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The CAEclust Python package implements an original deep spectral clustering in an ensemble framework. Recently, strategies combining classical clustering approaches and deep autoencoders have been proposed, but their effectiveness is impeded by deep network hyperparameters settings. We alleviate this issue with a consensus solution that hinges on the fusion of multiple deep autoencoder representations and spectral clustering. CAEclust offers an efficient merging of encodings by using the landmarks strategy and demonstrates its effectiveness on benchmark data. CAEclust enables to reproduce our experiments and explore novel datasets.

Introduction and related theory

In the context of unsupervised learning, recent studies improved classical clustering approaches by relying on deep networks for dimensionality reduction, as such networks can automatically learn important features from data [START_REF] Banijamali | Fast spectral clustering using autoencoders and landmarks[END_REF][START_REF] Leyli-Abadi | Denoising autoencoder as an effective dimensionality reduction and clustering of text data[END_REF][START_REF] Tian | Deepcluster: A general clustering framework based on deep learning[END_REF][START_REF] Yang | Modularity based community detection with deep learning[END_REF]. In particular, deep autoencoders (DAE) propose a new data representation or encoding using an unsupervised learning. Yet, the effectiveness and ease-touse of existing DAE clustering strategies are impeded by their sensitivity to hyperparameters. First, network weights initialization adds randomness to the results. Pretraining helps to mitigate this issue, but is computationally intensive. Finding the correct deep architecture is another hurdle. In almost all recent papers on deep clustering, architectures are fine-tuned for each benchmark dataset and lack of technical rationales. Specifically, the architecture is usually derived by cross-validation on a validation set for a grid of hyperparameters [START_REF] Yang | Modularity based community detection with deep learning[END_REF][START_REF]Fast spectral clustering using autoencoders and landmarks[END_REF][START_REF] Ji | Deep subspace clustering networks[END_REF]. Such determination is infeasible in practice for unsupervised clustering. Other studies reuse architectures that were historically proposed for the considered dataset, without any technical explanations. As an example, the DAE architecture used in [START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF][START_REF] Guo | Improved deep embedded clustering with local structure preservation[END_REF][START_REF] Yang | Towards k-meansfriendly spaces: Simultaneous deep learning and clustering[END_REF][START_REF] Moradi Fard | Deep k-means: Jointly clustering with k-means and learning representations[END_REF], which contains an encoder having 3 fully connected layers with 500-500-2000 units and an encoding size of 10, is taken from [START_REF] Van Der Maaten | Learning a parametric embedding by preserving local structure[END_REF], which is inspired by [START_REF] Salakhutdinov | Learning a nonlinear embedding by preserving class neighbourhood structure[END_REF] and [START_REF] Hinton | A fast learning algorithm for deep belief nets[END_REF].

The CAEclust package relies on our recent work [START_REF] Affeldt | Spectral clustering via ensemble deep autoencoder learning (SC-EDAE)[END_REF] and practically addresses the above mentioned issues with a consensus optimization that reaches better predictive performance and more relevant clusterings than single data representation strategies. CAEclust embeds the landmarks strategy that strongly diminishes the computational complexity and requires no pretraining. It also fills the gap between ensemble deep autoencoders and spectral clustering in order to propose an effective approach that takes simultaneously advantage of several deep models with various hyperparameters settings. Specifically, we apply spectral clustering on an ensemble of fused encodings obtained from m different deep autoencoders.

Spectral clustering

A number of spectral clustering algorithms [START_REF] Filippone | A survey of kernel and spectral methods for clustering[END_REF][START_REF] Verma | A comparison of spectral clustering algorithms[END_REF], that propose different ways to use the eigenvectors of the normalized graph laplacian matrix [START_REF] Shi | Normalized cuts and image segmentation[END_REF] or of the walk's transition matrix [START_REF] Meila | Learning segmentation by random walks[END_REF], can be found in the literature. Their objective function typically favors low similarity between clusters and high similarity within clusters to partition n datapoints of X ∈ R n×d into k disjoint clusters. The spectral clustering algorithm, in its normalized version, use the top k eigenvectors of the normalized graph Laplacian matrix. They are the relaxations of the indicator vectors which provide assignments of each datapoint to a cluster. Hence, it amounts to maximize the following relaxed normalized association, max

B∈R n×k T r(B ⊤ SB) s.t. B ⊤ B = I (1) 
with S = D -1/2 KD -1/2 ∈ R n×n is the normalized similarity matrix where K ∈ R n×n is the similarity matrix and D ∈ R n×n is the diagonal matrix whose (i, i)-element of X is the sum of X's i-th row.

The solution of ( 1) is to set the matrix B ∈ R n×k equal to the k eigenvectors corresponding to the largest k eigenvalues of S. After renormalization of each row of B, a k-means assigns each datapoint x i of X to the cluster that the row b i of B is assigned to. An advantage of the spectral clustering is that it performs well on arbitrary shaped clusters, by contrast with several other clustering algorithms (e.g. k-means). However, this approach has also difficulties to handle large-scale datasets. This is the consequence of the high complexity of the graph Laplacian construction and the eigendecomposition.

Recently, the Landmark-based Spectral Clustering (LSC ) [START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF] (or AnchorGraph [START_REF] Liu | Large graph construction for scalable semisupervised learning[END_REF]) strategy offered a scalable spectral clustering. In particular, LSC allows to efficiently construct the graph Laplacian and compute the eigendecomposition. Specifically, each datapoint is represented by a linear combination of p representative datapoints (or landmarks), with p ≪ n. The obtained representation matrix Ẑ ∈ R p×n , for which the affinity is calculated between n datapoints and the p landmarks, is sparse. This, in turn, ensures a more efficient eigendecomposition as compared to the above mentioned eigendecomposition of S (Eq. 1).

Deep autoencoders

An autoencoder [START_REF] Hinton | Autoencoders, minimum description length and Helmholtz free energy[END_REF] is a neural network that implements an unsupervised learning algorithm in which the parameters are learned in such a way that the output values tend to copy the input training sample. The internal hidden layer of an autoencoder can be used to represent the input in a lower dimensional space by capturing the most salient features.

We can decompose an autoencoder in two parts, namely an encoder f θ , followed by a decoder g ψ . The first part provides the encoding Y of the input dataset by computing a feature vector y i = f θ (x i ) for each input training sample. Then, the encoding is transformed back to its original representation by the decoder part, following xi = g ψ (y i ).

The sets of parameters for the encoder f θ and the decoder g ψ are learned simultaneously during the reconstruction task while minimizing the loss, referred to as J given by

J AE (θ, ψ) = n i=1 L(x i , g ψ (f θ (x i ))), ( 2 
)
where L is a cost function for measuring the divergence between the input training sample and the reconstructed data. The encoder and decoder parts can have several shallow layers, yielding a deep autoencoder (DAE) that enables to learn higher order features. The network architecture of these two parts usually mirrors each other.

2 CAEclust algorithm

Algorithm overview

We first obtain a set of m encodings {Y ℓ } ℓ∈ [1,m] , given an n × d data matrix X, using m DAE trained with different hyperparameters settings. Then, for each embedding Y ℓ , we construct a graph matrix S ℓ . We fuse the m graph matrices in an ensemble graph matrix S (equivalently named affinity or similarity matrix in the following) which contains information provided by the m embeddings. Finally, the spectral clustering applied to S benefits from the common subspace shared by the m deep embeddings. Hence, our proposal hinges on three challenges, namely (i) generating m deep embeddings, (ii) integrating the clustering in an ensemble learning framework and (iii) solving the clustering task in a highly efficient way. The steps of CAEclust are summarized in Algorithm 1 and illustrated by Figure 1. 

Constructing graph matrices from embeddings

An autoencoder is composed of an encoder f θ and a decoder g ψ that can have multiple layers of different widths. Its cost function, given by Eq.3, measures the error between the input x ∈ R d×1 and its reconstruction at the output x ∈ R d×1 . We can learn m encodings {Y ℓ } ℓ∈ [1,m] by training DAE with different hyperparameter settings, g ψ ℓ and f θ ℓ , and Y ℓ = f θ ℓ (X) (Fig. 1, (a)).

||X -

g ψ ℓ f θ ℓ (X) || 2 . (3) 
The Landmark Spectral Clustering [START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF] and the Anchor-Graphs [START_REF] Liu | Large graph construction for scalable semisupervised learning[END_REF] strategies compute a smaller and sparser representation matrix Z ℓ ∈ R n×p that approximates a full n × n affinity matrix. This matrix is built between the landmarks {u ℓ j } j∈ [1,p] and the encoded points {y ℓ i } i∈ [1,n] (Fig. 1,(a)). CAEclust proposes to construct the graph matrix S ℓ following this idea. First, we obtain a set of p points (p ≪ n), that are the landmarks which approximate the neighborhood structure, through k-means applied on the embedding matrix Y ℓ . Then, a non-linear mapping from data to landmark is computed as follows,

z ℓ ij = Φ(y ℓ i ) = K(y ℓ i , u ℓ j ) j ′ ∈N (i) K(y ℓ i , u ℓ j ′ ) ; j ′ ∈ N (i) (4) 
where N (i) indicates the r (r < p) nearest landmarks around y ℓ i . As proposed in [START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF], we set z ℓ ij to zero when the landmark u ℓ j is not among the nearest neighbor of y ℓ i , leading to a sparse affinity matrix Z ℓ . The function K(.) is used to measure the similarity between data y ℓ i and anchor u ℓ j with L 2 distance in Gaussian kernel space K(x i , x j ) = exp(-||x i -x j || 2 /2σ 2 ), and σ is the bandwidth parameter. The normalized matrix Ẑℓ ∈ R n×p is then utilized to obtain a low-rank graph matrix,

S ℓ ∈ R n×n , S ℓ = Z ℓ Σ -1 Z ⊤ ℓ where Σ = diag(Z ⊤ ℓ 1).
As the Σ -1 normalizes the constructed matrix, S ℓ is bi-stochastic, i.e. the summation of each column and row equal to one, and the graph Laplacian becomes,

S ℓ = Ẑℓ Ẑ⊤ ℓ where Ẑℓ = Z ℓ Σ -1/2 . ( 5 
)

Algorithmic optimization on the ensemble of affinity

CAEclust merges m graph similarity matrices, S ℓ , in an ensemble similarity matrix, S. This matrix contains the information provided by the encodings {Y ℓ } ℓ∈ [1,m] obtained using m DAE trained with different hyperparameters setting ℓ. Hence, the CAEclust ensemble affinity matrix is built as the summation of the m basic similarity matrices as given by Eq.6. Such aggregation follows an Ensemble Clustering idea analogous to that proposed in [START_REF] Strehl | Cluster ensembles -a knowledge reuse framework for combining multiple partitions[END_REF][START_REF] Vega-Pons | A survey of clustering ensemble algorithms[END_REF] where a co-association matrix is first built as the summation of all basic similarity matrices, and where each basic partition matrix can be represented as a block diagonal matrix,

S = 1 m m ℓ=1 S ℓ . (6) 
The S matrix is approximately block stochastic for many natural problems. Hence, the first k eigenvectors of S are approximately piecewise constant over the k almost invariant rows subsets [START_REF] Meila | A random walks view of spectral segmentation[END_REF]. In the following, we show how CAEclust computes, at lower cost, B that is shared by the m graph matrices S ℓ . The B matrix is obtained by optimizing the trace maximization problem given by max

B T r(B ⊤ SB) s.t. B ⊤ B = I. (7) 
We can solve Eq. 7 by setting B equal to the k eigenvectors corresponding to the largest k eigenvalues of S. However, the computation of the eigen-decomposition of S of size (n×n) is O(n 3 ). By contrast, CAEclust computes instead the k left singular vectors of the concatenated matrix,

Z = 1 √ m [ Ẑ1 | . . . | Ẑj | . . . | Ẑm ]. (8) 
We naturally obtain an improvement in the computational cost of B by using the sparse matrix Z ∈ R n× m j=1 ℓ j with m j=1 ℓ j ≪ n, instead of S, which has a larger dimension (Fig. 1, (b)).

Proposition 2.1. Given a set of m similarity matrices S ℓ , such that each matrix S ℓ can be expressed as

Z ℓ Z ⊤ ℓ . Let Z ∈ R n× m j=1 ℓ j , where m j=1 ℓ j ≪ n, denoted as 1 √ m [Z 1 | . . . |Z j | . . . |Z m ],
be the concatenation of the Z ℓ 's, ℓ = 1, . . . , m. We first have, max

B ⊤ B=I T r(B ⊤ SB) ⇔ min B ⊤ B=I,M || Z -BM ⊤ || 2 F . (9) 
Then, given SVD( Z), Z = UΣV ⊤ and the optimal solution B * is equal to U.

Proof. From the second term of Eq. 9, one can easily show that M * = Z⊤ B. Plugging now the expression of M * in Eq. 9, the following equivalences hold min

B ⊤ B=I,M || Z -BM ⊤ || 2 F ⇔ min B ⊤ B=I || Z -BB ⊤ Z|| 2 F ⇔ max B ⊤ B=I T r(B ⊤ ZZ ⊤ B) ⇔ max B ⊤ B=I T r(B ⊤ SB).
On the other hand, SVD( Z) leads to Z = UΣV ⊤ (with U ⊤ U = I, V ⊤ V = I) and therefore to the eigen-decomposition of S as follows:

S = ZZ ⊤ = (UΣV ⊤ )(UΣV ⊤ ) ⊤ = UΣ(V ⊤ V)ΣU ⊤ = UΣ 2 U ⊤ .
Thereby the left singular vectors of Z are the same as the eigenvectors of S.

With CAEclust, we propose a unique way to combine DAE encodings for clustering. Our method also benefits from the low complexity of the anchors strategy for both the graph affinity matrix construction and the eigen-decomposition. Specifically, the computational cost for the construction of each Z ℓ affinity matrix amounts to O(np ℓ e(t + 1)) (Alg. 1, step (b)) , where n is the number of datapoints, p ℓ is the number of landmarks for the ℓ th DAE (p ℓ ≪ n), e is the size of the DAE encoding Y ℓ (e ≪ n) and t is the number of iterations for the k-means algorithm that is used to select the landmarks. It is worth noting that CAEclust proposes a parallelized computation of the Z ℓ matrices over multiple cores. This limits the computation time of the ensemble affinity matrix Z to the most time consuming Z ℓ . Furthermore, the eigen-decomposition of Z, which leads to the B embeddings (Alg. 1, step (c)), induces a computational complexity of O(p ′3 + p ′ 2n), where p ′ is the sum of all landmarks numbers for the concatenated Z ℓ matrices, i.e. p ′ = m j=1 ℓ j ≪ n. The last k-means on B ∈ R n×k (Alg. 1 requires additional O(nctk)), where c is the number of centroïds, usually equal to k the number of eigenvectors, leading to O(ntk 2 ).

The originality and efficiency of the CAEclust ensemble method hinges on the replacement of a costly eigen-decomposition on S ∈ R n×n by an eigen-decomposition on a low-dimensional and sparse matrix Z ∈ R n× m j=1 ℓ j , with m j=1 ℓ j ≪ n (Alg. 1, step (c)). In particular, the sparsity of Z enables the use of fast iterative and partial eigenvalue decomposition.

3 CAEclust package: Implementation and Evaluation

Software architecture and functionalities

We summarize the package usage in Figure 2 and detail below CAEclust functionalities. [io] dataLoader.py loads a dataset. CAEclust proposes by default two well-known benchmark images datasets, namely USPS and MNIST. dataLoader.py is needed at line 1 of Algorithm 1.

[daeNet] daeEncoding.py sets a DAE with general parameters (e.g. optimizer function, number of epochs, batch size, encoding dimension), and any layer number and width. The method deep ae() generates the encoded data. The package proposes to generate the encodings either in serial (serial encodings.py) or in parallel (parallel encodings.py). daeEncoding.py is needed at lines 2 and 4 of Algorithm 1.

[clustering] ensClust.py computes the ensemble sparse affinity matrix (Eq. 4) through the method ensemble approximate affinity() (Algorithm 1, line 5). The deep consensus clustering is then obtained from the shared space B (Eq. 8, Eq. 7 & Proposition 2.1) using the sparse SVD() method (Algorithm 1, line 6).

[evaluation] evaluation.py provides 2D and 3D visualizations of the shared space B with commonSpace plot(). These visualizations are also proposed with the UMAP [START_REF] Mcinnes | Umap: Uniform manifold approximation and projection for dimension reduction[END_REF] transformation. When studying benchmark datasets with ground truth labels, allMetrics() function can compute three informative metrics (accuracy, NMI [START_REF] Strehl | Cluster ensembles -a knowledge reuse framework for combining multiple partitions[END_REF], and ARI [START_REF] Steinley | Properties of the Hubert-Arable Adjusted Rand Index[END_REF]). Furthermore, compare metrics() provides an html summary table to easily compare the CAEclust results with other clustering algorithms. ⇝ sparse SVD() 

Relating functionalities and algorithm

Evaluations

The CAEclust ensemble package is evaluated on USPS and MNIST. The sets of encodings are made with different DAE initializations (Init.), epoch numbers (Ep.) or structures (Struct.). We trained fully connected autoencoders with an encoder f θ of three hidden layers of size 500, 750 or 1000 for MNIST and USPS, as suggested by Bengio et al. [START_REF] Bengio | Greedy layer-wise training of deep networks[END_REF], in all possible orders. The decoder part g ψ mirrors the encoder stage f θ . The encoding dimension e corresponds to the number of expected classes, which is 10. We consider landmarks number within 100 and 1, 000 by step of 100. The accuracy reported for DAE-LSC corresponds to an average over 50 replicates (10 replicates on each of the 5 encodings per DAE structure), over all epoch and landmark numbers.

The simple use of LSC on encoded data already improves the LSC performance. Indeed, we found with LSC an average accuracy of 68.55 ± 2.25 and 77.20 ± 1.49 on the original MNIST and USPS datasets respectively, while the use of a single encoding enables to reach an average accuracy between 87.06 ± 8.27 and 91.54 ± 3.06 for MNIST ([500-750-1000] and [1000-500-750] DAE hidden layers) and between 79.72 ± 6.21 and 83.47 ± 7.40 for USPS ([750-500-1000] and [500-1000-750] DAE hidden layers). Yet, finding a priori the most appropriate DAE structure remains a challenging task. The accuracy may also vary for different landmark and epoch numbers. The ensemble strategy provided by CAEclust offers a straightforward way to alleviate these issues and avoid the fine tuning of the DAE hyperparameters. As can be seen from Table 2, CAEclust provides higher The CAEclust ensemble approach on the DAE structures (Struct., m = 6, all studied structures) enables also to reach high accuracy as compared to the single combination. For MNIST, it outperforms all the single encoding combination (93.23 ± 0.28 vs. 91.54 ± 3.06). For USPS, it reaches the third best single encoding combination with a better standard deviation (81.78 ± 3.61 vs. 81.78 ± 8.08). These good results are obtained with the added benefit of avoiding the training of a particular DAE structure, which is not possible in an unsupervised context. Figure 3 gives an overview of the common shared space B for diverse ensemble of encodings and demonstrates the good capacity of B to separate the classes.

Among the existing deep clustering methods, two approaches can now be considered as state-ofthe-art methods, namely IDEC (Improved Deep Embedded Clustering) [START_REF] Guo | Improved deep embedded clustering with local structure preservation[END_REF] and DCN (Deep Clustering Network) [START_REF] Yang | Towards k-meansfriendly spaces: Simultaneous deep learning and clustering[END_REF]. Recently, the DKM (Deep k-means) algorithm, which applies a k-means in an AE embedding space, outperformed these approaches [START_REF] Moradi Fard | Deep k-means: Jointly clustering with k-means and learning representations[END_REF]. While our CAEclust approach does not require any pretraining for the initialization of the DAE weights, it outperforms the DCN, IDEC and DKM methods in their pretrained version (Table 2). In particular, DCN treats DAE adjacent layers as restricted Boltzmann machines (RBM) and trains RBMs bottom-up to obtain good initial weights. Then, the network weights are fine-tuned. IDEC uses a greedy layer-wise pre-training with dropout before fine-tuning the entire network without dropout while DKM also relies on a pretraining step of 50 epochs before applying its main algorithm. By contrast, CAEclust only trains the DAEs without any weight initialization that could be obtained from a pretraining strategy. As can be seen from the Table 2, none of these challenging deep clustering approaches outperform CAEclust in their no pretraining version (see Table 2, Deep kmeans variants / no pret. column). Besides, even when injecting pretraining in DCN, IDEC or DKM, CAEclust still remains really competitive, as its lowest accuracy mainly outperforms the accuracy of the other approaches. Most importantly, the CAEclust ensemble based on the merging of encodings produced by various structures (Table 2, Struct. column) provides a straightforward way to combine embeddings from various DAEs without having to choose a specific architecture ( Beyond the DAEs hyperparameters, CAEclust also depends on the number of landmarks that are used for the LSC clustering. As can be seen in [START_REF]Large graph construction for scalable semi-supervised learning[END_REF][START_REF] Banijamali | Fast spectral clustering using autoencoders and landmarks[END_REF], the anchor graph strategy reduces the error rate as the number of landmarks increases. As an example, the experiments from [START_REF]Large graph construction for scalable semi-supervised learning[END_REF] demonstrate that the error rate of such an approach reaches a plateau above 800 landmarks on the USPS dataset. In [START_REF] Banijamali | Fast spectral clustering using autoencoders and landmarks[END_REF], experimental results show that the higher the number of landmarks, the better results for MNIST. Our experiments tend to confirm these behaviors, as can be seen in Figure 4, which provides the accuracy of CAEclust on MNIST and USPS, for different DAE architectures trained during 50 epochs.

As complementary experiments, we investigate an ensemble strategy of CAEclust on the number of landmarks. More specifically, for a chosen DAE architecture, we construct an ensemble sparse affinity matrix, Z, where each Ẑi is based on a different number of anchors (Alg. 1, step (b); Eq. 8).

As an example, we randomly choose m = 5 number of landmarks and evaluate the CAEclust accuracy at several numbers of epochs. As can be seen from Table 3, this landmark variant of CAEclust provides again better accuracy than the other approaches.

Illustrative Examples

CAEclust includes two tutorial notebooks. The first one, Baseline evaluations, shows the influence of the DAE structure on the clustering for a non ensemble approach. The second one, Ensemble evaluations, demonstrates the effectiveness CAEclust consensus deep clustering.

Baseline evaluations

The notebook Baseline evaluations first loads the dataset with dataLoader.py. Then, it performs k-means and LSC clusterings on the original data. For LSC, the required CAEclust functions are single approximate affinity() followed by sparse SVD(). We then set several DAEs with different structures to encode data using daeEncoding.py. Finally, we perform k-means and LSC on each encoding, evaluate the results with allMetrics() and display them using compare metrics(). 

Ensemble evaluations

The notebook Ensemble evaluations first loads the dataset with dataLoader.py. Then, it encodes the data with various hyperparameters using daeEncoding.py (either in serial or in parallel).

To compute the ensemble sparse affinity matrix Z, we use ensemble approximate affinity().

The clustering is obtained from the common shared space using sparse SVD(). We can compare the different ensemble strategies based on the metrics of allMetrics() and display them using compare metrics().

Figure 7 2 provides the evaluations of different CAEclust ensemble strategies on MNIST and USPS. As can be seen, all the ensemble strategies (initialization, epoch and structure) enable to reach high accuracy, NMI and ARI.

In particular, the ensemble structure on MNIST (Figure 7, a; Ens.Struct.) reaches much better results than the results obtained with the least efficient structure (Ens.Struct., 0.9082 vs. DAE[500, 750, 1000]+ The Ensemble evaluations notebook also proposes a meta ensemble strategy, for which the encodings from the initialization, epoch and structure ensemble sets are integrated in the common shared space B. For both USPS and MNIST, the CAEclust meta ensemble strategy outperforms the other ensemble strategies as well as their best encoding performance. The Figure 8 provides the UMAP transformation of the common share space B and highlights the good capacity of B to separate the classes. In practice, one could generate various encodings following a predefined grid and take advantage of all the deep representations to obtain a efficient clustering with very few hyperparameters settings constraints.

Conclusions

We developed a Python package CAEclust for deep spectral clustering in an ensemble framework. CAEclust is capable of learning a consensus solution that hinges on the fusion of multiple deep autoencoder representations and spectral clustering. It is an effective and user friendly package that proposes parallelization to overcome the computation time issue. Future extensions of this work will be dedicated to the challenging text data, which is by nature unstructured, highly dimensional and sparse. All in all, CAEclust alleviates the hyperparameters settings issue that usually impedes the efficiency of deep network based clustering techniques, and offers an efficient merging of encodings by using the landmarks strategy.
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 1 Figure 1: CAEclust core algorithm overview. CAEclust algorithm first computes m encodings from DAE with different hyperparameters settings (a), then generates m sparse affinity matrix, { Ẑℓ } ℓ∈[1,m] , that are concatenated in Z (b), and finally performs a SVD on the ensemble graph affinity matrix Z (c).

Figure 2 :

 2 Figure 2: CAEclust package.

Algorithm 1 1 . 1 :

 111 provides the CAEclust pseudo-code. Each step indicates the associated Python script. The corresponding functions are detailed at Section 3.Algorithm CAEclust core algorithm 1: Input: data matrix X ⇝ dataLoader.py 2: Initialize: m DAE with different hyperparameters settings 3: Do: 4: (a) Generate m deep embedding {Y ℓ } l∈[1,m] (Eq. 3) ⇝ daeEncoding.py [serial encodings.py | parallel encodings.py] 5: (b) Construct the ensemble sparse affinity matrix Z ∈ R n× m j=1 ℓ j (Eq. 4, 8)⇝ ensemble approximate affinity() 6: (c) Compute B * ∈ R n×k by performing sparse SVD on Z (Eq. 9)

Figure 3 :

 3 Figure 3: 2D Visualization of the embeddings B from CAEclust on USPS for an ensemble of encodings based on diverse initializations (Ens. Init.), epochs (Ens. Epoch) and structures (Ens. Struct.). Colors indicate the true USPS digits labels.

Figure 4 :

 4 Figure 4: Mean clustering accuracy per number of landmarks for different DAE architectures

Figure 5 1

 5 Figure51 provides the evaluation metrics for k-means and LSC clusterings on single deep representations obtained with various autoencoders structures. As can be seen, the use of a single encoding usually improves the clustering results, both for k-means (Figure5, a & b) and LSC (Figure5, c & d). However, the results strongly depend on the DAE structure, as exemplified by Figure6which provides the UMAP representations for the most efficient deep encoding (left) and the least efficient deep encoding (right) for MNIST. In the second notebook, CAEclust proposes several ensemble solutions to alleviate such critical hyperparameters influence.
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 56 Figure 5: Clustering on a single deep representation with CAEclust package

  (a) MNIST -Consensus results (b) USPS -Consensus results

Figure 7 :

 7 Figure 7: CAEclust ensemble evaluations on MNIST (left) and USPS (right)

Figure 8 :

 8 Figure 8: 2D UMAP Visualization of the embeddings B from CAEclust on MNIST for an ensemble of encodings based on diverse initializations (Ens. Init.), epochs (Ens. Epoch) and structures (Ens. Struct.). Colors indicate the true digits labels.

7 :

 7 Output: Run k-means on B * to get the final clusteringCAEclust package metadata are summurized by Table1.

Table 1 :

 1 CAEclust package metadata

	Code metadata description	metadata
	Current code version	V1.0.0
	Legal Code License	GPL-3.0 License
	Software code languages, tools, and ser-	Python (= 3.8)
	vices used	
	Compilation requirements, operating	Python (= 3.8); packages: scikit-learn, mat-
	environments & dependencies	plotlib, pandas, ipykernel, jinja2, umap-learn,
		tensorflow (2.6 Windows, otherwise 2.7)
	Support email for questions	severine.affeldt@u-paris.fr

Table 2 :

 2 Mean clustering accuracy comparisons (pret. denotes pretraining).

				CAEclust			Deep k-means Variants	
	Data	structure	DAE-LSC	no pretraining			no pret.			pret.	
				Init.	Ep.	Struct. DCN IDEC DKM DCN IDEC DKM
		500-750-1000	87.06 ±8.27	89.19 ±0.41	85.54 ±4.30							
	MNIST	500-1000-750 750-500-1000 750-1000-500 1000-500-750	90.48 ±5.20 88.31 ±5.46 90.30 ±4.89 91.54 ±3.06	95.33 ±0.07 92.15 ±0.25 92.65 ±0.13 94.28 ±0.20	94.34 ±2.68 92.03 ±3.87 92.26 ±3.71 94.57 ±1.48	93.23 ± 2.84	34.8 ± 3.0	61.8 ± 3.0	82.3 ± 3.2	81.1 ± 1.9	85.7 ± 2.4	84.0 ± 2.2
		1000-750-500	90.96 ±3.98	93.87 ±0.38	95.25 ±0.59							
		500-750-1000	81.78 ±8.08	80.07 ±1.95	81.36 ±5.09							
	USPS	500-1000-750 750-500-1000 750-1000-500 1000-500-750	83.47 ±7.40 79.72 ±6.21 80.29 ±5.70 81.39 ±4.46	80.54 ±0.77 79.49 ±1.19 79.29 ±1.05 84.12 ±1.80	82.06 ±3.54 81.10 ±3.86 79.88 ±2.69 81.89 ±3.21	81.78 ± 3.61	36.4 ± 3.5	53.9 ± 5.1	75.5 ± 6.8	73.0 ± 0.8	75.2 ± 0.5	75.7 ± 1.3
		1000-750-500	83.08 ±5.64	85.22 ±2.14	84.96 ±3.29							

clustering accuracy as compared to the use of a single encoding. In particular, the mean accuracy values obtained with the initialization ensemble strategy (Init., m = 6) can reach, 95.33 ± 0.07 for MNIST and 85.22 ± 2.14 for USPS. Results for the epoch ensemble strategy (Ep., m = 5, epochs within [50; 250]) reach 95.25 ± 0.59 for MNIST and 84.96 ± 3.29 for USPS.

Table 2 ,

 2 Init. & Ep. columns). With the Struct. ensemble, CAEclust also offers a better accuracy than other approaches.

	MNIST, 50 epochs	USPS, 50 epochs

Table 3 :

 3 Mean clustering accuracy comparisons (landmarks ensemble).

	Data	structure	50 epochs	100 epochs 150 epochs 200 epochs 250 epochs
		500-750-1000	85.44 ±1.07	95.14 ±0.35	85.43 ±3.82	95.37 ±0.24	82.81 ±0.62
		500-1000-750	94.52 ±0.18	96.04 ±0.26	95.62 ±0.19	95.33 ±0.23	95.24 ±0.14
	MNIST	750-500-1000	92.80 ±2.07	85.74 ±2.88	94.90 ±0.21	94.86 ±0.93	94.09 ±0.26
		750-1000-500	89.19 ±1.23	88.90 ±0.65	94.77 ±0.07	93.80 ±1.61	95.99 ±0.25
		1000-500-750	89.31 ±2.76	93.12 ±2.50	95.54 ±0.14	95.17 ±0.17	95.65 ±0.15
		1000-750-500	94.09 ±0.22	95.64 ±0.13	94.90 ±0.28	95.57 ±0.10	95.19 ±0.11
		500-750-1000	79.57 ±4.14	78.35 ±0.78	78.32 ±0.31	90.17 ±6.62	84.42 ±7.10
		500-1000-750	79.18 ±0.31	85.07 ±5.34	78.92 ±0.53	86.89 ±7.24	79.72 ±0.27
	USPS	750-500-1000	77.50 ±0.32	81.27 ±4.11	82.11 ±4.57	80.82 ±4.18	81.36 ±4.13
		750-1000-500	82.40 ±5.00	80.25 ±0.31	80.08 ±0.34	80.01 ±0.23	78.78 ±0.40
		1000-500-750	94.34 ±0.35	79.60 ±0.18	80.16 ±0.16	91.39 ±5.75	86.28 ±6.67
		1000-750-500	92.59 ±4.27	80.09 ±0.17	86.65 ±7.01	89.52 6.39±	87.73 ±6.42

Séverine Affeldt, Lazhar Labiod, Mohamed Nadif

Tables are images extracted from the outputs of the CAEclust Baseline evaluations tutorial notebooks.

Tables are images extracted from the outputs of the CAEclust Ensemble evaluations tutorial notebooks.
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