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For all q ≥ 2 and for all invertible residue classes a modulo q, there exists a natural number that is congruent to a modulo q and that is the product of exactly three primes, all of which are below (10 15 q) 5/2 .

Introduction and results

In this paper we investigate the representation of reduced residue classes modulo q by a product of exactly three small primes. We improve on [START_REF] Ramaré | Products of primes in arithmetic progressions[END_REF][START_REF] Ramaré | Products of primes in arithmetic progressions: a footnote in parity breaking[END_REF] by introducing an explicit vertical Brun-Titchmarsh inequality in Theorem 1.4. Its proof takes most of our efforts and Theorem 6.1 has no predecessor. Please note that this result is new even if one omits the explicit aspect.

Theorem 1.1. For any q ≥ 2 and any invertible residue class a modulo q, there exists a natural number that is congruent to a modulo q and that is the product of exactly three primes, all of which are below (10 15 q) 5/2 . We thus go beyond the bound O(q 3 ) that was a barrier in [START_REF] Ramaré | Products of primes in arithmetic progressions[END_REF]. Varying the constant 10 15 is the subject of Theorem 13.2 where it is for instance proved that, for q ≥ 10 88 , the primes may be assumed to be below (30q) 5/2 . We present in Section 12 some computations for small values of the parameter q. Here is one result that is established there. Theorem 1.2. For every q ∈ [5208, 2•10 7 ], every invertible class modulo q contains a product of three primes, each of which being of size at most q(log q) 2 .

To prove Theorem 1.1, we first prove an explicit version of a vertical Brun-Titchmarsh Theorem, i.e. an almost-everywhere, in a-aspect, individual upper bound in the Brun-Titchmarsh style. The result in itself is essentially due to Hooley in [8, Theorem 5], but since our phrasing is more precise, we prefer to state it explicitly.

Theorem 1.3 (Hooley [START_REF] Hooley | On the Brun-Titchmarsh theorem[END_REF]). Let q ≥ 1 be an integer. Let X ≥ q 3/2 (log q) 12 be some real number. For every invertible class a modulo q, we have p≤X, p≡a [q] 1 ≤

2(1 + ϵ(a)) • X φ(q) log(X/ √ q) where a mod * q ϵ(a) 2 ≪ φ(q)/ log q where "p ≡ a[q]" means that p is congruent to a modulo q while "a mod * q" means that a ranges through a complete set of reduced residue classes modulo q.

Our proof differs from the one of Hooley and is closer to the work [START_REF] Motohashi | On some improvements of the Brun-Titchmarsh theorem[END_REF] by Motohashi. However, a noticeable distinction is that we avoid using the fourth power moment upper bound for L-functions. For efficiency on the explicit side, we prove a smoothed version of Theorem 1.3. From now on, the symbols η * and κ shall be kept for the functions defined by (1)

η * (t) =          3t 2 , 0 ≤ t ≤ 1/3, -6t 2 + 6t -1, 1/3 < t ≤ 2/3, 3(1 -t) 2 , 2/3 < t ≤ 1, 0, otherwise , 
κ(t) =          -3t 2 , 0 ≤ t ≤ 1/3, 6t 2 -1, 1/3 < t ≤ 2/3, 3(1 -t 2 ), 2/3 < t ≤ 1, 0, otherwise.
This choice is explained in Section 2. We have ∥η * ∥ 1 = 2/9. A large part of this paper is dedicated to the proof of the next theorem.

Theorem 1.4. Let q ≥ 2 • 10 7 be an integer. Let X ≥ (10 13 q) 5/2 be some real number. For every invertible class a modulo q, we have

p≡a[q]
η * (p/X) ≤ 2(1.004 + ϵ(a)) • 2X/9 φ(q) log X 10 9 √ q where a mod * q ϵ(a) 2 ≤ φ(q)/4250.

The proof uses directly the Parseval identity for Mellin transforms rather than the more usual result by Gallagher, namely [7, Theorem 1]. A major input is Theorem 6.1 that gives a sharp upper bound for S(z) = n ( [d1,d2]=n |λ d1 λ d1 |) 2 where the λ d 's are closely related to some Selberg parameters. We modify these though and this modification is instrumental in our proof. Let us mention that the trivial bound for S(z) is of size z 2 (log z) 8 while the bound we prove is of order z 2 /(log z) 3 . Computations described in Section 7 support the fact that S(z)(log z) 3 /z 2 is indeed asymptotic to some positive constant. Theorem 13.1 presents variants of Theorem 1.4.

We recall the definition of the Mellin transform:

(2) η(s) = ∞ 0 η(x)x s-1 dx and further introduce a notation: f = O * (g) is equivalent to |f | ≤ g.

Smoothings

Let us quote from Rényi's book [START_REF] Rényi | Probability theory[END_REF] the formula:

1

( * m) [-1,1] (t) =        ⌊(m+|t|)/2⌋ j=0 (-1) j (m -1)! m j (m + |t| -2j) m-1 when 0 ≤ |t| ≤ m, 0 when m < |t|.
Guessing this expression is not obvious, but checking it by recursion is only a matter of routine. The Fourier transform of 1 [-1,1] is sin(2πu)/(πu), so the transform of 1 [START_REF] Balasubramanian | Products of three primes in large arithmetic progressions[END_REF] is sin(2πu) m /(πu) m . In the previous paper [START_REF] Ramaré | Products of primes in arithmetic progressions[END_REF], we used the above with m = 2, but we need a smoother function here. By specifying m = 3, we get 1

( * m) [-1,
( * 3) [-1,1] (t) =      3 -t 2 when 0 ≤ |t| < 1, (3 -|t|) 2 /2 when 1 ≤ |t| < 3, 0 when 3 ≤ |t|.
As indicated in the introduction, the symbol η * shall be kept for the function defined by

(3) η * (t) = 1 ( * 3) [-1,1] (6t -3)/6.
In this section, we use the Bernoulli polynomials (B m ) m≥0 that are defined by

te xt e t -1 = m≥0 B m (x) t n n! .
It is straightforward to compute the first of these:

B 0 (x) = 1, B 1 (x) = x -1 2 , B 2 (x) = x 2 -x + 1 6 , B 3 (x) = x 3 -3 2 x 2 + 1 2
x. The Bernoulli functions are then defined by b m (x) = B m ({x}) where {x} is the fractional part of x. These functions are periodic modulo 1, and their Fourier series expansion is well-known.

Lemma 2.1. We have, when m ≥ 1,

n≥1 1 ( * m) 2n X -1 m = 2 m-1 X m - (2m) m-1 X m-1 m! 0≤k≤m (-1) m-k m k b m 2kX/m . Proof. Indeed the Fourier transform of g(u) = 1 ( * m) ((2(u/X) -1)m) is given by ĝ(v) = ∞ -∞ 1 ( * m) ((2(u/X) -1)m)e(uv)du = X 2m ∞ -∞ 1 ( * m) (w)e Xvw 2m + Xv 2 dw = X 2m e(Xv/2) 2m sin πXv m πXv m .
By the Poisson summation formula, we get

S = n≥1 1 ( * m) 2n X -1 m = X 2m (2m) m X m ℓ∈Z e(Xℓ/2) sin πXℓ m πℓ m .
Next notice that, with x = Xℓ/(2m),

(2i) m e(mx)(sin 2πx) m = e(mx) 0≤k≤m (-1) m-k m k e((2k -m)x) = 0≤k≤m (-1) m-k m k e(2kx). Hence with y = X/m S = 2 m-1 X m + X 2m (2m) m X m 1 (2iπ) m ℓ∈Z, ℓ̸ =0 0≤k≤m (-1) m-k m k e(2kyℓ) ℓ m = 2 m-1 X m - X 2m (2m) m X m m! 0≤k≤m (-1) m-k m k b m 2kX/m .
This completes the proof. □

This lemma may be compared with [START_REF] Treviño | The least inert prime in a real quadratic field[END_REF]Lemma 3.1] which corresponds to the case m = 2. We now concentrate on the case m = 3.

Lemma 2.2. With ρ 3 (y) = 0≤k≤3 (-1) k 3 k b 3 (ky), we have ρ 3 (y) = -6{y} 3 when {y} ≤ 1/3, 3(1 -2{y})({y} 2 -4{y} + 1) when 1/3 < {y} ≤ 1/2,
and ρ 3 (1 -y) = -ρ 3 (y).
Here {y} is the fractional part of y. In particular this quantity lies in [3(11

-5 √ 5)/2, 3(5 √ 5 -11)/20]. Proof. The property of the Bernoulli polynomials B m (1 -X) = (-1) m B m (X) implies that b m (1 -y) = (-1) m b m (y)
, so we may restrict our attention to the case 0 ≤ y ≤ 1/2. When y ∈ [0, 1/3), we find that

2ρ 3 (y) = -3(2y 3 -3y 2 + y) + 3(16y 3 -12y 2 + 2y) -(54y 3 -27y 2 + 3y) = -12y 3 .
We continue with the case y ∈ [1/3, 1/2) where {2y} = 2y but {3y} = 3y -1. Therefore 2ρ 3 (y) = -3(2y 3 -3y 2 + y) + 3(16y 3 -12y 2 + 2y)

-(2(3y -1) 3 -3(3y -1) 2 + 3y -1) = 6(1 -2y)(y 2 -4y + 1).
The derivative of ρ 3 (y) with respect to y in this interval is 18(-y 2 + 3y -1). The minimum is at y 0 = (3 -√ 5)/2 with value 3(11 -5 √ 5)/2, and this concludes the proof of this lemma. □

On collecting (3), Lemma 2.1 and with Lemma 2.2, we obtain the next lemma.

Lemma 2.3. We have 2X 9 - θ X 2 ≤ m≥1 η * (m/X) ≤ 2X 9 + θ X 2
where θ = 3(5 √ 5 -11)/2 ≤ 0.28.

Lemma 2.4. When X ≥ 3 • 10 7 and X ≥ q, we have

(p,q)=1 η * (p/X) ≥ (1 -0.003) 2X/9 log X .
Proof. Let us call S the sum on the left side. We first find that, as η * has its support within [0, 1], we have

(p,q)=1 η * (p/X) log X = (p,q)=1 η * (p/X) log p + log X p ≥ (p,q)=1 η * (p/X) log p.
We next notice that

(p,q)=1 η * (p/X) log p ≥ p η * (p/X) log p -∥η * ∥ ∞ p|q log p
and this last summand is at most (log X)/2. Hence, with the notation ϑ(t) = p≤t log p, we find that

(S + 1 2 ) log X ≥ p≥1 log p - 1 p/X η * ′ (t)dt ≥ - 1 0 ϑ(tX)η * ′ (t)dt = - X 0 ϑ(u)η * ′ (u/X)du/X.
We note that -η * ′ (t) is non-positive when t ≤ 1/2 and non-negative afterwards, hence we need an upper bound for ϑ(u) when u ≤ X/2 and a lower bound when u ≥ X/2. Concerning the upper bound, we recall [20, equation (5.1)]:

(4) ϑ(u) = p≤u log p ≤ 1.001102u (u > 0)
and concerning the lower bound, we use [20, equation (5.2)]:

(5)

ϑ(u) ≥ (1 -0.0013156)u (u ≥ 1 319 007).
We mention here that a better lower bound may be found in [START_REF] Broadbent | Sharper bounds for the Chebyshev function θ(x)[END_REF]. We set ϵ * = 0.0013156 and on assuming X/2 ≥ 1 319 007, we get

(S + 1 2 ) log X ≥ - X 0 uη * ′ (u/X) du X -ϵ * X 0 |uη * ′ (u/X)| du X ≥ -X 1 0 tη * ′ (t)dt -ϵ * X 1 0 |η * ′ (t)|dt = X 1 0 η * (t)dt -ϵ * η * (1/2)X = 2 9 - ϵ * 2 X.
This gives us a lower estimates for S. □ 2.1. Mellin transforms.

Lemma 2.5. We have κ(s) = (s + 1) η * (s).

Proof. Indeed, by summation by parts, we find that η * (s) = The lemma follows readily. □

Some auxiliary lemmas

Lemma 3.1. Let f be an absolutely continuous function on [0, 1] such that f (0) = 0. For y, c ≥ 0, we have

n≤cy f (n/y) = y c 0 f (t)dt + ({cy} -1 2 )f (c) + c 0 ({ty} -1 2 )f ′ (t)dt
where {u} denotes the integer part of u.

Proof. Since f is absolutely continuous, we have

f (x) = f (c) - c x f ′ (t)dt.
The next steps are routine:

n≤cy f (n/y) = - c 0 n≤ty f ′ (t)dt+[y]f (c) = - c 0 ty -1 2 -{ty}+ 1 2 f ′ (t)dt+[y]f (c).
The lemma follows readily. □ Lemma 3.2. For v > 0, we have

n≤1/v |κ(nv)| ≤ 2 √ 6 9v + 4.
Proof. We use Lemma 3.1 with c = 1 and f (t) = |κ(t)|. We readily check that

1 0 |κ(t)|dt = 2 √ 6/9. Furthermore |κ| ′ (t) =                6t, 0 ≤ t ≤ 1/3, -12t, 1/3 < t ≤ 1/ √ 6, 12t, 1/ √ 6 < t ≤ 2/3, -6t, 2/3 ≤ t ≤ 1, 0, otherwise.
and, after a short calculation, this readily implies that

1 0 ||κ| ′ (t)|dt = 8. □ 3.1. Constant recognition.
Here is an abstraction of an idea contained in [5, Lemma 2.9].

Lemma 3.3. Let D(s) = n≥1 u n /n s be a Dirichlet series that is absolutely convergent for ℜs > 1, has a simple pole of residue ρ at s = 1 and is analytically continuable to ℜs > c for some c ∈ (0, 1). We assume that n≤X u n = ρX + O(X c ).

Then for ℜs = σ > c, we have

n≤X u n n s = ρ (1 -s)X s-1 + D(s) + O(X c-σ ).
Proof. We first notice that D(s)

equals n≤X u n n s + s ∞ X X<n≤t u n -ρt s t s+1 dt + sρ (s -1)X s-1 .
We infer from this expression that

D(s) = n≤X u n n s - n≤X u n X s + s ∞ X n≤t u n -ρt dt t s+1 + sρ (s -1)X s-1 = n≤X u n n s + ρ (s -1)X s-1 - n≤X u n -ρX X s + s ∞ X n≤t u n -ρt dt t s+1 .
This is valid at first for ℜs > 1, but by analytic continuation and since n≤t u nρt ≪ t c , also when ℜs > c. In particular, when c < ℜs < 1, we have

n≤X u n n s = ρ (1 -s)X s-1 + D(s) + O(X c-σ ) as required. □ 3.2.
On squarefree numbers. The next lemma is proved, for the first part in [START_REF] Moser | The error term for the squarefree integers[END_REF] and for the second one in [START_REF] Cohen | Explicit estimates for summatory functions linked to the Möbius µ-function[END_REF].

Lemma 3.4. When x ≥ 1, we have n≤x µ 2 (n) = 6 π 2 x + O * ( √ x) while, when x ≥ 438653, we have n≤x µ 2 (n) = 6 π 2 x + O * (0.02767 √ x).
For a better error term in the range x ∈ [0, 10 18 ], we refer the reader to [START_REF] Mossinghoff | The distribution of k-free numbers[END_REF] 

µ 2 (n) n 2/3 ≤ 6 π 2 • 3y 1/3 .
Proof. We readily check that

S = n≤y µ 2 (n) n 2/3 = y 1 n≤t µ 2 (n) 2dt/3 t 5/3 + n≤y µ 2 (n) y 2/3 = 6 π 2 3y 1/3 -2 + ∞ 1 r(t) 2dt/3 t 5/3 - ∞ y r(t) 2dt/3 t 5/3 + r(y) y 2/3
where n≤t µ 2 (n) = When a ≥ 8, the initial computations that we ran were not enough to make the 'error term' negligible. This explains why our values increase from this point onwards.

There is little doubt that heavier computations would cure this defect.

Proof. We numerically checked that, when 1

≤ x ≤ 10 8 , 1 a! x n≤x µ 2 (n) log x n a ≤               
0.6715 when a = 1, 0.6365 when a = 2, 0.6227 when a = 3, 0.6161 when a = 4, 0.6127 when a = 5,

              
0.6108 when a = 6, 0.6097 when a = 7, 0.6091 when a = 8, 0.6087 when a = 9, 0.6077 when a = 10.

Let us comment somewhat on this script. We enumerate the squarefree integers together with their prime factorisation through the forsquarefree-loop of Pari/GP. At each of them, we compute the vector ( ℓ≤n µ 2 (ℓ)(log ℓ) a ) a≤10 . We then study the extrema of the functions ℓ≤n µ 2 (ℓ)(log(x/ℓ)) a /x between two squarefree integers, say n and its successor n + , a problem which is readily seen as computing the zeros of a polynomial of degree a. As a good amount of time may be spent computing logarithms, we store them and compute them when needed: after an initial precomputation till n = 10 5 , we compute and store the log p when new n = p and otherwise get log n through p|n log p.

For larger values of x, we employ summation by parts in the form

n≤x µ 2 (n) log x n a = x 1 n≤x/t µ 2 (n) a log a-1 t t dt ≤ 6x π 2 x 1 a log a-1 (x/t) t 2 dt + √ x x 1 a log a-1 (x/t) t 3/2 dt ≤ 6x π 2 • a! 1 + 2 a π 2 6 √ x .
This is enough when a ≤ 5. Otherwise, we have to resort to a somewhat more sophisticated bound (with x 0 = 450000 and ε = 0.02767):

n≤x µ 2 (n) log x n a = x/x0 1 n≤x/t µ 2 (n) a log a-1 t t dt + x x/x0 n≤x/t µ 2 (n) a log a-1 t t dt ≤ 6x • a! π 2 + ε √ x x 1 a log a-1 t t 3/2 dt + (1 -ε) √ x x x/x0 a log a-1 t t 3/2 dt ≤ 6x • a! π 2 + ε √ x2 a a! + (1 -ε) x0 1 log x u a-1 adu u 3/2 ≤ 6x • a! π 2 + √ xa! ε • 2 a + 1 -ε 2 (log x) a-1 (a -1)! √ x .
These lines suffice to establish that the maximum of our function is attained below 10 8 when a ∈ {6, 7} and to prove the announced values otherwise. □

On quadratic subgroups.

Here is a consequence of Axer's method and the Pólya-Vinogradov inequality that we take from [START_REF] Ramaré | Products of primes in arithmetic progressions[END_REF]Lemma 3.3].

Lemma 3.8. Let q ≥ 3 and χ be a nontrivial quadratic character modulo q. Then, there is a prime p ≤ 25 q 2 , such that χ(p) = 1. This is far from being optimal even from an explicit viewpoint but this result is already more than enough for us as the bound q 5/2 would do. We refer to [START_REF] Pollack | The smallest prime that splits completely in an abelian number field[END_REF] by P. Pollack for asymptotic bounds on this question.

On the λ d 's

We modify slightly the Selberg coefficients λ d to allow a better control of the error term that arises. We define [START_REF] Gallagher | A large sieve density estimate near σ = 1[END_REF] 

λ d =    µ(d) log z d log z , d ≤ z, 0, otherwise.
Please note that, as in [START_REF] Ramaré | Products of primes in arithmetic progressions[END_REF], this choice is independent of q. Part of the quality of our explicit evaluations comes from this feature. We define

(8) S = S(z) = n≤z 2   [d1,d2]=n |λ d1 ||λ d2 |   2 then (9) S = S(z) = n≤z 2   [d1,d2]=n |λ d1 ||λ d2 |   2 /n
and finally

(10) 1/G(z) = d1,d2≤z λ d1 λ d2 [d 1 , d 2 ] .
In the setting of the Selberg sieve, this quantity is readily evaluated through using the general theory of averages of non-negative multiplicative functions. No such simplification occurs with our choice but the theory of explicit estimates for the Möbius function is nowadays sufficiently developed to allow our choice of λ d .

Lemma 4.1. Let z > 1 be a real number. We have 1/G(z) ≤ 1.00303 log z . Proof. Some classical manipulations give us that

1/G(z) = δ≤z µ 2 (δ)φ(δ) δ 2 (log z) 2 ℓ≤z/δ, (ℓ,δ)=1 µ(ℓ) log z/δ ℓ ℓ 2 .
By [14, Corollary 1.10], the inner sum is non-negative and at most 1.00303δ/φ(δ), hence

1/G(z) ≤ 1.00303 (log z) 2 m≤z µ 2 (m) log(z/m) m ℓδ=m µ(ℓ) = 1.00303 log z
as announced. □

A flexible setting

Sums with F (log x n ). Let us start with a lemma that sets the scene of this section. Lemma 5.1. Let F : R ≥0 → R ≥0 be differentiable with F ′ ≥ 0 and let x ≥ y ≥ 1. Let (u n ) be a sequence of non-negative real numbers for which we have, for any integer d ≥ 1, any t ≥ 0 and some α ∈ [0, 1),

m≤t u dm m α ≤ ρt 1-α /(1 -α)
for some non-negative real parameter ρ. Then we have

n≤y n≡0[d] u n n α F log x n ≤ ρ y 1-α d (T 1-α F ) log x y ,
where the operator T β is defined by

(T β G)(X) = ∞ 0 e -βt G(X + t) dt.
We also set T 1 = T .

The operator T β can also be defined on polynomials by

T β (X j ) = 0≤ℓ≤j j ℓ ℓ!β -ℓ-1 X j-ℓ .
One of the difficulties, when we apply this lemma, is that the assumption on u n should hold as soon as t ≥ 1, and this often leads to larger values of ρ than we would like. In our present case of study, the sequence u n is the characteristic function of the squarefree numbers. We would like to take ρ = 6/π 2 , and this is for instance possible when α = 2/3 by Lemma 3.6 but we are often forced to select ρ = 1. We present in Lemma 5.2 a way to recover from this loss.

Proof. We see that

n≤y n≡0[d] u n n α F log x n ≤ m≤y/d u dm (dm) α F log x/d m
which reduces to the case d = 1. By considering F 1 (t) = F (log(x/y)+t), we further reduce the question to the case y = x. In this special case, and with β = 1 -α, we find that

n≤x u n n α F log x n ≤ n≤x u n n α log(x/n) 0 F ′ (t)dt + F (0) n≤x u n n α ≤ log x 0 n≤xe -t u n n α F ′ (t)dt + ρx β β F (0) ≤ log x 0 ρ β (xe -t ) β F ′ (t)dt + ρx β β F (0) ≤ ρ β F (log x) + ρx β log x 0 e -βt F (t)dt.
Since F is non-decreasing, we have

x β ∞ log x e -βt F (t)dt ≥ xF (log x)/β, hence n≤x u n F log x n ≤ ρx ∞ 0 e -t F (t)dt. □ Lemma 5.2.
Let T ♭ be the linear operator defined on polynomials of degree at most 10 by

T ♭ (X a ) = 0≤r≤a a r r!c r X a-r
where the structure constants c r are defined in Lemma 3.7. For any real polynomial F of degree at most 10 and with non-negative coefficients, for any x ≥ y > 0 and any d ≥ 1, we have

n≤y, n≡0[d] µ 2 (n)F log x n ≤ y d T ♭ F log x y .
Proof. We see that

n≤y, n≡0[d] µ 2 (n)F log x n ≤ m≤y/d µ 2 (m)F log x/d m
(we have omitted the coprimality condition (m, d) = 1), which reduces our problem to the case d = 1. By linearity and the non-negativity of the coefficients of F , it suffices to prove the result for F (y) = y a , for a ≤ 10. To do so, we simply note that

n≤y µ 2 (n) log x n a = 0≤r≤a a r log x y a-r n≤y µ 2 (n) log y n r ≤ 0≤r≤a a r log x y a-r
r!c r • y by Lemma 3.7. The lemma follows swiftly. □ Lemma 5.3. Let A(X) be a real polynomial and B(X) = A(X/3). The linear operator V :

A → T 1/3 T 1/3 T 1/3 B(0) maps X j to 27 2 (j + 2)!. Proof. We rapidly check that V (X j ) = ∞ 0 ∞ 0 ∞ 0 e -u 1 +u 2 +u 3 3 u 1 + u 2 + u 3 3 j du 1 du 2 du 3 . Put u i = 3v i for i ∈ {1, 2, 3} and v = v 1 + v 2 + v 3 . Then V (X j ) = 27 ∞ 0 e -v v j ∞ 0 ∞ 0 u1+u2≤v du 1 du 2 dv = 27 2 ∞ 0 e -v v j+2 dv = 27 2 (j + 2)!
as announced. □ Lemma 5.4. When F ≥ 0 is C 1 and non-decreasing, and y ≥ 1, we have

n≤y µ 2 (n)τ (n) n 2/3 F log y n ≤ 6 π 2 y 1/3 6 π 2 log y + 1.166 T 1/3 F (0).
Proof. We use the non-negativity of F to write

n≤y µ 2 (n)τ (n) n 2/3 F log y n ≤ ℓ≤y µ 2 (ℓ) ℓ 2/3 m≤y/ℓ µ 2 (m) m 2/3 F log y/ℓ m ≤ 6 π 2 y 1/3 ℓ≤y µ 2 (ℓ) ℓ T 1/3 F (0)
and we conclude by bounding above the sum over ℓ through Lemma 3.5. □ Sums over squarefree n's of F (log n)/n α . Lemma 5.5. For any x ≥ 1, d ≥ 1 and for any polynomial F with non-negative coefficients and degree at most 10, we have

n≥x n≡0[d] µ 2 (n) F (log n) n 3/2 ≤ 1.088 T 1/2 F (log x) d √ x .
Proof. It is enough to establish this inequality when d = 1 and on monomials

F (u) = u a for u ∈ {0, 1, • • • , 10}. We then notice that ∞ x (log t) a dt t 3/2 = 1 √ x 0≤r≤a a r (log x) a-r ∞ 1 (log u) r du u 3/2 = 1 √ x 0≤r≤a a r (log x) a-r ∞ 0 t r e -t/2 dt = 1 √ x 0≤r≤a a r 2 r+1 (log x) a-r r! = T 1/2 X a (log x) √ x .
This expression also proves that x → T 1/2 X a (log x)/ √ x is increasing in x. When x ≥ A = exp(2a/3) + 1, the usual sum-integral comparison tells us that

Σ(x) = n≥x µ 2 (n) (log n) a n 3/2 ≤ ∞ x-1 (log t) a dt t 3/2 = x x -1 ∞ x (log( x-1 x u)) a du u 3/2 ≤ x x -1 ∞ x (log u) a du u 3/2 .
This is enough for large values of x, i.e. when x ≥ 1/(1 -(1.088) -2 ). For smaller values of x, we proceed as follows. Say x ∈ (N -1, N ], where N is an integer. We need to compare Σ(N ) to ∞ N (log u) a du u 3/2 . Pari/GP numerical integration for such functions is reliable. We majorize Σ(x) by using direct summation when n ≤ 10 5 and by majorizing the tail by ignoring the squarefree condition and using some Pari/GP inbuilt acceleration of convergence. Here is our Pari/GP script.

{Check( a = 4, expo = 3/2) = my(bornesup = ceil(2*exp(a/expo) + 1000), intsup, sommesup, coeff = sqrt(bornesup/(bornesup-1)), wheremax, hardmax = 10^5); intsup = intnum(t = bornesup, oo, (log(t))^a/t^expo); sommesup = sum(n = bornesup, hardmax, if(issquarefree(n), log(n)^a/n^expo,0)) + sumpos(n = hardmax + 1, log(n)^a/n^expo,0); coeff = max(coeff, sommesup/intsup); forstep(n = bornesup-1, 1, -1, intsup += intnum(t = n, n+1, (log(t))^a/t^expo); sommesup += if(issquarefree(n), (log(n))^a/n^expo, 0); if(coeff < sommesup/intsup, coeff = sommesup/intsup; wheremax = n,)); print("*** sum_{n >= N} mu^2(n)(log n)^", a, "/n^(", expo, ") <= "); print(coeff," x int(t = N, oo, (log(t))^", a, "/t^(", expo,"))"); print(" --reached around N = ", wheremax); } □ Lemma 5.6. For any x ≥ 1, d ≥ 1 and for any polynomial F with non-negative coefficients and degree at most 10, we have

n≥x n≡0[d] µ 2 (n) F (log n) n 2 ≤ 1.520 T F (log x) d x .
Proof. It is again enough to establish this inequality when d = 1 and on monomials

F (u) = u a for u ∈ {0, 1, • • • , 10}. When x ≥ A = exp(2a/3
) + 1, we note that the usual sum-integral comparison tells us that we have

n≥x µ 2 (n) (log n) a n 2 ≤ ∞ x-1 (log t) a dt t 2 = x x -1 ∞ N (log( x-1 x u)) a du u 2 ≤ x x -1 ∞ x (log u) a du u 2 .
We then proceed as in Lemma 5.5, though with the choice expo = 2 in the associated Pari/GP script. □

Estimation of the sum S(z)

Recall that we have defined

S = S(z) = n≤z 2 [d1,d2]=n |λ d1 ||λ d2 | 2 .
Theorem 6.1. When z > 1, we have S ≤ 278 000 z 2 6 π 2 log z + 1.166 (log z) 4 .

The computations leading to Lemma 7.1 tend to accredit the idea that S is indeed of order z 2 /(log z) 3 , though the constant in front should be much smaller than our 6 π 2 278000.

Proof of Theorem 6.1. Let F 0 (x) = x 4 . Define functions F 1 , F 2 , F 3 , F 4 and F 5 by ( 11)

F j+1 = T ♭ F j , 0 ≤ j ≤ 5
where T ♭ is defined in Lemma 5.2. Though it is not required for the following, we directly check that 

                 F 1 (x) = x 4 +
1 d 1 d 2 d 3 F 1 log z d 4 .
For a fixed g ≤ z 2 and g 1 g 2 = g 3 g 4 = g with g 1 , g 2 , g 3 , g 4 ≤ z, the inside sum over the d j 's is at most

S ′ = d3≤d2≤d1≤z gi|di 1 d 1 d 2 d 3 d4≤d3 g4|d4 F 1 log z d 4 ≤ 1 g 4 d3≤d2≤d1≤z gi|di 1 d 1 d 2 F 2 log z d 3 . Note that we have [d 1 d 2 , d 3 d 4 ] = D ≤ zd 4 , hence d 1 d 2 d 3 d 4 /g ≤ zd 4 which simplifies to d 1 d 2 d 3 ≤ zg.
Taking this condition into consideration, we find that

S ′ ≤ 1 g 4 d2≤d1≤z gi|di 1 d 1 d 2 d3≤min{d2, zg d 1 d 2 } g3|d3 F 2 log z d 3 .
The next is to split the resulting upper bound in three parts as follows:

S ′ ≤ 1 g 4 d1≤(zg) 1/3 g1|d1 d2≤d1 g2|d2 1 d 1 d 2 d3≤d2 g3|d3 F 2 log z d 3 + 1 g 4 (zg) 1/3 <d1≤z g1|d1 d2≤ zg d 1 1/2 g2|d2 1 d 1 d 2 d3≤d2 g3|d3 F 2 log z d 3 + 1 g 4 (zg) 1/3 <d1≤z g1|d1 zg d 1 1/2 <d2≤d1 g2|d2 1 d 1 d 2 d3≤ zg d 1 d 2 g3|d3 F 2 log z d 3 = S ′ 1 + S ′ 2 + S ′ 3 .
The sum S ′ 1 may treated in a rather straightforward manner:

S ′ 1 ≤ 1 g d1≤(zg) 1/3 g1|d1 1 d 1 d2≤d1 g2|d2 F 3 log z d 2 ≤ 1 gg 2 d1≤(zg) 1/3 g1|d1 F 4 log z d 1 ≤ (zg) 1/3 g 2 F 5 log z (zg) 1/3 ≤ (zg) 1/3 g 2 F 5 1 3 log z 2 g .
Next, the treatment of S ′ 2 starts similarly as the one of S ′ 1 but differs from the second line onwards:

S ′ 2 ≤ 1 g (zg) 1/3 <d1≤z g1|d1 1 d 1 d2≤ zg d 1 1/2 g2|d2 F 3 log z d 2 ≤ (zg) 1/2 gg 2 (zg) 1/3 <d1≤z g1|d1 1 d 3/2 1 F 4 log zd 1/2 1 (zg) 1/2 = (zg) 1/2 gg 2 (zg) 1/3 <d1≤z g1|d1 1 d 3/2 1 F 4 1 2 log zd 1 g ≤ 1.088 (zg) 1/3 g 2 ( T1/2 F 4 ) 1 3 log z 2 g
on denoting by T1/2 the operator that, to F , associates T 1/2 (G), where G(X) = F (X/2).

The last inequality comes from invoking Lemma 5.5 with F (u) = F 4 ( 1 2 u + 1 2 log(z/g)). We continue with a bound for S ′ 3 :

S ′ 3 = 1 g 4 (zg) 1/3 <d1≤z g1|d1 zg d 1 1/2 <d2≤d1 g2|d2 1 d 1 d 2 d3≤ zg d 1 d 2 g3|d3 F 2 log z d 3 ≤ 1 g (zg) 1/3 <d1≤z g1|d1 zg d 1 1/2 <d2≤d1 g2|d2 1 d 1 d 2 zg d 1 d 2 F 3 log d 1 d 2 g ≤ 1.52 zg gg 2 (zg) 1/3 <d1≤z g1|d1 1 d 2 1 d 1/2 1 (zg) 1/2 T F 3 1 2 log zd 1 g
by Lemma 5.6. We shuffle some terms and continue:

S ′ 3 ≤ 1.52 (zg) 1/2 gg 2 (zg) 1/3 <d1≤z g1|d1 1 d 3/2 1 T F 3 1 2 log zd 1 g ≤ 1.52 × 1.088 (zg) 1/3 g 2 ( T1/2 T F 3 ) 1 3 log z 2 g .
Therefore, from the above and ( 13), we have

(14) S ≤ 3z 4/3 2(log z) 4 g≤z 2 τ * (g) 2 g 2/3 H log z 2 g ,
where H(x) = F 5 (x/3) + 1.088 ( T1/2 F 4 )(x/3) + 1.52 × 1.088 ( T1/2 T F 3 )(x/3) and

τ * (g) = g1g2=g gi≤z 1.
During the proof of [3, Lemma 2.1], the authors proved that τ * (g) 2 is also the number of solutions of g = abcd with ab, cd, ac, bd ≤ z. Since this number in invariant under the changes a ↔ d and b ↔ c, we may assume that c ≤ b (with an extra factor 2). Thus

S ≤ 3z 4/3 (log z) 4 a≤z b≤z/a (a,b)=1 c≤b d≤z/b 1 (abcd) 2/3 H log z 2 abcd .
Please notice the 'd ≤ z/b'. We do the d-sum, then the c-sum, getting

S ≤ 3z 5/3 (log z) 4 a≤z b≤z/a (a,b)=1 1 (ab) 2/3 T 1/3 T 1/3 H log z 2 ab = 3ρ 2 z 5/3 (log z) 4 n≤z µ 2 (n)τ (n) n 2/3 (T 1/3 T 1/3 H) log z n ≤ 3ρ 3 z 2 (log z) 4
by Lemma 5.4 with ρ = 6/π 2 for the last inequality. We also have

T 1/3 T 1/3 T 1/3 H(0) = V (F 5 + 1.088 (T 1/2 F 4 ) + 1.52 × 1.088 (T 1/2 T F 3 )) = 412082.980 • • • .
This gives (the ρ 3 has been taken into account) (15) S ≤ 277 760 z 2 6 π 2 log z + 1.166 (log z) 4 .

The proof of our theorem is complete. □

Computing S(z)

This part is not required a priori. We produce it to support our belief that S(z) is indeed of size z 2 /(log z) 3 , a fact that is far from obvious from its expression. Lemma 7.1. When z ≤ z 0 = 15000, we have S(z) ≤ 3.3 z 2 /(log z) 3 while S(z 0 ) ≥ 3.28 z 2 0 /(log z 0 ) 3 . We numerically observed that the function S(z)(log z) 3 /z 2 is non-decreasing in the range z ≤ z 0 . A plot with sample values taken every 50 is given in Figure 3. To run the required computations, we need precise and sparse expressions. We use the notation δ j = log d j and restrict the variables d j to be squarefree. We expand S(z) into

S(z) = [d1,d2]=[d3,d4], d1,d2,d3,d4≤z 1 - δ 1 + δ 2 + δ 3 + δ 4 log z + δ 1 δ 2 + δ 3 δ 4 + (δ 1 + δ 2 )(δ 3 + δ 4 ) (log z) 2 - δ 1 δ 2 (δ 3 + δ 4 ) + (δ 1 + δ 2 )δ 3 δ 4 ) (log z) 3 + δ 1 δ 2 δ 3 δ 4 (log z) 4
i.e. after shuffling the terms,

S(z) = [d1,d2]=[d3,d4], d1,d2,d3,d4≤z 1 - 4δ 1 log z + 2δ 1 δ 2 + 4δ 1 δ 3 (log z) 2 - 4δ 1 δ 2 δ 3 (log z) 3 + δ 1 δ 2 δ 3 δ 4 (log z) 4 = S 0 (z) - S 1 (z) log z + S 2 (z) (log z) 2 - S 3 (z) (log z) 3 + S 4 (z) (log z) 4 .
Let us assume that z is an integer. When going from z to z + 1, the sum S(z) changes only when one of the d i can take the value z + 1, hence z + 1 has to be squarefree. We proceed as follows:

• Set Local variations. We have to find the maximal absolute value of

d 1 = z + 1. For each d 2 ≤ z + 1,
S 0 (z) - S 1 (z) log z + S 2 (z) (log z) 2 - S 3 (z) (log z) 3 + S 4 (z) (log z) 4 /z 2
when z varies in an interval [z 0 , z 0 + 1) for some integer z 0 . The derivative times z 3 is given by, with w = 1/ log z,

-2S 0 (z) + 2S 1 (z)w + (S 1 (z) -2S 2 (z))w 2 + (-2S 2 (z) + 2S 3 (z))w 3 -(-3S 3 (z) + 2S 4 (z))w 4 -4S 4 (z)w 5
Final remarks. The previous notes are enough to build an algorithm. Let us specify that we precomputed all the logarithms of the natural numbers up to the final bound z 0 and that we used the forfactored-loop of Pari/GP to speed up computations. The script is available on request.

Estimation of the sum S(z)

Recall that we have defined

S = S(z) = n≤z 2 [d1,d2]=n |λ d1 ||λ d2 | 2 /n.
Lemma 8.1. We define the linear operator T on polynomials by T [Y j ] = Y j /j!. For every integer a ≥ 1 and every real number x ≥ 1, we have

n≤x µ 2 (n)a ω(n) n ≤ T [( 6 π 2 Y + 1.166) a ](log x).
To be precise, we expand the polynomial ( 6 π 2 Y + 1.166) a , apply the operator T to this expansion and finally evaluate the result at Y = log x.

Proof. We proceed by recursion on a, the case a = 1 being recorded in Lemma 3.5. Let us prove the recursion step. We employ the identity (a + 1) ω(n) = kℓ=n a ω(k) valid when n is squarefree to infer that

n≤x µ 2 (n)(a + 1) ω(n) n ≤ kℓ≤x µ 2 (k)µ 2 (ℓ)a ω(k) kℓ ≤ k≤x µ 2 (k)a ω(k) k 6 π 2 log x k + 1.166 = S 1 + S 2
where

S 1 = 6 π 2 k≤x µ 2 (k)a ω(k) k x k dt t ≤ 6 π 2 x 1 T [( 6 π 2 Y + 1.166) a ](log t) dt t
by the recursion hypothesis. We now notice that

x 1 T [Y j ](log t) dt t = T [Y j+1
](log x), which implies that, for any polynomial P , we have . Note also that this inequality is optimal when d 1 = d 2 . This implies that, for squarefree n, we have

x 1 T [P (Y )](log t)dt/t = T [P (Y )Y ](log x). This leads to S 1 ≤ T [( 6 π 2 Y + 1.166) a 6 π 2 Y ](log x),
[d1,d2]=n λ d1 λ d2 ≤ 1 4(log z) 2 [d1,d2]=n log z 2 d 1 d 2 2 ≤ 1 4(log z) 2 [d1,d2]=n log z 2 n 2 = 1 4(log z) 2 log z 2 n 2 3 ω(n) since, when n is squarefree, we have [d1,d2]=n 1 = 3 ω(n) . This implies that S ≤ 1 16(log z) 4 n≤z 2 µ 2 (n)9 ω(n) n log z 2 n 4 .
We set y = z 2 and notice that log y n

4 = 4 y n log y t 3 dt t .
On using this and Lemma 8.1 and its notation with the shortcut ρ = 6/π 2 , we get

S ≤ 1 4(log z) 4 y 1 n≤t µ 2 (n)9 ω(n) n log y t 3 dt t ≤ 4 (log y) 4 y 1 T [(ρY + 1.166) 9 ](log t) log y t 3 dt t .
We recall the classical formula for the Euler beta-function:

y 1 (log t) a log y t b dt t = a!b! (a + b + 1)! (log y) a+b+1 .
We expand T [(ρY + 1.166) 9 ], and get

S ≤ 4 (log y) 4 0≤k≤9 9 k ρ k 1.166 9-k 1 k! 6 • k! (k + 4)! (log y) k+4 ≤ 24 0≤k≤9 9 k ρ k 1.166 9-k (log y) k (k + 4)! .
This gives us S ≤ 7 • 10 -6 (log z) 9 + 6 π 2 when z ≥ 1000. □ Let us now introduce the explicit expression of κ given in Lemma 2.6, and recall that χ(0) = 0. We pair ℓ and -ℓ and note that

         κ(x/π) + κ(-x/π) = 12 sin x/3 x 2 cos 2x 3 - sin x/3 x 3 cos x 2 , κ(x/π) -κ(-x/π) = 12 -i sin x/3 x 2 sin 2x 3 + i sin x/3 x 3 sin x 2 .
The main feature of these expressions lies in the fact that they vanish when x = 0. We use Lemma 3.1 with c = ∞ and

f ε (x) = |κ(x/π) + εκ(-x/π)| for ε ∈ {±1}. We find that | √ rS/y| ≤ r πy ∞ 0 |f ε (x)|dx + 1 2 ∞ 0 |f ′ ε (x)|dx.
Numerical integration gives us

1 π ∞ 0 |f ε (x)|dx ≤ 0.9918 when ε = 1, 0.9872 when ε = -1, ∞ 0 |f ′ ε (x)|dx ≤ 2.4 when ε = 1, 3.6 when ε = -1.
For this last computation, we need explicit expressions for f ′ ε , and here they are:

f ′ + (x)/12 = - 2 3 sin 2x 3 sin x/3 x 2 + 1 2 sin x 2 sin x/3 x 3 + 2 3 cos x 3 cos 2x 3 sin x/3 x 2 - 1 x cos x 3 cos x 2 sin x/3 x 2 - 2 x cos 2x 3 sin x/3 x 2 + 3 x cos x 2 sin x/3 x 3 , and 
if ′ -(x)/12 = 2 3 cos 2x 3 sin x/3 x 2 - 1 2 cos x 2 sin x/3 x 3 + 2 3 sin x 3 cos 2x 3 sin x/3 x 2 - 1 x sin x 3 cos x 2 sin x/3 x 2 - 2 x sin 2x 3 sin x/3 x 2 + 3 x sin x 2 sin x/3 x 3 . □ Lemma 9.2. When χ is a primitive Dirichlet character of conductor r > 1, we have 1 2π 1 2 +i∞ 1 2 -i∞ (s + 1) η * (s)L(s, χ) 2 |ds| ≤ 1.1 max(r, 10 7 ). 
Proof. We have

(16) (s + 1) η * (s)L(s, χ) = κ(s)L(s, χ) = ∞ 0 n≤1/v χ(n)κ(vn)v s dv v
which identifies (s + 1) η * (s) as a Mellin transform. By the Parseval identity for Mellin transforms, we find that 1 2π

1 2 +i∞ 1 2 -i∞ (s + 1) η * (s)L(s, χ) 2 |ds| = ∞ 0 n≤1/v κ(vn)χ(n) 2 dv = ∞ 0 n≤t κ(n/t)χ(n) 2 dt t 2 .
We are now in a position to apply Lemma 9.1, and this leads us to 1 2π

1 2 +i∞ 1 2 -i∞ (s + 1) η * (s)L(s, χ) 2 |ds| ≤ T 1 2 √ 6t 9 + 4 2 dt t 2 + ∞ T max(r, 10 7 ) 2 dt t 2 ≤ 24T 81 + 16 √ 6 9
log T + 16 + max(r, 10 7 ) T .

We take T = 9 2 √ 6 max(r, 10 7 ) and get the bound

1 2π 1 2 +i∞ 1 2 -i∞ (s + 1) η * (s)L(s, χ) 2 |ds| ≤ 1.089 √ r + 4.4 log(1.84 √ r) + 16 ≤ 1.1 max(r, 10 7 ). 
This ends the proof. □ Proof of Theorem 1.4. In this proof, we shall use the Dirichlet polynomial

(17) K(s, χ) = d1,d2 λ d1 λ d2 χ([d 1 , d 2 ]) [d 1 , d 2 ] s , u n = [d1,d2]=n λ d1 λ d2
where the (λ d )'s come from [START_REF] Gallagher | A large sieve density estimate near σ = 1[END_REF]. We proceed as in the proof of Theorem 1.5 and 1.6 in [16, Section 6], with H = {1}. This results in having only primitive characters below. We thus reach

p≥1, p≡a[q] η * (p/X) ≤ n≥1, n≡a[q] η * (n/X) d|n λ d 2 + p<z, p≡a[q] η * (p/X) ≤ d1,d2 λ d1 λ d2 1 φ(q) r|q χ mod * r χ(a) n≥1, [d1,d2]|n χ(n)η * (n/X) + zq -1 + 1 2 ≤ 1 φ(q) d1,d2 λ d1 λ d2 m≥1 η * ([d 1 , d 2 ]m/X) + E(a) + zq -1 + 1 2 (18)
where ( 19)

E(a) = 1 φ(q) 1<r|q χ mod * r χ(a) 1 2iπ 2+i∞ 2-i∞ L(s, χ)K(s, χ)X s η * (s)ds.
Contribution of the principal character. The term in ( 18) is easily dealt with. Let [START_REF] Rosser | Sharper bounds for the Chebyshev Functions ϑ(x) and ψ(x)[END_REF] M (q, η * , X) = 1 φ(q) d1,d2

λ d1 λ d2 m≥1 η * ([d 1 , d 2 ]m/X).
We find that M (q, η * , X) -2X 9φ(q) d1,d2

λ d1 λ d2 [d 1 , d 2 ] ≤ θ X 2 φ(q) d1,d2 |λ d1 λ d2 |[d 1 , d 2 ] 2 ≤ θ X 2 φ(q) d d 2 |λ d | 2 ≤ θz 6 X 2 φ(q)(log z) 2
where θ is defined in Lemma 2.3, and where we have used Lemma 4.1. Whence, when z 2 ≤ X/100 and z ≥ 100, we find that [START_REF] Treviño | The least inert prime in a real quadratic field[END_REF] M (q, η * , X) ≤ 2X 9φ(q) log z 1.00303 + 9 × 0.28 z 6 2X 3 (log z) 3 ≤ 1.004 2X/9 φ(q) log z .

Contribution of the non-principal characters. We now concentrate on E(a) for which we seek an L 2 -average upperbound. We first shift the line of integration to ℜs = 1/2 and get

φ(q) 2 a mod * q E(a) 2 = a mod * q 1<r|q, χ mod * r χ(a) 1 2iπ 1 2 +i∞ 1 2 -i∞ L(s, χ)K(s, χ)X s η * (s)ds 2 .
We note that, for arbitrary complex numbers (f (χ)) χ , we have

a mod * q 1<r|q, χ mod * r χ(a)f (χ) 2 = φ(q) 1<r|q, χ mod * r |f (χ)| 2
simply because, when a is prime to q, there is no difference between the primitive character modulo r and its induced version modulo q. We continue with Cauchy's inequality and Lemma 9.2 to write successively φ(q)

a mod * q E(a) 2 ≤ X 4π 2 1<r|q, χ mod * r 1 2 +i∞ 1 2 -i∞ |(s + 1) η * (s)L(s, χ)| 2 |ds| 1 2 +i∞ 1 2 -i∞ K(s, χ) 2 dt |s + 1| 2 ≤ 1.1 X √ q 2π 1<r|q, χ mod * r 1 2 +i∞ 1 2 -i∞ K(s, χ) 2 dt |s + 1| 2 ≤ 1.1 X √ q ∞ 0 1<r|q, χ mod * r v n≤1/v nu n χ(n) 2 dv since K(s) s + 1 = ∞ 0 v n≤t nu n v s-1 dv v .
We continue by using the orthogonality of the characters and get φ(q)

a mod * q E(a) 2 ≤ 1.1 X √ q ∞ 0 n≤t n 2 u 2 n (t + q) dt t 4 ≤ 1.1 X √ q n≤z 2 n 2 u 2 n z 2 n dt t 3 + z 2 ∞ z 2 dt t 4 + q ∞ n dt t 4 ≤ 1.1 X √ q n≤t u 2 n 1 2 - n 2 6z 4 + q 3n .
On neglecting the term n 2 /6z 4 , we reach φ(q) X √ q a mod * q E(a) 2 ≤ 0.55 2 where ϵ(a) = φ(q)E(a) log z 2X/9 .

n≥1 |u n | 2 + 0.367q n≥1 |u n | 2 n . Let ∆ = 1 φ(q) a mod * q ϵ(a)
By Theorems 6.1 and 8.2, we find that, when z ≥ 10 27 , ∆ ≤ 0.55 278000 z 2 6 π 2 log z + 1.166 (log z) 4 + 0.367q 7 log 9 z 10 7 + 6 π 2

√ q log 2 z 4X/81 .

We use (22) z = X 10 9 √ q , X ≥ (10 7 q) 5/2 .

The hypothesis q ≥ 10 30 ensures that z ≥ 10 32 , hence ∆ ≤ 1.95 • 10 6 10 9 log(10 35/4 q/10 9/2 ) + 248 log 2 (10 6 q/10 9/2 ) 10 35/2 q 2 • 10 -7 2 log 10 35/4 q 10 9/2 9 + 6 π 2 .

A numerical application concludes that ∆ ≤ 1/42804. We finally have to take care of the additional factor (zq -1 + 1)/2. We introduce δ = (z + q)(log z)/(4X/9) ≥ φ(q) zq -1 + 1 2 log z 2X/9 .

We have δ ≤ 10 -50 . We find that 1 φ(q)

a mod * q (ϵ(a) + δ) 2 ≤ ∆ + 2δ √ ∆ + δ 2 ≤ 1/42500
as claimed, by renaming ϵ(a) + δ by ϵ(a). □ 10. A Brun-Titchmarsh inequality for cosets Theorem 1.6 of [START_REF] Ramaré | Products of primes in arithmetic progressions[END_REF] has the condition q ≤ y 1/3 /900. This was introduced only to get better numerics, as the proof indeed allows for y ξ for any ξ ≤ 2/5. At this level we can even save a bit, as shown in the next result.

In this section, we use

(23) η(t) =      2t, 0 ≤ t ≤ 1/2, 2(1 -t), 1/2 ≤ t ≤ 1, 0,
otherwise.

Lemma 10.1. When z ≥ 6, we have d≤z µ 2 (d)/φ(d) ≥ log z + 1.24.

The bound follows from [18, Theorem 3.1] when z ≥ 700. We complete the proof by a direct inspection. The constant 1.24 is forced by the case z = 29. Lemma 10.2. Let y 1/5 ≥ √ q ≥ 3000 and η be as in (23). Let G q = (Z/qZ) × and let H ⊆ G q be a subgroup of index 5. Then for any class u in G q .

If we guarantee y 30 √ q > y 4/5 , and since the total weight (given by Lemma 10.3) is indeed y/(2 log y), this ensures an accumulation per coset which is strictly less than half the total number of primes. From this we shall deduce that at least three cosets contain primes.

Proof. We modify the end of the proof of [START_REF] Ramaré | Products of primes in arithmetic progressions[END_REF]Theorem 1.6] starting from equation (17) therein as follows and using Lemma 10.1 above rather than G(z) ≥ log z as in [START_REF] Ramaré | Products of primes in arithmetic progressions[END_REF]Lemma 4.2]. We first deduce a more precise inequality from these assumptions:

Y log y y/2 π η (y; q, uH) ≤ log y log z + 1.24 + 2zY log y y + √ q 2Y z 2 log y y(log z + 1.24) 

A + A = G.
Proof of Theorem 1.1. Let P(y) be the set of primes below y that do not divide q and let A be the image of P(y) in G q = (Z/qZ) × . We seek to show that A • A • A = G q . Recall that we assume that (25) 10 30 ≤ q ≤ y 2/5 /10 

(p,q)=1 η * (p/y) = a mod * q p≡a[q]
η * (p/y) ≤ a∈A (U + ξ(a))2y/9 φ(q) log y where (27) J = log y log y 10 9 √ q ≤ 1.303, U = 2.008J, ξ(a) = 2ϵ(a)J Lemma 12.2. For every q ≤ 200 and q / ∈ {2, 3, 4, 5, 6, 10}, every invertible class modulo q contains a product of three primes, each of which of size at most q.

If we replace the bound q by 2q, then no exception would occur. We then go farther step by step to take care of the irregularities occuring at small values.

Lemma 12.3. For every q ∈ [200, 30 000], every invertible class modulo q contains a product of three primes, each of which being of size at most B(q), where

Step-1. B(q) = q/2 when q ∈ [200, 600],

Step-2. B(q) = q/4 when q ∈ [600, 1000],

Step-3. B(q) = q/5 when q ∈ [1000, 2000],

Step-4. B(q) = q/8 when q ∈ [2000, 3000],

Step-5. B(q) = q/10 when q ∈ [3000, 4500],

Step-6. B(q) = q/14 when q ∈ [4500, 5200],

Step-7. B(q) = q 5/7 when q ∈ [5200, 10 000],

Step-8. B(q) = q 2/3 when q ∈ [10 000, 24 000],

Step-9. B(q) = q 13/20 when q ∈ [24 000, 30 000].

It is expected that one should be able to reach B(q) = q 1/3+δ for any arbitrary small positive δ. If this is true, our numerical trials show that the asymptotic regime is slow to become dominant. This explains why this line of approach yields less slower results than the one with products of two primes. A better algorithm would aim at a lesser bound for B(q) and handle the exceptional q's and the classes not represented in a special way, but we did not attempt such dedicated programming. 12.3. Products of three primes below q(log q) 2 . Proof of Theorem 1.2. The previous strategies require large tables and are impractical when q starts to be somewhat large. We relax these conditions in Theorem 1.2. Our algorithmic strategy is to first find the smallest prime congruent to 1 modulo q and then to check that each class modulo q contains an integer that has at most three prime factors and is indeed of size at most q(log q) 2 . We then precompute the integers that have more than four many prime factors and use the Set data-structure to determine quickly whether an integer belongs to this list. With the Pari/GP script below compiled with gp2c, we reach the bound 2 • 10 7 in about 30 minutes of a standard laptop. Increasing the bound 2 • 10 7 would require an increase of the memory by the same factor, and we already use nearly 8Gb.

The bound for the required primes outputed by this script varies slowly but does not tend to decrease and for instance, we need primes up to more that 0.95 q(log q) 2 for some q ∈ [19900000, 19950000]. If we need a statement valid for every q ≥ 3 (resp. q ≥ 2), we only have to replace q(log q) 2 by 2q(log q) 2 (resp. 4q(log q) 2 ). for(q = borneinf, bornesup, if(q % whentotell == 0, print("When ", max(borneinf, q -whentotell) , " <= q < ", q, " --> locmax = ", locmax); maxgot = max(maxgot, locmax); locmax = 0); btt = q*log(q)^2; pmax = 0; /* Ensure we can find a prime congruent to 1 */ forprimestep(p = q + 1, q^2, q, if(p % q == 1, pmax = p; break)); if(pmax == 0, print("Error!!"); return(0), locmax = max( locmax, pmax / btt)); /* Find a product of at most three primes in each class: */ for(n = 16, q -1, if(gcd(n, q) == 1, while(((n <= multi*bornesup)&&(setsearch(setbadn, n))) ||(bigomega(n) >= 4), n += q); locmax = max( locmax, n / btt)))); if(bornesup % whentotell != 0, print("When ", max(borneinf-1, floor(bornesup/whentotell)*whentotell), " <= q <= ", bornesup, " --> locmax = ", locmax)); maxgot = max(maxgot, locmax); return(maxgot);} 13. Changing the constants in Theorems 1.4 and 1.1

On reading patiently the proof of Theorem 1.4, we obtain the following.

Theorem 13.1. Let q ≥ q 0 ≥ 2 • 10 7 be an integer. Let X ≥ (Cq) 5/2 be some real number. For every invertible class a modulo q, we have p≡a[q] η * (p/X) ≤ 2(1.004 + ϵ(a)) • 2X/9 φ(q) log X R √ q where a mod * q ϵ(a) 2 ≤ φ(q)/4250, where the constants (q 0 , C, R) may be chosen from Table 2. q 0 2 • 10 Proof. We follow the proof of Theorem 1.4. Lemma 9.2 can be used here as there since q 0 ≥ 10 7 . Inequality (21) requires 10 4 ≤ z 2 ≤ X/100. Theorems 6.1 and 8.2 ask for the stronger condition: z ≥ 1000. Proceeding, we modify (22) in (28) z = X R √ q , X ≥ (Cq) 5/2 .

We thus get z 2 ≥ (C 5/2 /R)q 2 . We have to take care of some monotonicity condition.

In particular, we want √ q(log z) 11 /X to be non-increasing in z 2 = X/(R √ q). We may rewrite this expression as (11/2) 11 ((log(z 2/11 )/z 2/11 ) 11/2 so it is enough to assume that z ≥ exp(11/2) which is small enough. The upper bound for ∆ reduces to, with L = log z and X = (Cq) 

R

provided that C 5/2 q 2 0 ≥ 10 6 R. A numerical application yields the values of Table 2. □ Theorem 13.2. For any q ≥ q 0 and any invertible residue class a modulo q, there exists a natural number that is congruent to a modulo q and that is the product of exactly three primes, all of which are below (Cq) 5/2 , where q 0 and C may be obtained from Table 3. q 0 2 • 10 Table 3: possible values in Theorem 13.2.

The present method would not allow to take primes only ≥ q 5/2 however large q, due the usage of Lemma 10.2.

Proof. We follow the proof of Theorem 1.1 and assume that the constants q 0 , C and R are admissible in Theorem 13.1. The condition that emerges is (29) J = log y log y R √ q ≤ 1.3054 where y = (Cq) 5/2 . This is required so that we may reach c ≥ 0.380. This condition reads 1.3054 log R -2 × 1.3054 -5 2 log q ≤ 0.3054 5 2 log C.

We next swiftly build Table 3, though it is to be noticed that C has to be taken as large as 30 for using Lemma 10.2. The proof is complete. □

Figure 2 .κ 1 =

 21 Figure 1. η * (t) Figure 2. κ(t)

Figure 3 .

 3 Figure 3. Plot of max x≤z S(x)(log x) 3 /x 2 for 10 ≤ z ≤ 15000

9 . 4 Lemma 9 . 1 .

 9491 Proof of Theorem 1.We have n≤y κ(n/y)χ(n) Let us denote our sum by S. The first inequality comes from Lemma 3.2. We then use the identity τ (χ)χ(m) = 1≤a<r χ(a)e(am/r) where τ (χ) is here the Gauss sum attached to χ, and get

  {check(borneinf, bornesup, whentotell = 50000) = my(pmax, maxgot = 0, multi = 3, btt, locmax = 0, curindex, nbbadn = 0, setbadn); for(n = 1, multi*bornesup, if(bigomega(n) > 3, nbbadn++)); setbadn = Set(Vecsmall([1.. nbbadn])); curindex = 1; for(n = 1, multi*bornesup, if(bigomega(n) > 3, setbadn[curindex] = n; curindex++));

7 10 10 10 15 10 20 10 30 10 88 C 10 15 10 15 10 14 10 13 10 11 30 R 10 9 10 9 10 9 10 9 5 •

 885 10 8 2 • 10 8

  by Mossinghoff, Oliveira e Silva and Trudgian.

	Lemma 3.6. When y ≥ 1, we have				
		n≤y			
	Lemma 3.5. When x ≥ 1, we have	n≤x	µ 2 (n) n	≤	6 π 2 log x + 1.166.
	See [15, Lemma 3.4].				

Table 1

 1 

	6 π 2 t + r(t). We apply Lemma 3.3. In our case, this means that
	the constant we seek is ζ(2/3)/ζ(4/3), which is negative! We have thus proved that
	S =	6 π 2 3y 1/3 +	ζ(2/3) ζ(4/3)	+ O * (5/y 1/6 )
	by using the simple bound of Lemma 3.4. Pari-GP gives us that ζ(2/3)/ζ(4/3) =
	-0.679 • • • . This ensures us that our error term is negative when y ≥ 160000. This
	last range is easily covered by direct computations.

□ Lemma 3.7. When 1 ≤ a ≤ 10 and x ≥ 1, we have n≤x µ 2 (n) log x n a ≤ a!c a x where c 1 0.6715 c 6 0.6108 c 2 0.6365 c 7 0.6097 c 3 0.6227 c 8 0.6101 c 4 0.6161 c 9 0.6127 c 5 0.6127 c 10 0.6175 .

  2.686 x 3 + 7.638 x 2 + 14.9448 x + 14.7864, F 2 (x) = x 4 + 5.372 x 3 + 20.686• • • x 2 + 50.405 • • • x + 59.366 • • • , F 3 (x) = x 4 + 8.058 x 3 + 39.146 • • • x 2 + 113.648 • • • x + 154.405 • • • , Since [d 1 , d 2 ]= n, we replace d i by gd i , where g = gcd(d 1 , d 2 ) so that gd 1 d 2 = n. The proof starts by noting the following chain of inequalities: the inequality log A • log B ≤ (log AB) 2 /4. Notice this inequality is sharp when A = B, or, in our case of application, when d 1 = d 2 . Moreover, since n = gd 1 d 2 and both gd 1 and gd 2 are ≤ z, it follows that[START_REF] Motohashi | On some improvements of the Brun-Titchmarsh theorem[END_REF] n ≤ zd i , i = 1, 2.From now on and until the end of this section, the variables n, d i , g and g i , and later a, b, c and d, refer exclusively to squarefree positive integers. Then we can take y = zd 4 /D in Lemma 5.1 and apply it with F = F 0 , to get Further, we assume that (d 1 , d 3 d 4 ) = g 1 and (d 2 , d 3 d 4 ) = g 2 , so that g 1 g 2 = g. Similarly define g 3 = (d 3 , d 1 d 2 ) and g 4 = (d 4 , d 1 d 2 ), so that one has g 3 g 4 = g. Now, owing to the symmetry of d 1 , d 2 , d 3 , we can assume d 3 ≤ d 2 ≤ d 1 ≤ z with an extra 3!.

	[d1,d2]=n	|λ d1 ||λ d2 | =	gd1d2=n	log z gd1 log z	•	log z gd2 log z	≤	1 4(log z) 2	gd1d2=n	log	g 2 d 1 d 2 z 2	2
					≤	1 4		log z 2 n log z	2	d1d2|n	1,
	where we used Therefore										
	S ≤	1 16(log z) 4	n≤z 2		log	z 2 n		4	d1d2|n	1 =	1 16(log z) 4	d1,...,d4≤z n≤zdi	log	n z 2	4
													d3d4|n	n≡0[D]
	≤	1 16(log z) 4	d1,...,d4≤z n≤zdi/D	log	z 2 nD
					S ≤	1 4(log z) 4	d4≤di≤z	zd 4 D	F 1 log	z d 4	.
														We can
	then rewrite the sum as							
	(13)		S ≤	3z 2(log z) 4	g≤z 2	g	g1g2=g g3g4=g	d4≤d3≤d2≤d1≤z gi|di

F 4 (x) = x 4 + 10.744 x 3 + 63.017

• • • x 2 + 211.940 • • • x + 325.447 • • • , F 5 (x) = x 4 + 13.43 x 3 + 92.299 • • • x 2 + 352.549 • • • x + 602.915 • • • .

4 where D = [d 1 d 2 , d 3 d 4 ]. Without loss of generality (and an extra factor of 4), we assume d 4 is the smallest. We suppose that g = (d 1 d 2 , d 3 d 4 ), so that D = d 1 d 2 d 3 d 4 /g.

  build all the couples (d 3 , d 4 ), with each being ≤ z + 1, and add what has to be added to the S i . • Assume henceforth that d 1 ≤ z, set d 2 = z + 1, and again all the couples (d 3 , d 4 ), with each being ≤ z + 1, and add what has to be added. • Assume then that d 1 and d 2 are bounded above by z and set d 3 = z + 1. For each d 4 ≤ z + 1, build all the couples (d 1 , d 2 ) and add what is to be added. • Finally, do the same with d 4 = z + 1 and d 1 , d 2 and d 3 being bounded above by z.

  while by the recursion hypothesis, we have S 2 ≤ 1.166 T [(6π 2 Y + 1.166) a ](log x). This gives the required upper bound for S 1 + S 2 and concludes the proof.

	Proof. Note that us log(z/d 1 ) log(z/d 2 ) ≤ 1 √ ab ≤ a+b 2 . With a = log(z/d 1 ) and b = log(z/d 2 ), this gives 2 log z 2 d1d2

□ Theorem 8.2. When z ≥ 1000, we have S ≤ 7 • 10 -7 (log z) 9 + 6 π 2 .

  7 .

	Let us obtain a lower bound for |A|. From Lemma 10.3 and Theorem 1.4, we get
	(26)	2y/9 log y	≤	p≤y

Table 2 :

 2 7 2 • 10 7 2 • 10 7 10 10 10 15 10 20 10 30 10 30 10 9 10 9 5 • 10 8 10 9 possible values in Theorem 13.1.

	C	10 13	3000	1	10 10 10 6	90	10 8	1/1000
	R	10 9	10 10	10 13	10 9			

  which we want to be at most 1/42800. The first term is dominant and asks for π2 6 RL ≥ 42800 × 3096225. When log z ≥ 10 35 , the value R = 10 9 is enough. This explains the choice made in Theorem 1.[START_REF] Cohen | Explicit estimates for summatory functions linked to the Möbius µ-function[END_REF]. In general we need to satisfy the inequality

				5/2 ,						
	∆ ≤	3096225 ( 6 π 2 L + 1.166) RL 2	+	7.44L 2 qC 5/2 2	L 9 10 7 +	6 π 2
	3096225 ( 6 π 2 L + 1.166) RL 2	+	7.44L 2 q 0 C 5/2 7	L 9 10 7 +	6 π 2 ≤	1 42800	L =	1 2	log	C 5/2 q 2 0

π 2 log z + 1.166 T 1/3 T 1/3 T 1/3 H(0)

The first and second authors have been partly supported by the Indo-French Centre for the Promotion of Advanced Research -CEFIPRA, project No 5401-1. The first author acknowledges the financial support by the Indian National Science Academy through a distinguished professorship. The second author was supported by the joint FWF-ANR project Arithrand: FWF: I 4945-N and ANR-20-CE91-0006.

whence, with c = |A|/φ(q), φ(q) ≤ a∈A (U + ξ(a)) ≤ 2.0008 • J|A| + |A| 1/2 a∈A ξ(a) 2 1/2 ≤ cφ(q)2.008J + cφ(q) φ(q) 42500 J 2 ≤ (2.008c + 0.00486 √ c)φ(q)J.

This and (27) imply that c ≥ 0.380. Lemma -o(1), this would guarantee us only two classes in a subgroup of index 5, which is not enough (they could be {0, 1} in (Z/5Z, +), whose three-fold sum does not cover Z/5Z). We need to go simply beyond 2/5 but we do not need to increase the exponent, since a bound of the shape 0.4 + ϵ(q) for some positive ϵ(q) is enough, even if ϵ(q) tends to 0, and this is exacty what Lemma 10.2 gives us. On reasoning as in [START_REF] Ramaré | Products of primes in arithmetic progressions[END_REF], we get λ ≥ 3 which is enough to conclude this proof. □

Some computations for small values of the modulus

For a modulus q, let P (q) be the largest over the invertible residue class a modulo q, of the smallest prime congruent to a modulo q. The paper [START_REF] Li | A lower bound for the least prime in an arithmetic progression[END_REF] contains in Appendix A the report of some numerical computations that implies that P (q) ≤ 2.2q(log q) 2 when q ≤ 10 6 .

Our problem is somewhat distinct, and we consider three situations.

12.1. Products of two primes below q. Let P 2 (q) be the smallest X of the largest over the invertible residue class a modulo q that are product of two primes, each prime being at most X in size. A brute force Pari/GP script simply producing products of two primes and collecting the classes obtained yields the next lemma.

Lemma 12.1. For every q ∈ [402, 50 000], we have P 2 (q) ≤ q. The class 385 modulo the prime 401 does not contain any product of two primes, each being below 400. When q ∈ [3404, 50 000], we have P 2 (q) ≤ q/2. When q ∈ [11 742, 50 000], we have P 2 (q) ≤ q/3. When q ∈ [35 072, 50 000], we have P 2 (q) ≤ q/4.

The reader should notice that every time we decrease the bound we aim for (hence aiming at a better theoretical result), we shorten the computation. As the bad cases are rare enough, we first aim at q/5 for instance when q ≥ 20 000 and, if it does not work, we try q/4 and so on. A conjecture of Erdős recalled in [6, Section 2] says that, when q > q 0 for some q 0 , every invertible class modulo q contains a product of two primes, each of which is of size at most q. The above lemma hints that one can maybe take q 0 = 401. 12.2. Products of three primes below q. A Pari/GP script simply producing products of three primes and collecting the classes obtained yields the initial step of our ladder.