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From adapters to prefix-tuning, parameter efficient fine-tuning (PEFT) has been a well investigated research field in the past few years, which has led to an entire family of alternative approaches for large language model fine-tuning. All these methods rely on the fundamental idea of introducing additional learnable parameters to the model, while freezing all pre-trained representations during training. This finetuning process is generally done through refitting all model parameters to the new, supervised objective function. This process, however, still requires a considerable amount of computing power, which might not be readily available to everyone. In addition, even with the use of transfer learning, this method requires substantial amounts of data. In this article, we propose a novel and fairly straightforward extension of the prefix-tuning approach to modify both the model's attention weight and its internal representations. Our proposal introduces a "token-tuning" method relying on soft lookup based embeddings derived using attention mechanisms. We call this efficient extension "attentive perturbation", and empirically show that it outperforms other PEFT methods on most natural language understanding tasks in the few-shot learning setting.

Introduction

The use of pre-trained large language models, such as BERT [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF], T5 [START_REF] Raffel | Exploring the limits of transfer learning with a unified text-to-text transformer[END_REF] or GPT [START_REF] Radford | Language Models are Unsupervised Multitask Learners[END_REF] have been ubiquitous in a wide range of natural language processing tasks. These models are pre-trained in a self-supervised fashion on massive textual datasets and are made readily available online. The machine learning practitioner can then use these models' internal representations as a starting point -either as an initialization scheme or a feature extraction tool -to build powerful models for NLP related tasks (eg., summarization, machine translation, language generation).

The fine-tuning of pre-trained language models to perform downstream tasks requires storing and modifying a copy of all the model's parameters for each task. Yet, some powerful large language models involve a prohibitively high number of parameters (eg. 774M parameters for GPT-2 [START_REF] Radford | Language Models are Unsupervised Multitask Learners[END_REF], 175B parameters for GPT-3 [START_REF] Brown | Language models are few-shot learners[END_REF]). In such cases, fine-tuning can be readily unfeasible, in particular for areas where collected datasets are of small sample sizes. Indeed, while the smallest dataset used in the experiments presented in BERT models' seminal article contains 2.5K observations, such amount of data is generally impractical to obtain, for instance in clinical studies involving a cohort of patients.

Adapters and prefix-tuning approaches have motivated numerous investigations, as they enable lightweight fine-tuning by introducing additional learnable parameters to the model, while freezing all pre-trained representations during training [START_REF] Rebuffi | Learning multiple visual domains with residual adapters[END_REF][START_REF] Houlsby | Parameter-efficient transfer learning for nlp[END_REF]. Hence, such approaches are interesting ways to leverage large pre-trained language models for downstream NLP tasks. Over the last few years, they have been at the origin of a wide family of alternative approaches for large language model fine-tuning.

Although each individual approach has its specificity, they can be gathered into two main categories: (i) adapter-like approaches, that modify the model's internal representations with the use of bottleneck perceptrons introduced at strategic points in every transformer stack, and (ii) prefix or prompt based approaches, that introduce learnable virtual tokens in the input sequence, which allows to modify each transformer stack's attention weights. Some attempts have been made to unify these two families of methods, but mostly consist of combining them independently in a mosaic of adapter-like methods, which both considerably raises the number of model hyperparameters and doesn't necessarily yields the expected gains in predictive performances.

In this work, we demonstrate that a straightforward extension of the prefixtuning approach, named Attentive perturbation, can efficiently outperforms the parameter efficient fine-tuning (PEFT) methods in the few-shot learning setting. In the following, we introduce in Section 2 the family of PEFT methods. Then, Section 3 provides detailed information on our novel prefix tuning extension. Section 4 describes our specific experimental settings, based on the GLUE benchmark [START_REF] Wang | GLUE: A multitask benchmark and analysis platform for natural language understanding[END_REF]. Finally, we discuss our results in Section 5, before the conclusion in Section 6.

PEFT Methods

The field of parameter efficient fine-tuning, which has been an active area of research for a few years now, proposes alternatives to this standard fine-tuning scheme that allows practitioners to leverage large language models' powerful learned representations, even with a few labeled instances. Although these approaches tend to differ in their implementation, most of them rely on the same idea, which is to freeze all the language model's parameters during training, and instead train additional, trainable ones, typically injected in the model in an additive fashion. These additional parameters are typically orders of magnitude less numerous than the actual model, leading to better performances in the few-shot learning setting, and less computational requirement for model fitting.

Since the introduction of Adapters methods [START_REF] Houlsby | Parameter-efficient transfer learning for nlp[END_REF], an entire family of PEFT methods has been introduced in the academic literature. These methods have varying degrees of performances, both in terms of parameter efficiency and predictive power. This family of methods embeds:

-Adapters and their variants [START_REF] Houlsby | Parameter-efficient transfer learning for nlp[END_REF][START_REF] Pfeiffer | AdapterFusion: Nondestructive task composition for transfer learning[END_REF], which use a 2 layers bottleneck perceptron to additively corrupt the transformer stack's inner representations at one or several points after its attention module.

-Bitfit [START_REF] Ben Zaken | BitFit: Simple parameter-efficient finetuning for transformer-based masked language-models[END_REF], which have the particularity to not introduce any additional parameter to the model, but instead limits itself to fine-tuning solely the bias terms in all of the model's layers.

-Low Rank Adaptation (LoRA) [START_REF] Hu | LoRA: Low-rank adaptation of large language models[END_REF], which additively reparameterize the queries and values projection matrices with a linear bottleneck multilayer perceptron.

-Prefix-tuning [START_REF] Liu | P-tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks[END_REF], which, instead of modifying the transformer's stack's signal itself, preprends to the query and value sequences additional learnable tokens, in an approach similar to continuous prompt learning.

-Prompt fine-tuning [START_REF] Lester | The power of scale for parameter-efficient prompt tuning[END_REF], a simpler variant of prefix tuning where learnable virtual tokens are prepended to the input sequence. This method, however, tends to work only for larger models, and is as such discarded from the scope of this article.

-Fusion methods such as Unified Framework for Parameter Efficient Language model Tuning (UniPELT) [START_REF] Mao | UniPELT: A unified framework for parameter-efficient language model tuning[END_REF], which leverages a combination of several adapter modules at once associated with gating mechanisms, in order to federate each approach's advantages while alleviating their respective drawbacks.

Proposed approach: Attentive perturbation

As aforementioned, apart from prefix (or prompt) tuning, most parameter efficient fine-tuning methods are based on the additive introduction to the model of a bottleneck two layer perceptron, with varying activation function, at varying points in the transformer stack. Prefix-tuning, however, does not directly modify the model's signal, but instead focuses on adapting each transformer stack's attention weights, and is based on learnable embedding. Following this latter observation, we propose a method to additively modify the model's internal representation based on embeddings, rather than bottleneck perceptrons, and choose to apply these perturbations to the attention layer's queries and values, in an approach conceptually similar to LoRA.

Applying these embeddings in an additive fashion to the attention layer's input sequence, which is continuous and of varying length by essence, is not as straightforward as the perceptron approach used in LoRA or adapter methods. We propose to do so using a soft lookup mechanism on the embeddings, derived in a similar fashion to attention mechanisms.

In other words, for each perturbation module (one for the transformer stack's queries, and another for its values), we introduce two distinct embeddings E q and E v , and combine them with the transformer layer's input in a scaled dotproduct attention module as keys, values and queries, respectively. The module's output is then additively reinjected into the layer's input sequence, prior to the transformer stack's multi-head attention module, as can be seen in Figure 1. We call these modules "attentive perturbators" and formally define them as follows for a given transformer layer:

P q (I) = I + softmax( IE ⊤ q,1 √ d I )E q,2 (1) 
P v (I) = I + softmax( IE ⊤ v,1 √ d I )E v,2 (2) 
where -I is the layer's input sequence of vectors -E q,1 , E q,2 are the trainable embeddings used for the queries perturbation Similar to what is done in prefix-tuning to improve optimization stability, we do not learn these embeddings directly, but instead perform a reparameterization trick using a two layer bottleneck perceptron, shared for the queries and values embeddings. To the best of our knowledge, we are the first to introduce an adapter-like module that makes use of attention based operation instead of multilayer perceptrons.

-E v,1 , E v,

Experiments settings

We choose to assess our method's performances on the GLUE benchmark [START_REF] Wang | GLUE: A multitask benchmark and analysis platform for natural language understanding[END_REF], a corpus of 8 natural language understanding tasks all formulated as single or double sentence classification problems, with varying sample sizes. However, since we limit ourselves to the few-shot learning setting, we do not use these datasets as is. Instead, we use a methodology similar to what was presented in the UniPELT paper for our experiments.

Basically, we sample observations from the GLUE benchmark in order to build a series of small datasets with 50, 100, 200 and 500 observations. Our method for building those datasets, however, differs from theirs on a few key points.

First, in [START_REF] Wang | GLUE: A multitask benchmark and analysis platform for natural language understanding[END_REF] the authors chose to build validation sets of 1, 000 observations for all sampled training datasets, which we feel is unrealistic in a few-shot learning settings (validation datasets do not typically contain more than ten times the number of training examples). Second, they use the GLUE benchmark validation datasets as test datasets. However, some of these validations datasets have considerably small sample sizes (277 for RTE, 408 for MRPC), which might lead to noisy test metric evaluation. As a consequence, for each of the glue benchmark dataset, a dataset of sample size K is built as follows:

1. The original training and validation sets were concatenated into one sampling dataset.

2. A test dataset was built from the observations, using random sampling with a sample size of half the total sample size (capped at 5K observations). For a given task, the same test dataset is used for all experiments (including all sampled training sizes).

3. From the remaining observations, K were sampled randomly, and divided with a 70/30 split into a training and validation set, respectively

Ten distinct training datasets were sampled from all glue benchmarks and for all sample sizes, so as to allow for performance metric averaging and statistical testing of performance differences.

For all these datasets, we compare our method with standard fine-tuning and 4 other parameter efficient methods, namely standard Adapters, LoRA, Prefix-tuning and UniPELT. For all methods, we follow the same training procedure and hyperparameter search that is done in the UniPELT paper. All models were fit for 50 epochs using AdamW with linear weight decay and an early stopping mechanism with a patience of 10 non increasing epochs. The batch size was fixed to 16, and all method's specific hyperparameters were set up as follows:

-Standard fine-tuning: Learning rate ∈ [2 × 10 -5 , 1 × 10 -5 ] .

-Adapters: Learning rate of 1×10 -4 and a reduction rate taken from {12, 6, 3}.

-LoRA: rank and α values of 8, and a learning rate ∈ [5 × 10 -4 , 1 × 10 -4 ].

-Prefix-Tuning: The prefix length was fixed to 50. The reparameterization trick was applied to the method with a bottleneck size of 512, and the learning rate taken from {5 × 10 -4 , 2 × 10 -4 , 1 × 10 -4 }.

-UniPELT: Prefix-tuning with 10 prefixes, adapter with a reduction factor of 16 and standard LoRA.

-Attentive perturbation (our approach): Same exact hyperparameter configuration as prefix-tuning. Embedding size fixed to 50, reparameterization trick applied with a bottleneck size of 512 and learning rate taken from {5 × 10 -4 , 2 × 10 -4 , 1 × 10 -4 }.

The proposed approach was implemented using the adapter-hub library, which already proposes implementations for all chosen baseline, as to use the same code base for all experiments to ensure fairness across all experiments.

Results

The performances of all selected PEFT methods as well as the proposed approach on the GLUE benchmark for varying sample sizes can be seen in Table1.

Overall Attentive perturbation outperforms all other baselines on average for all sample sizes. This gain in performance of more than 1 point compared to prefix-tuning, the second highest baseline, on all sample sizes except for 500 observations, where the performance gain starts to decrease, strongly supporting that the proposed approach is better suited to the few shot learning setting. The fact that the best performance gains for sample sizes of 50 and 100 is associated with the COLA dataset, which is strongly imbalanced, tends to bring further evidence to confirm this observation.

In addition, the proposed approach yields the best and second best performances on a given task for a given sample size 18 and 9 times out of 32, respectively. The second best method, Prefix-tuning, only yields the best and second best performances 5 and 16 times, respectively. In other words, our proposed approach is not in the top 2 best methods only 5 times in the 32 experiments presented in this paper.

Surprisingly, UniPELT, which fuses LoRA, Prefix-tuning and Adapter methods, does not outperform Prefix-tuning. This might be due to our experiment set up, with considerably smaller validation sets than those used in their experimental setup. 

Conclusion

In this paper we introduced a new parameter efficient fine-tuning method, the attentive perturbator. This method is fairly straightforward and easy to use; it requires a comparable amount of computation to prefix-tuning, which is considerably lower than most adapter-like methods at inference time. In addition, we empirically showed that this method behaves better on average than all other selected baseline PEFT methods, as well as traditional fine-tuning, on a variant of the GLUE benchmark specifically tailored to assess model performances in the few-shot learning setting.
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 1 Fig. 1. Overview of the attentive perturbation module. The bottleneck adapter used for the reparameterization trick is hidden for simplicity
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 2 are the trainable embeddings used for the values perturbation d I is the input sequence's dimensionality (and as such the embeddings dimensionality as well), in other words the model's hidden size
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 1 Experiment results. F1 scores are reported for QQP and MRPC. Spearman correlations are reported for STS-B. Matthews correlation are reported for CoLA. Accuracy measurements are reported for all other datasets. Results in bold and underlined correspond to the best and second best results for the selected dataset and sample size, respectively.
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