∑
n≤x/t

µ2(n)
a loga−1 t

t
dt+

∫ x

x/x0

∑
n≤x/t

µ2(n)
a loga−1 t

t
dt

≤ 6x · a!
π2

+ ε
√
x

∫ x

1

a loga−1 t

t3/2
dt+ (1− ε)

√
x

∫ x

x/x0

a loga−1 t

t3/2
dt

≤ 6x · a!
π2

+ ε
√
x2aa! + (1− ε)

∫ x0

1

(
log

x

u

)a−1 adu

u3/2

≤ 6x · a!
π2

+
√
xa!

(
ε · 2a + 1− ε

2

(log x)a−1

(a− 1)!
√
x

)
.

These lines suffice to establish that the maximum of our function is attained below
108 when a ∈ {6, 7} and to prove the announced values otherwise. □

3.3. On quadratic subgroups. Here is a consequence of Axer’s method and the
Pólya-Vinogradov inequality that we take from [16, Lemma 3.3].

Lemma 3.8. Let q ≥ 3 and χ be a nontrivial quadratic character modulo q. Then,
there is a prime p ≤ 25 q2, such that χ(p) = 1.

This is far from being optimal even from an explicit viewpoint but this result is
already more than enough for us as the bound q5/2 would do. We refer to [13] by
P. Pollack for asymptotic bounds on this question.

4. On the λd’s

We modify slightly the Selberg coefficients λd to allow a better control of the
error term that arises. We define

(7) λd =

µ(d)
log z

d

log z
, d ≤ z,

0, otherwise.

Please note that, as in [16], this choice is independent of q. Part of the quality of
our explicit evaluations comes from this feature. We define

(8) S = S(z) =
∑
n≤z2

 ∑
[d1,d2]=n

|λd1 ||λd2 |

2
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then

(9) S̃ = S̃(z) =
∑
n≤z2

 ∑
[d1,d2]=n

|λd1
||λd2

|

2

/n

and finally

(10) 1/G(z) =
∑

d1,d2≤z

λd1
λd2

[d1, d2]
.

In the setting of the Selberg sieve, this quantity is readily evaluated through using
the general theory of averages of non-negative multiplicative functions. No such
simplification occurs with our choice but the theory of explicit estimates for the
Möbius function is nowadays sufficiently developed to allow our choice of λd.

Lemma 4.1. Let z > 1 be a real number. We have 1/G(z) ≤ 1.00303
log z .

Proof. Some classical manipulations give us that

1/G(z) =
∑
δ≤z

µ2(δ)φ(δ)

δ2(log z)2

( ∑
ℓ≤z/δ,
(ℓ,δ)=1

µ(ℓ) log z/δ
ℓ

ℓ

)2

.

By [14, Corollary 1.10], the inner sum is non-negative and at most 1.00303δ/φ(δ),
hence

1/G(z) ≤ 1.00303

(log z)2

∑
m≤z

µ2(m) log(z/m)

m

∑
ℓδ=m

µ(ℓ) =
1.00303

log z

as announced. □

5. A flexible setting

Sums with F (log x
n ). Let us start with a lemma that sets the scene of this section.

Lemma 5.1. Let F : R≥0 → R≥0 be differentiable with F ′ ≥ 0 and let x ≥ y ≥ 1.
Let (un) be a sequence of non-negative real numbers for which we have, for any
integer d ≥ 1, any t ≥ 0 and some α ∈ [0, 1),∑

m≤t

udm

mα
≤ ρt1−α/(1− α)

for some non-negative real parameter ρ. Then we have∑
n≤y

n≡0[d]

un

nα
F
(
log

x

n

)
≤ ρ

y1−α

d
(T1−αF )

(
log

x

y

)
,

where the operator Tβ is defined by

(TβG)(X) =

∞∫
0

e−βtG(X + t) dt.

We also set T1 = T .
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The operator Tβ can also be defined on polynomials by

Tβ(X
j) =

∑
0≤ℓ≤j

(
j

ℓ

)
ℓ!β−ℓ−1Xj−ℓ.

One of the difficulties, when we apply this lemma, is that the assumption on un

should hold as soon as t ≥ 1, and this often leads to larger values of ρ than we would
like. In our present case of study, the sequence un is the characteristic function of
the squarefree numbers. We would like to take ρ = 6/π2, and this is for instance
possible when α = 2/3 by Lemma 3.6 but we are often forced to select ρ = 1. We
present in Lemma 5.2 a way to recover from this loss.

Proof. We see that∑
n≤y

n≡0[d]

un

nα
F
(
log

x

n

)
≤

∑
m≤y/d

udm

(dm)α
F

(
log

x/d

m

)

which reduces to the case d = 1. By considering F1(t) = F (log(x/y)+t), we further
reduce the question to the case y = x. In this special case, and with β = 1− α, we
find that ∑

n≤x

un

nα
F
(
log

x

n

)
≤
∑
n≤x

un

nα

∫ log(x/n)

0

F ′(t)dt+ F (0)
∑
n≤x

un

nα

≤
∫ log x

0

∑
n≤xe−t

un

nα
F ′(t)dt+

ρxβ

β
F (0)

≤
∫ log x

0

ρ

β
(xe−t)βF ′(t)dt+

ρxβ

β
F (0)

≤ ρ

β
F (log x) + ρxβ

∫ log x

0

e−βtF (t)dt.

Since F is non-decreasing, we have xβ
∫∞
log x

e−βtF (t)dt ≥ xF (log x)/β, hence∑
n≤x

unF
(
log

x

n

)
≤ ρx

∫ ∞

0

e−tF (t)dt.

□

Lemma 5.2. Let T ♭ be the linear operator defined on polynomials of degree at
most 10 by

T ♭(Xa) =
∑

0≤r≤a

(
a

r

)
r!cr X

a−r

where the structure constants cr are defined in Lemma 3.7. For any real polynomial
F of degree at most 10 and with non-negative coefficients, for any x ≥ y > 0 and
any d ≥ 1, we have ∑

n≤y,
n≡0[d]

µ2(n)F
(
log

x

n

)
≤ y

d
T ♭F

(
log

x

y

)
.
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Proof. We see that∑
n≤y,
n≡0[d]

µ2(n)F
(
log

x

n

)
≤

∑
m≤y/d

µ2(m)F
(
log

x/d

m

)

(we have omitted the coprimality condition (m, d) = 1), which reduces our problem
to the case d = 1. By linearity and the non-negativity of the coefficients of F , it
suffices to prove the result for F (y) = ya, for a ≤ 10. To do so, we simply note that∑

n≤y

µ2(n)
(
log

x

n

)a
=
∑

0≤r≤a

(
a

r

)(
log

x

y

)a−r ∑
n≤y

µ2(n)
(
log

y

n

)r
≤
∑

0≤r≤a

(
a

r

)(
log

x

y

)a−r

r!cr · y

by Lemma 3.7. The lemma follows swiftly. □

Lemma 5.3. Let A(X) be a real polynomial and B(X) = A(X/3). The linear
operator V : A 7→ T1/3T1/3T1/3B(0) maps Xj to 27

2 (j + 2)!.

Proof. We rapidly check that

V (Xj) =

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−
u1+u2+u3

3

(u1 + u2 + u3

3

)j
du1du2du3.

Put ui = 3vi for i ∈ {1, 2, 3} and v = v1 + v2 + v3. Then

V (Xj) = 27

∫ ∞

0

e−vvj
∫ ∞

0

∫ ∞

0
u1+u2≤v

du1du2dv =
27

2

∫ ∞

0

e−vvj+2dv =
27

2
(j + 2)!

as announced. □

Lemma 5.4. When F ≥ 0 is C1 and non-decreasing, and y ≥ 1, we have∑
n≤y

µ2(n)τ(n)

n2/3
F
(
log

y

n

)
≤ 6

π2
y1/3

(
6

π2
log y + 1.166

)
T1/3F (0).

Proof. We use the non-negativity of F to write∑
n≤y

µ2(n)τ(n)

n2/3
F
(
log

y

n

)
≤
∑
ℓ≤y

µ2(ℓ)

ℓ2/3

∑
m≤y/ℓ

µ2(m)

m2/3
F
(
log

y/ℓ

m

)
≤ 6

π2
y1/3

∑
ℓ≤y

µ2(ℓ)

ℓ
T1/3F (0)

and we conclude by bounding above the sum over ℓ through Lemma 3.5. □

Sums over squarefree n’s of F (log n)/nα.

Lemma 5.5. For any x ≥ 1, d ≥ 1 and for any polynomial F with non-negative
coefficients and degree at most 10, we have∑

n≥x
n≡0[d]

µ2(n)
F (log n)

n3/2
≤ 1.088

T1/2F (log x)

d
√
x

.
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Proof. It is enough to establish this inequality when d = 1 and on monomials
F (u) = ua for u ∈ {0, 1, · · · , 10}.

We then notice that∫ ∞

x

(log t)adt

t3/2
=

1√
x

∑
0≤r≤a

(
a

r

)
(log x)a−r

∫ ∞

1

(log u)rdu

u3/2

=
1√
x

∑
0≤r≤a

(
a

r

)
(log x)a−r

∫ ∞

0

tre−t/2dt

=
1√
x

∑
0≤r≤a

(
a

r

)
2r+1(log x)a−rr! =

T1/2X
a(log x)
√
x

.

This expression also proves that x 7→ T1/2X
a(log x)/

√
x is increasing in x. When

x ≥ A = exp(2a/3) + 1, the usual sum-integral comparison tells us that

Σ(x) =
∑
n≥x

µ2(n)
(log n)a

n3/2
≤
∫ ∞

x−1

(log t)adt

t3/2
=

√
x

x− 1

∫ ∞

x

(log(x−1
x u))adu

u3/2

≤
√

x

x− 1

∫ ∞

x

(log u)adu

u3/2
.

This is enough for large values of x, i.e. when x ≥ 1/(1 − (1.088)−2). For smaller
values of x, we proceed as follows. Say x ∈ (N − 1, N ], where N is an integer. We

need to compare Σ(N) to

∫ ∞

N

(log u)adu

u3/2
. Pari/GP numerical integration for such

functions is reliable. We majorize Σ(x) by using direct summation when n ≤ 105

and by majorizing the tail by ignoring the squarefree condition and using some
Pari/GP inbuilt acceleration of convergence. Here is our Pari/GP script.

{Check( a = 4, expo = 3/2) =

my(bornesup = ceil(2*exp(a/expo) + 1000), intsup, sommesup,

coeff = sqrt(bornesup/(bornesup-1)), wheremax, hardmax = 10^5);

intsup = intnum(t = bornesup, oo, (log(t))^a/t^expo);

sommesup = sum(n = bornesup, hardmax,

if(issquarefree(n), log(n)^a/n^expo,0))

+ sumpos(n = hardmax + 1, log(n)^a/n^expo,0);

coeff = max(coeff, sommesup/intsup);

forstep(n = bornesup-1, 1, -1,

intsup += intnum(t = n, n+1, (log(t))^a/t^expo);

sommesup += if(issquarefree(n), (log(n))^a/n^expo, 0);

if(coeff < sommesup/intsup,

coeff = sommesup/intsup; wheremax = n,));

print("*** sum_{n >= N} mu^2(n)(log n)^", a, "/n^(", expo, ") <= ");

print(coeff," x int(t = N, oo, (log(t))^", a, "/t^(", expo,"))");

print(" -- reached around N = ", wheremax);

}

□
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Lemma 5.6. For any x ≥ 1, d ≥ 1 and for any polynomial F with non-negative
coefficients and degree at most 10, we have∑

n≥x
n≡0[d]

µ2(n)
F (log n)

n2
≤ 1.520

TF (log x)

d x
.

Proof. It is again enough to establish this inequality when d = 1 and on monomials
F (u) = ua for u ∈ {0, 1, · · · , 10}. When x ≥ A = exp(2a/3) + 1, we note that the
usual sum-integral comparison tells us that we have

∑
n≥x

µ2(n)
(log n)a

n2
≤
∫ ∞

x−1

(log t)adt

t2
=

x

x− 1

∫ ∞

N

(log(x−1
x u))adu

u2

≤ x

x− 1

∫ ∞

x

(log u)adu

u2
.

We then proceed as in Lemma 5.5, though with the choice expo = 2 in the associ-
ated Pari/GP script. □

6. Estimation of the sum S(z)

Recall that we have defined

S = S(z) =
∑
n≤z2

( ∑
[d1,d2]=n

|λd1
||λd2

|
)2

.

Theorem 6.1. When z > 1, we have

S ≤
278 000 z2

(
6
π2 log z + 1.166

)
(log z)4

.

The computations leading to Lemma 7.1 tend to accredit the idea that S is
indeed of order z2/(log z)3, though the constant in front should be much smaller
than our 6

π2 278000.

Proof of Theorem 6.1. Let F0(x) = x4. Define functions F1, F2, F3, F4 and F5 by

(11) Fj+1 = T ♭Fj , 0 ≤ j ≤ 5

where T ♭ is defined in Lemma 5.2. Though it is not required for the following, we
directly check that

F1(x) = x4 + 2.686x3 + 7.638x2 + 14.9448x+ 14.7864,

F2(x) = x4 + 5.372x3 + 20.686 · · ·x2 + 50.405 · · ·x+ 59.366 · · · ,
F3(x) = x4 + 8.058x3 + 39.146 · · ·x2 + 113.648 · · ·x+ 154.405 · · · ,
F4(x) = x4 + 10.744x3 + 63.017 · · ·x2 + 211.940 · · ·x+ 325.447 · · · ,
F5(x) = x4 + 13.43x3 + 92.299 · · ·x2 + 352.549 · · ·x+ 602.915 · · · .
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Since [d1, d2] = n, we replace di by gdi, where g = gcd(d1, d2) so that gd1d2 = n.
The proof starts by noting the following chain of inequalities:

∑
[d1,d2]=n

|λd1
||λd2

| =
∑

gd1d2=n

log z
gd1

log z
·
log z

gd2

log z
≤ 1

4(log z)2

∑
gd1d2=n

(
log

z2

g2d1d2

)2

≤ 1

4

(
log z2

n

log z

)2 ∑
d1d2|n

1,

where we used the inequality logA · logB ≤ (logAB)2/4. Notice this inequality is
sharp when A = B, or, in our case of application, when d1 = d2. Moreover, since
n = gd1d2 and both gd1 and gd2 are ≤ z, it follows that

(12) n ≤ zdi, i = 1, 2.

From now on and until the end of this section, the variables n, di, g and gi, and
later a, b, c and d, refer exclusively to squarefree positive integers.

Therefore

S ≤ 1

16(log z)4

∑
n≤z2

(
log

z2

n

)4 ∑
d1d2|n
d3d4|n

1 =
1

16(log z)4

∑
d1,...,d4≤z

∑
n≤zdi

n≡0[D]

(
log

z2

n

)4

≤ 1

16(log z)4

∑
d1,...,d4≤z

∑
n≤zdi/D

(
log

z2

nD

)4

where D = [d1d2, d3d4].
Without loss of generality (and an extra factor of 4), we assume d4 is the smallest.

Then we can take y = zd4/D in Lemma 5.1 and apply it with F = F0, to get

S ≤ 1

4(log z)4

∑
d4≤di≤z

zd4
D

F1

(
log

z

d4

)
.

We suppose that g = (d1d2, d3d4), so that D = d1d2d3d4/g. Further, we assume
that (d1, d3d4) = g1 and (d2, d3d4) = g2, so that g1g2 = g. Similarly define g3 =
(d3, d1d2) and g4 = (d4, d1d2), so that one has g3g4 = g. Now, owing to the
symmetry of d1, d2, d3, we can assume d3 ≤ d2 ≤ d1 ≤ z with an extra 3!. We can
then rewrite the sum as

(13) S ≤ 3z

2(log z)4

∑
g≤z2

g
∑

g1g2=g
g3g4=g

∑
d4≤d3≤d2≤d1≤z

gi|di

1

d1d2d3
F1

(
log

z

d4

)
.

For a fixed g ≤ z2 and g1g2 = g3g4 = g with g1, g2, g3, g4 ≤ z, the inside sum over
the dj ’s is at most

S′ =
∑

d3≤d2≤d1≤z
gi|di

1

d1d2d3

∑
d4≤d3

g4|d4

F1

(
log

z

d4

)
≤ 1

g4

∑
d3≤d2≤d1≤z

gi|di

1

d1d2
F2

(
log

z

d3

)
.
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Note that we have [d1d2, d3d4] = D ≤ zd4, hence d1d2d3d4/g ≤ zd4 which simplifies
to d1d2d3 ≤ zg. Taking this condition into consideration, we find that

S′ ≤ 1

g4

∑
d2≤d1≤z

gi|di

1

d1d2

∑
d3≤min{d2,

zg
d1d2

}
g3|d3

F2

(
log

z

d3

)
.

The next is to split the resulting upper bound in three parts as follows:

S′ ≤ 1

g4

∑
d1≤(zg)1/3

g1|d1

∑
d2≤d1

g2|d2

1

d1d2

∑
d3≤d2

g3|d3

F2

(
log

z

d3

)

+
1

g4

∑
(zg)1/3<d1≤z

g1|d1

∑
d2≤

(
zg
d1

)1/2

g2|d2

1

d1d2

∑
d3≤d2

g3|d3

F2

(
log

z

d3

)

+
1

g4

∑
(zg)1/3<d1≤z

g1|d1

∑
(

zg
d1

)1/2
<d2≤d1

g2|d2

1

d1d2

∑
d3≤ zg

d1d2

g3|d3

F2

(
log

z

d3

)
= S′

1 + S′
2 + S′

3.

The sum S′
1 may treated in a rather straightforward manner:

S′
1 ≤ 1

g

∑
d1≤(zg)1/3

g1|d1

1

d1

∑
d2≤d1

g2|d2

F3

(
log

z

d2

)
≤ 1

gg2

∑
d1≤(zg)1/3

g1|d1

F4

(
log

z

d1

)

≤ (zg)1/3

g2
F5

(
log

z

(zg)1/3

)
≤ (zg)1/3

g2
F5

(
1

3
log

z2

g

)
.

Next, the treatment of S′
2 starts similarly as the one of S′

1 but differs from the
second line onwards:

S′
2 ≤ 1

g

∑
(zg)1/3<d1≤z

g1|d1

1

d1

∑
d2≤

(
zg
d1

)1/2

g2|d2

F3

(
log

z

d2

)

≤ (zg)1/2

gg2

∑
(zg)1/3<d1≤z

g1|d1

1

d
3/2
1

F4

(
log

zd
1/2
1

(zg)1/2

)
=

(zg)1/2

gg2

∑
(zg)1/3<d1≤z

g1|d1

1

d
3/2
1

F4

(
1

2
log

zd1
g

)

≤ 1.088
(zg)1/3

g2
(T̃1/2F4)

(
1

3
log

z2

g

)

on denoting by T̃1/2 the operator that, to F , associates T1/2(G), where G(X) =
F (X/2).
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The last inequality comes from invoking Lemma 5.5 with F (u) = F4(
1
2u +

1
2 log(z/g)). We continue with a bound for S′

3:

S′
3 =

1

g4

∑
(zg)1/3<d1≤z

g1|d1

∑
(

zg
d1

)1/2
<d2≤d1

g2|d2

1

d1d2

∑
d3≤ zg

d1d2

g3|d3

F2

(
log

z

d3

)

≤ 1

g

∑
(zg)1/3<d1≤z

g1|d1

∑
(

zg
d1

)1/2
<d2≤d1

g2|d2

1

d1d2

zg

d1d2
F3

(
log

d1d2
g

)

≤ 1.52
zg

gg2

∑
(zg)1/3<d1≤z

g1|d1

1

d21

d
1/2
1

(zg)1/2
TF3

(
1

2
log

zd1
g

)

by Lemma 5.6. We shuffle some terms and continue:

S′
3 ≤ 1.52

(zg)1/2

gg2

∑
(zg)1/3<d1≤z

g1|d1

1

d
3/2
1

TF3

(
1

2
log

zd1
g

)

≤ 1.52× 1.088
(zg)1/3

g2
(T̃1/2TF3)

(
1

3
log

z2

g

)
.

Therefore, from the above and (13), we have

(14) S ≤ 3z4/3

2(log z)4

∑
g≤z2

τ∗(g)2

g2/3
H

(
log

z2

g

)
,

where H(x) = F5(x/3) + 1.088 (T̃1/2F4)(x/3) + 1.52× 1.088 (T̃1/2TF3)(x/3) and

τ∗(g) =
∑

g1g2=g
gi≤z

1.

During the proof of [3, Lemma 2.1], the authors proved that τ∗(g)2 is also the
number of solutions of g = abcd with ab, cd, ac, bd ≤ z. Since this number in
invariant under the changes a ↔ d and b ↔ c, we may assume that c ≤ b (with an
extra factor 2). Thus

S ≤ 3z4/3

(log z)4

∑
a≤z

∑
b≤z/a
(a,b)=1

∑
c≤b

∑
d≤z/b

1

(abcd)2/3
H

(
log

z2

abcd

)
.

Please notice the ‘d ≤ z/b’. We do the d-sum, then the c-sum, getting

S ≤ 3z5/3

(log z)4

∑
a≤z

∑
b≤z/a
(a,b)=1

1

(ab)2/3
T1/3T1/3H

(
log

z2

ab

)

=
3ρ2z5/3

(log z)4

∑
n≤z

µ2(n)τ(n)

n2/3
(T1/3T1/3H)

(
log

z

n

)
≤ 3ρ3z2

(log z)4

(
6

π2
log z + 1.166

)
T1/3T1/3T1/3H(0)
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by Lemma 5.4 with ρ = 6/π2 for the last inequality. We also have

T1/3T1/3T1/3H(0) = V (F5 + 1.088 (T1/2F4) + 1.52× 1.088 (T1/2TF3))

= 412082.980 · · · .

This gives (the ρ3 has been taken into account)

(15) S ≤
277 760 z2

(
6
π2 log z + 1.166

)
(log z)4

.

The proof of our theorem is complete. □

7. Computing S(z)

This part is not required a priori. We produce it to support our belief that S(z)
is indeed of size z2/(log z)3, a fact that is far from obvious from its expression.

Lemma 7.1. When z ≤ z0 = 15000, we have S(z) ≤ 3.3 z2/(log z)3 while S(z0) ≥
3.28 z20/(log z0)

3.

We numerically observed that the function S(z)(log z)3/z2 is non-decreasing in
the range z ≤ z0. A plot with sample values taken every 50 is given in Figure 3.

Figure 3. Plot of max
x≤z

S(x)(log x)3/x2 for 10 ≤ z ≤ 15000

To run the required computations, we need precise and sparse expressions. We use
the notation δj = log dj and restrict the variables dj to be squarefree. We expand
S(z) into

S(z) =
∑

[d1,d2]=[d3,d4],
d1,d2,d3,d4≤z

(
1− δ1 + δ2 + δ3 + δ4

log z
+

δ1δ2 + δ3δ4 + (δ1 + δ2)(δ3 + δ4)

(log z)2

− δ1δ2(δ3 + δ4) + (δ1 + δ2)δ3δ4)

(log z)3
+

δ1δ2δ3δ4
(log z)4

)



19

i.e. after shuffling the terms,

S(z) =
∑

[d1,d2]=[d3,d4],
d1,d2,d3,d4≤z

(
1− 4δ1

log z
+

2δ1δ2 + 4δ1δ3
(log z)2

− 4δ1δ2δ3
(log z)3

+
δ1δ2δ3δ4
(log z)4

)

= S0(z)−
S1(z)

log z
+

S2(z)

(log z)2
− S3(z)

(log z)3
+

S4(z)

(log z)4
.

Let us assume that z is an integer. When going from z to z + 1, the sum S(z)
changes only when one of the di can take the value z + 1, hence z + 1 has to be
squarefree. We proceed as follows:

• Set d1 = z+1. For each d2 ≤ z+1, build all the couples (d3, d4), with each
being ≤ z + 1, and add what has to be added to the Si.

• Assume henceforth that d1 ≤ z, set d2 = z + 1, and again all the couples
(d3, d4), with each being ≤ z + 1, and add what has to be added.

• Assume then that d1 and d2 are bounded above by z and set d3 = z + 1.
For each d4 ≤ z + 1, build all the couples (d1, d2) and add what is to be
added.

• Finally, do the same with d4 = z + 1 and d1, d2 and d3 being bounded
above by z.

Local variations. We have to find the maximal absolute value of(
S0(z)−

S1(z)

log z
+

S2(z)

(log z)2
− S3(z)

(log z)3
+

S4(z)

(log z)4

)
/z2

when z varies in an interval [z0, z0 + 1) for some integer z0. The derivative times
z3 is given by, with w = 1/ log z,

− 2S0(z) + 2S1(z)w + (S1(z)− 2S2(z))w
2

+ (−2S2(z) + 2S3(z))w
3 − (−3S3(z) + 2S4(z))w

4 − 4S4(z)w
5

Final remarks. The previous notes are enough to build an algorithm. Let us spec-
ify that we precomputed all the logarithms of the natural numbers up to the final
bound z0 and that we used the forfactored-loop of Pari/GP to speed up compu-
tations. The script is available on request.

8. Estimation of the sum S̃(z)

Recall that we have defined

S̃ = S̃(z) =
∑
n≤z2

( ∑
[d1,d2]=n

|λd1
||λd2

|
)2

/n.

Lemma 8.1. We define the linear operator T̃ on polynomials by T̃ [Y j ] = Y j/j!.
For every integer a ≥ 1 and every real number x ≥ 1, we have∑

n≤x

µ2(n)aω(n)

n
≤ T̃ [( 6

π2Y + 1.166)a](log x).

To be precise, we expand the polynomial ( 6
π2Y + 1.166)a, apply the operator T̃ to

this expansion and finally evaluate the result at Y = log x.
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Proof. We proceed by recursion on a, the case a = 1 being recorded in Lemma 3.5.
Let us prove the recursion step. We employ the identity (a+1)ω(n) =

∑
kℓ=n a

ω(k)

valid when n is squarefree to infer that∑
n≤x

µ2(n)(a+ 1)ω(n)

n
≤
∑
kℓ≤x

µ2(k)µ2(ℓ)aω(k)

kℓ

≤
∑
k≤x

µ2(k)aω(k)

k

(
6

π2
log

x

k
+ 1.166

)
= S1 + S2

where

S1 =
6

π2

∑
k≤x

µ2(k)aω(k)

k

∫ x

k

dt

t
≤ 6

π2

∫ x

1

T̃ [( 6
π2Y + 1.166)a](log t)

dt

t

by the recursion hypothesis. We now notice that
∫ x

1
T̃ [Y j ](log t)dtt = T̃ [Y j+1](log x),

which implies that, for any polynomial P , we have∫ x

1

T̃ [P (Y )](log t)dt/t = T̃ [P (Y )Y ](log x).

This leads to S1 ≤ T̃ [( 6
π2Y +1.166)a 6

π2Y ](log x), while by the recursion hypothesis,

we have S2 ≤ 1.166 T̃ [( 6
π2Y + 1.166)a](log x). This gives the required upper bound

for S1 + S2 and concludes the proof. □

Theorem 8.2. When z ≥ 1000, we have S̃ ≤ 7 · 10−7(log z)9 + 6
π2 .

Proof. Note that
√
ab ≤ a+b

2 . With a = log(z/d1) and b = log(z/d2), this gives

us
√

log(z/d1) log(z/d2) ≤ 1
2 log

z2

d1d2
. Note also that this inequality is optimal

when d1 = d2. This implies that, for squarefree n, we have∑
[d1,d2]=n

∣∣λd1

∣∣∣∣λd2

∣∣ ≤ 1

4(log z)2

∑
[d1,d2]=n

(
log

z2

d1d2

)2
≤ 1

4(log z)2

∑
[d1,d2]=n

(
log

z2

n

)2
=

1

4(log z)2

(
log

z2

n

)2
3ω(n)

since, when n is squarefree, we have
∑

[d1,d2]=n 1 = 3ω(n). This implies that

S̃ ≤ 1

16(log z)4

∑
n≤z2

µ2(n)9ω(n)

n

(
log

z2

n

)4
.

We set y = z2 and notice that(
log

y

n

)4
= 4

∫ y

n

(
log

y

t

)3 dt
t
.

On using this and Lemma 8.1 and its notation with the shortcut ρ = 6/π2, we get

S̃ ≤ 1

4(log z)4

∫ y

1

∑
n≤t

µ2(n)9ω(n)

n

(
log

y

t

)3 dt
t

≤ 4

(log y)4

∫ y

1

T̃ [(ρY + 1.166)9](log t)
(
log

y

t

)3 dt
t
.
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We recall the classical formula for the Euler beta-function:∫ y

1

(log t)a
(
log

y

t

)b dt
t

=
a!b!

(a+ b+ 1)!
(log y)a+b+1.

We expand T̃ [(ρY + 1.166)9], and get

S̃ ≤ 4

(log y)4

∑
0≤k≤9

(
9

k

)
ρk1.1669−k 1

k!

6 · k!
(k + 4)!

(log y)k+4

≤ 24
∑

0≤k≤9

(
9

k

)
ρk1.1669−k (log y)

k

(k + 4)!
.

This gives us

S̃ ≤ 7 · 10−6(log z)9 +
6

π2

when z ≥ 1000. □

9. Proof of Theorem 1.4

Lemma 9.1. We have∣∣∣∣∑
n≤y

κ(n/y)χ(n)

∣∣∣∣ ≤ min
(2√6y

9
+ 4,

√
max(r, 107)

)
.

Proof. Let us denote our sum by S. The first inequality comes from Lemma 3.2.
We then use the identity τ(χ)χ(m) =

∑
1≤a<r χ(a)e(am/r) where τ(χ) is here the

Gauss sum attached to χ, and get

τ(χ)S =
∑

1≤a<r

χ(a)
∑
m∈Z

e(am/r)κ(m/y)

= y
∑

1≤a<r

χ(a)
∑
n∈Z

κ̂((n− a/r)y) = y
∑

1≤a<r

χ(a)
∑

ℓ≡−a[r]

κ̂
(ℓy
r

)
.

i.e.

τ(χ)S/y =
∑
ℓ∈Z

χ(−ℓ)κ̂
(ℓy
r

)
.

Let us now introduce the explicit expression of κ̂ given in Lemma 2.6, and recall
that χ(0) = 0. We pair ℓ and −ℓ and note that

κ̂(x/π) + κ̂(−x/π) = 12

((
sinx/3

x

)2

cos
2x

3
−
(
sinx/3

x

)3

cos
x

2

)
,

κ̂(x/π)− κ̂(−x/π) = 12

(
−i

(
sinx/3

x

)2

sin
2x

3
+ i

(
sinx/3

x

)3

sin
x

2

)
.

The main feature of these expressions lies in the fact that they vanish when x = 0.
We use Lemma 3.1 with c = ∞ and fε(x) = |κ̂(x/π) + εκ̂(−x/π)| for ε ∈ {±1}.
We find that

|
√
rS/y| ≤ r

πy

∫ ∞

0

|fε(x)|dx+
1

2

∫ ∞

0

|f ′
ε(x)|dx.

Numerical integration gives us

1

π

∫ ∞

0

|fε(x)|dx ≤

{
0.9918 when ε = 1,

0.9872 when ε = −1,

∫ ∞

0

|f ′
ε(x)|dx ≤

{
2.4 when ε = 1,

3.6 when ε = −1.
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For this last computation, we need explicit expressions for f ′
ε, and here they are:

f ′
+(x)/12 = −2

3
sin

2x

3

(
sinx/3

x

)2

+
1

2
sin

x

2

(
sinx/3

x

)3

+
2

3
cos

x

3
cos

2x

3

sinx/3

x2
− 1

x
cos

x

3
cos

x

2

(
sinx/3

x

)2

− 2

x
cos

2x

3

(
sinx/3

x

)2

+
3

x
cos

x

2

(
sinx/3

x

)3

,

and

if ′
−(x)/12 =

2

3
cos

2x

3

(
sinx/3

x

)2

− 1

2
cos

x

2

(
sinx/3

x

)3

+
2

3
sin

x

3
cos

2x

3

sinx/3

x2
− 1

x
sin

x

3
cos

x

2

(
sinx/3

x

)2

− 2

x
sin

2x

3

(
sinx/3

x

)2

+
3

x
sin

x

2

(
sinx/3

x

)3

.

□

Lemma 9.2. When χ is a primitive Dirichlet character of conductor r > 1, we
have

1

2π

∫ 1
2+i∞

1
2−i∞

∣∣(s+ 1)η̌∗(s)L(s, χ)
∣∣2|ds| ≤ 1.1

√
max(r, 107).

Proof. We have

(16) (s+ 1)η̌∗(s)L(s, χ) = κ̌(s)L(s, χ) =

∫ ∞

0

∑
n≤1/v

χ(n)κ(vn)vs
dv

v

which identifies (s + 1)η̌∗(s) as a Mellin transform. By the Parseval identity for
Mellin transforms, we find that

1

2π

∫ 1
2+i∞

1
2−i∞

∣∣(s+ 1)η̌∗(s)L(s, χ)
∣∣2|ds| = ∫ ∞

0

∣∣∣ ∑
n≤1/v

κ(vn)χ(n)
∣∣∣2dv

=

∫ ∞

0

∣∣∣∑
n≤t

κ(n/t)χ(n)
∣∣∣2 dt
t2
.

We are now in a position to apply Lemma 9.1, and this leads us to

1

2π

∫ 1
2+i∞

1
2−i∞

∣∣(s+ 1)η̌∗(s)L(s, χ)
∣∣2|ds| ≤ ∫ T

1

(2√6t

9
+ 4
)2 dt

t2
+

∫ ∞

T

√
max(r, 107)

2 dt

t2

≤ 24T

81
+

16
√
6

9
log T + 16 +

max(r, 107)

T
.

We take T = 9
2
√
6

√
max(r, 107) and get the bound

1

2π

∫ 1
2+i∞

1
2−i∞

∣∣(s+ 1)η̌∗(s)L(s, χ)
∣∣2|ds| ≤ 1.089

√
r + 4.4 log(1.84

√
r) + 16

≤ 1.1
√

max(r, 107).

This ends the proof. □
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Proof of Theorem 1.4. In this proof, we shall use the Dirichlet polynomial

(17) K(s, χ) =
∑
d1,d2

λd1λd2χ([d1, d2])

[d1, d2]s
, un =

∑
[d1,d2]=n

λd1
λd2

where the (λd)’s come from (7).
We proceed as in the proof of Theorem 1.5 and 1.6 in [16, Section 6], with

H = {1}. This results in having only primitive characters below. We thus reach∑
p≥1,
p≡a[q]

η∗(p/X) ≤
∑
n≥1,
n≡a[q]

η∗(n/X)

(∑
d|n

λd

)2

+
∑
p<z,
p≡a[q]

η∗(p/X)

≤
∑
d1,d2

λd1
λd2

1

φ(q)

∑
r|q

∑
χmod∗r

χ(a)
∑
n≥1,

[d1,d2]|n

χ(n)η∗(n/X) +
zq−1 + 1

2

≤ 1

φ(q)

∑
d1,d2

λd1λd2

∑
m≥1

η∗([d1, d2]m/X) + E(a) +
zq−1 + 1

2
(18)

where

(19) E(a) =
1

φ(q)

∑
1<r|q

∑
χmod∗r

χ(a)
1

2iπ

∫ 2+i∞

2−i∞
L(s, χ)K(s, χ)Xsη̌∗(s)ds.

Contribution of the principal character. The term in (18) is easily dealt with. Let

(20) M (q, η∗, X) =
1

φ(q)

∑
d1,d2

λd1
λd2

∑
m≥1

η∗([d1, d2]m/X).

We find that∣∣∣∣M (q, η∗, X)− 2X

9φ(q)

∑
d1,d2

λd1
λd2

[d1, d2]

∣∣∣∣ ≤ θ

X2φ(q)

∑
d1,d2

|λd1
λd2

|[d1, d2]2

≤ θ

X2φ(q)

∣∣∣∣∑
d

d2|λd|
∣∣∣∣2 ≤ θz6

X2φ(q)(log z)2

where θ is defined in Lemma 2.3, and where we have used Lemma 4.1. Whence,
when z2 ≤ X/100 and z ≥ 100, we find that

(21) M (q, η∗, X) ≤ 2X

9φ(q) log z

(
1.00303 +

9× 0.28 z6

2X3(log z)3

)
≤ 1.004

2X/9

φ(q) log z
.

Contribution of the non-principal characters. We now concentrate on E(a) for
which we seek an L2-average upperbound. We first shift the line of integration
to ℜs = 1/2 and get

φ(q)2
∑

amod∗q

E(a)2 =
∑

amod∗q

∣∣∣∣ ∑
1<r|q,
χmod∗r

χ(a)
1

2iπ

∫ 1
2+i∞

1
2−i∞

L(s, χ)K(s, χ)Xsη̌∗(s)ds

∣∣∣∣2.
We note that, for arbitrary complex numbers (f(χ))χ, we have∑

amod∗q

∣∣∣∣ ∑
1<r|q,
χmod∗r

χ(a)f(χ)

∣∣∣∣2 = φ(q)
∑

1<r|q,
χmod∗r

|f(χ)|2
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simply because, when a is prime to q, there is no difference between the primitive
character modulo r and its induced version modulo q. We continue with Cauchy’s
inequality and Lemma 9.2 to write successively

φ(q)
∑

amod∗q

E(a)2 ≤ X

4π2

∑
1<r|q,
χmod∗r

∫ 1
2+i∞

1
2−i∞

|(s+ 1)η̌∗(s)L(s, χ)|2|ds|
∫ 1

2+i∞

1
2−i∞

∣∣K(s, χ)
∣∣2 dt

|s+ 1|2

≤
1.1X

√
q

2π

∑
1<r|q,
χmod∗r

∫ 1
2+i∞

1
2−i∞

∣∣K(s, χ)
∣∣2 dt

|s+ 1|2

≤ 1.1X
√
q

∫ ∞

0

∑
1<r|q,
χmod∗r

∣∣∣∣∣v ∑
n≤1/v

nunχ(n)

∣∣∣∣∣
2

dv

since

K(s)

s+ 1
=

∫ ∞

0

v
∑
n≤t

nun v
s−1 dv

v
.

We continue by using the orthogonality of the characters and get

φ(q)
∑

amod∗q

E(a)2 ≤ 1.1X
√
q

∫ ∞

0

∑
n≤t

n2u2
n(t+ q)

dt

t4

≤ 1.1X
√
q
∑
n≤z2

n2u2
n

(∫ z2

n

dt

t3
+ z2

∫ ∞

z2

dt

t4
+ q

∫ ∞

n

dt

t4

)

≤ 1.1X
√
q
∑
n≤t

u2
n

(
1

2
− n2

6z4
+

q

3n

)
.

On neglecting the term n2/6z4, we reach

φ(q)

X
√
q

∑
amod∗q

E(a)2 ≤ 0.55
∑
n≥1

|un|2 + 0.367q
∑
n≥1

|un|2

n
.

Let

∆ =
1

φ(q)

∑
amod∗q

ϵ(a)2 where ϵ(a) = φ(q)E(a)
log z

2X/9
.

By Theorems 6.1 and 8.2, we find that, when z ≥ 1027,

∆ ≤

(
0.55

278000 z2
(

6
π2 log z + 1.166

)
(log z)4

+ 0.367q

(
7
log9 z

107
+

6

π2

)) √
q log2 z

4X/81
.

We use

(22) z =

√
X

109
√
q
, X ≥ (107q)5/2.
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The hypothesis q ≥ 1030 ensures that z ≥ 1032, hence

∆ ≤ 1.95 · 106

109 log(1035/4q/109/2)

+
248 log2(106q/109/2)

1035/2q

(
2 · 10−7

(
2 log

1035/4q

109/2

)9

+
6

π2

)
.

A numerical application concludes that ∆ ≤ 1/42804. We finally have to take care
of the additional factor (zq−1 + 1)/2. We introduce

δ = (z + q)(log z)/(4X/9) ≥ φ(q)
zq−1 + 1

2

log z

2X/9
.

We have δ ≤ 10−50. We find that

1

φ(q)

∑
amod∗q

(ϵ(a) + δ)2 ≤ ∆+ 2δ
√
∆+ δ2 ≤ 1/42500

as claimed, by renaming ϵ(a) + δ by ϵ(a). □

10. A Brun–Titchmarsh inequality for cosets

Theorem 1.6 of [16] has the condition q ≤ y1/3/900. This was introduced only
to get better numerics, as the proof indeed allows for yξ for any ξ ≤ 2/5. At this
level we can even save a bit, as shown in the next result.

In this section, we use

(23) η(t) =


2t, 0 ≤ t ≤ 1/2,

2(1− t), 1/2 ≤ t ≤ 1,

0, otherwise.

Lemma 10.1. When z ≥ 6, we have
∑

d≤z µ
2(d)/φ(d) ≥ log z + 1.24.

The bound follows from [18, Theorem 3.1] when z ≥ 700. We complete the proof
by a direct inspection. The constant 1.24 is forced by the case z = 29.

Lemma 10.2. Let y1/5 ≥ √
q ≥ 3000 and η be as in (23). Let Gq = (Z/qZ)× and

let H ⊆ Gq be a subgroup of index 5. Then∑
p≤y
p∈uH

η(p/y) ≤ y

5 log y
30

√
q

for any class u in Gq.

If we guarantee y
30

√
q > y4/5, and since the total weight (given by Lemma 10.3)

is indeed y/(2 log y), this ensures an accumulation per coset which is strictly less
than half the total number of primes. From this we shall deduce that at least three
cosets contain primes.

Proof. We modify the end of the proof of [16, Theorem 1.6] starting from equa-
tion (17) therein as follows and using Lemma 10.1 above rather than G(z) ≥ log z
as in [16, Lemma 4.2]. We first deduce a more precise inequality from these as-
sumptions:

Y log y

y/2
πη(y; q, uH) ≤ log y

log z + 1.24
+
2zY log y

y
+
√
q

2Y z2 log y

y(log z + 1.24)2

(
15

π2
+

30√
z

)2

.
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We take Y = 5 and

(24) z2 =
y

30
√
q
.

This gives us

Y log y

y/2
πη(y; q, uH)

1.24 + log z

2 log y
≤

1 +

(
10 log y(1.24 + log z)2

30
√
qy

+
10

30

(
15

π2
+

30√
z

)2)
1

1.24 + log z
.

Notice that z2 ≥ y4/5 ≥ (3000)4. The above inequality implies that

Y log y

y/2
πη(y; q, uH)

1 + log z

2 log y
≤ 1 +

1

1 + log z
.

With log z = Z, we find that

1

Z + 1

(
1 +

1

Z + 1

)
≤ 1

Z

as this last inequality is equivalent to Z(Z + 2) ≤ (Z + 1)2. This completes the
proof of Lemma 10.2. □

We also recall part of [16, Lemma 2.5].

Lemma 10.3. For any 1 ≤ q < x and any x ≥ 4 · 107, we have∑
(p,q)=1

η(p/x) ≥ x/2

log x
.

11. Proof of Theorem 1.1

Let us recall [1, Lemma 4.3].

Lemma 11.1. Let A be a subset of a finite abelian group G such that |A| ≥ η|G|,
with η > 1/3. Define, for any integer Y ,

λ(Y ) =

{
⌈ηY ⌉+ 1 when Y ≡ 2[3] and 2 ≤ Y ≤ 1/(3η − 1),

⌈ηY ⌉ otherwise.

For any subgroup H of index Y , assume A meets at least λ(Y ) cosets. Then A +
A+A = G.

Proof of Theorem 1.1. Let P(y) be the set of primes below y that do not divide q

and let A be the image of P(y) in Gq = (Z/qZ)×. We seek to show that A·A ·A =
Gq. Recall that we assume that

(25) 1030 ≤ q ≤ y2/5/107.

Let us obtain a lower bound for |A|. From Lemma 10.3 and Theorem 1.4, we get

(26)
2y/9

log y
≤

∑
p≤y

(p,q)=1

η∗(p/y) =
∑

amod∗q

∑
p≡a[q]

η∗(p/y) ≤
∑
a∈A

(U + ξ(a))2y/9

φ(q) log y

where

(27) J =
log y

log y
109

√
q

≤ 1.303, U = 2.008J, ξ(a) = 2ϵ(a)J
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whence, with c = |A|/φ(q),

φ(q) ≤
∑
a∈A

(U + ξ(a)) ≤ 2.0008 · J |A|+ |A|1/2
(∑

a∈A
ξ(a)2

)1/2

≤ cφ(q)2.008J +

√
cφ(q)

φ(q)

42500
J2 ≤ (2.008c+ 0.00486

√
c)φ(q)J.

This and (27) imply that c ≥ 0.380. Lemma 11.1 tells us that we have to check that
A contains at least ⌈0.380Y ⌉ + 1 cosets of any subgroup of index Y ∈ {2, · · · , 7}
and congruent to 2 modulo 3. This leaves only the cases Y = 2 and Y = 5. In the
case Y = 2, corresponding to a subgroup H say, any integer that falls in Gq \ H
has a prime factor that is also in Gq \H. So A ∩ (Gq \H) ̸= ∅. And Lemma 3.8
implies that A ∩H ̸= ∅. Hence A meets 2 cosets modulo H which is enough.

Let us consider the case when Y = 5. If we were able to replace 0.380 by
2
5 − o(1), this would guarantee us only two classes in a subgroup of index 5, which
is not enough (they could be {0, 1} in (Z/5Z,+), whose three-fold sum does not
cover Z/5Z). We need to go simply beyond 2/5 but we do not need to increase the
exponent, since a bound of the shape 0.4 + ϵ(q) for some positive ϵ(q) is enough,
even if ϵ(q) tends to 0, and this is exacty what Lemma 10.2 gives us. On reasoning
as in [16], we get λ ≥ 3 which is enough to conclude this proof. □

12. Some computations for small values of the modulus

For a modulus q, let P (q) be the largest over the invertible residue class a
modulo q, of the smallest prime congruent to a modulo q. The paper [9] contains in
Appendix A the report of some numerical computations that implies that P (q) ≤
2.2q(log q)2 when q ≤ 106.

Our problem is somewhat distinct, and we consider three situations.

12.1. Products of two primes below q. Let P2(q) be the smallest X of the
largest over the invertible residue class a modulo q that are product of two primes,
each prime being at most X in size. A brute force Pari/GP script simply producing
products of two primes and collecting the classes obtained yields the next lemma.

Lemma 12.1. For every q ∈ [402, 50 000], we have P2(q) ≤ q. The class 385 mod-
ulo the prime 401 does not contain any product of two primes, each being below 400.

When q ∈ [3404, 50 000], we have P2(q) ≤ q/2.
When q ∈ [11 742, 50 000], we have P2(q) ≤ q/3.
When q ∈ [35 072, 50 000], we have P2(q) ≤ q/4.

The reader should notice that every time we decrease the bound we aim for
(hence aiming at a better theoretical result), we shorten the computation. As the
bad cases are rare enough, we first aim at q/5 for instance when q ≥ 20 000 and,
if it does not work, we try q/4 and so on. A conjecture of Erdős recalled in [6,
Section 2] says that, when q > q0 for some q0, every invertible class modulo q
contains a product of two primes, each of which is of size at most q. The above
lemma hints that one can maybe take q0 = 401.

12.2. Products of three primes below q. A Pari/GP script simply producing
products of three primes and collecting the classes obtained yields the initial step
of our ladder.
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Lemma 12.2. For every q ≤ 200 and q /∈ {2, 3, 4, 5, 6, 10}, every invertible class
modulo q contains a product of three primes, each of which of size at most q.

If we replace the bound q by 2q, then no exception would occur. We then go
farther step by step to take care of the irregularities occuring at small values.

Lemma 12.3. For every q ∈ [200, 30 000], every invertible class modulo q contains
a product of three primes, each of which being of size at most B(q), where

Step-1. B(q) = q/2 when q ∈ [200, 600],
Step-2. B(q) = q/4 when q ∈ [600, 1000],
Step-3. B(q) = q/5 when q ∈ [1000, 2000],
Step-4. B(q) = q/8 when q ∈ [2000, 3000],
Step-5. B(q) = q/10 when q ∈ [3000, 4500],
Step-6. B(q) = q/14 when q ∈ [4500, 5200],
Step-7. B(q) = q5/7 when q ∈ [5200, 10 000],
Step-8. B(q) = q2/3 when q ∈ [10 000, 24 000],
Step-9. B(q) = q13/20 when q ∈ [24 000, 30 000].

It is expected that one should be able to reach B(q) = q1/3+δ for any arbitrary
small positive δ. If this is true, our numerical trials show that the asymptotic regime
is slow to become dominant. This explains why this line of approach yields less
slower results than the one with products of two primes. A better algorithm would
aim at a lesser bound for B(q) and handle the exceptional q’s and the classes not
represented in a special way, but we did not attempt such dedicated programming.

12.3. Products of three primes below q(log q)2. Proof of Theorem 1.2.
The previous strategies require large tables and are impractical when q starts to
be somewhat large. We relax these conditions in Theorem 1.2. Our algorithmic
strategy is to first find the smallest prime congruent to 1 modulo q and then to
check that each class modulo q contains an integer that has at most three prime
factors and is indeed of size at most q(log q)2. We then precompute the integers
that have more than four many prime factors and use the Set data-structure to
determine quickly whether an integer belongs to this list. With the Pari/GP script
below compiled with gp2c, we reach the bound 2 · 107 in about 30 minutes of a
standard laptop. Increasing the bound 2 · 107 would require an increase of the
memory by the same factor, and we already use nearly 8Gb.

The bound for the required primes outputed by this script varies slowly but does
not tend to decrease and for instance, we need primes up to more that 0.95 q(log q)2

for some q ∈ [19900000, 19950000]. If we need a statement valid for every q ≥ 3
(resp. q ≥ 2), we only have to replace q(log q)2 by 2q(log q)2 (resp. 4q(log q)2).

{check(borneinf, bornesup, whentotell = 50000) =

my(pmax, maxgot = 0, multi = 3, btt,

locmax = 0, curindex, nbbadn = 0, setbadn);

for(n = 1, multi*bornesup, if(bigomega(n) > 3, nbbadn++));

setbadn = Set(Vecsmall([1.. nbbadn]));

curindex = 1;

for(n = 1, multi*bornesup,

if(bigomega(n) > 3, setbadn[curindex] = n; curindex++));
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for(q = borneinf, bornesup,

if(q % whentotell == 0,

print("When ", max(borneinf, q - whentotell) ,

" <= q < ", q, " --> locmax = ", locmax);

maxgot = max(maxgot, locmax); locmax = 0);

btt = q*log(q)^2; pmax = 0;

/* Ensure we can find a prime congruent to 1 */

forprimestep(p = q + 1, q^2, q, if(p % q == 1, pmax = p; break));

if(pmax == 0, print("Error!!"); return(0),

locmax = max( locmax, pmax / btt));

/* Find a product of at most three primes in each class: */

for(n = 16, q - 1,

if(gcd(n, q) == 1,

while(((n <= multi*bornesup)&&(setsearch(setbadn, n)))

||(bigomega(n) >= 4), n += q);

locmax = max( locmax, n / btt))));

if(bornesup % whentotell != 0,

print("When ",

max(borneinf-1, floor(bornesup/whentotell)*whentotell),

" <= q <= ", bornesup, " --> locmax = ", locmax));

maxgot = max(maxgot, locmax);

return(maxgot);}

13. Changing the constants in Theorems 1.4 and 1.1

On reading patiently the proof of Theorem 1.4, we obtain the following.

Theorem 13.1. Let q ≥ q0 ≥ 2 · 107 be an integer. Let X ≥ (Cq)5/2 be some real
number. For every invertible class a modulo q, we have∑

p≡a[q]

η∗(p/X) ≤ 2(1.004 + ϵ(a)) · 2X/9

φ(q) log X
R
√
q

where
∑

amod∗q

ϵ(a)2 ≤ φ(q)/4250,

where the constants (q0, C,R) may be chosen from Table 2.

q0 2 · 107 2 · 107 2 · 107 1010 1015 1020 1030 1030

C 1013 3000 1 1010 106 90 108 1/1000

R 109 1010 1013 109 109 109 5 · 108 109

Table 2: possible values in Theorem 13.1.

Proof. We follow the proof of Theorem 1.4. Lemma 9.2 can be used here as there
since q0 ≥ 107. Inequality (21) requires 104 ≤ z2 ≤ X/100. Theorems 6.1 and 8.2
ask for the stronger condition: z ≥ 1000. Proceeding, we modify (22) in

(28) z =

√
X

R
√
q
, X ≥ (Cq)5/2.

We thus get z2 ≥ (C5/2/R)q2. We have to take care of some monotonicity condition.
In particular, we want

√
q(log z)11/X to be non-increasing in z2 = X/(R

√
q). We

may rewrite this expression as (11/2)11((log(z2/11)/z2/11)11/2 so it is enough to
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assume that z ≥ exp(11/2) which is small enough. The upper bound for ∆ reduces
to, with L = log z and X = (Cq)5/2,

∆ ≤
3096225 ( 6

π2L+ 1.166)

RL2
+

7.44L2

qC5/2

(
2
L9

107
+

6

π2

)
which we want to be at most 1/42800. The first term is dominant and asks for
π2

6 RL ≥ 42800 × 3096225. When log z ≥ 1035, the value R = 109 is enough.
This explains the choice made in Theorem 1.4. In general we need to satisfy the
inequality

3096225 ( 6
π2L+ 1.166)

RL2
+

7.44L2

q0C5/2

(
7
L9

107
+

6

π2

)
≤ 1

42800

(
L =

1

2
log

C5/2q20
R

)
provided that C5/2q20 ≥ 106R. A numerical application yields the values of Table 2.

□

Theorem 13.2. For any q ≥ q0 and any invertible residue class a modulo q, there
exists a natural number that is congruent to a modulo q and that is the product
of exactly three primes, all of which are below (Cq)5/2, where q0 and C may be
obtained from Table 3.

q0 2 · 107 1010 1015 1020 1030 1088

C 1015 1015 1014 1013 1011 30

R 109 109 109 109 5 · 108 2 · 108

Table 3: possible values in Theorem 13.2.

The present method would not allow to take primes only ≥ q5/2 however large q,
due the usage of Lemma 10.2.

Proof. We follow the proof of Theorem 1.1 and assume that the constants q0, C
and R are admissible in Theorem 13.1. The condition that emerges is

(29) J =
log y

log y
R
√
q

≤ 1.3054

where y = (Cq)5/2. This is required so that we may reach c ≥ 0.380. This condition
reads

1.3054 logR−
(
2× 1.3054− 5

2

)
log q ≤ 0.3054

5

2
logC.

We next swiftly build Table 3, though it is to be noticed that C has to be taken as
large as 30 for using Lemma 10.2. The proof is complete. □
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