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Abstract

Customer churn prediction and profiling are two major economic concerns for many companies. Different learning approaches
have been proposed, however the a priori choice of the most suitable model to perform both tasks remains non-trivial as it is
highly dependent on the intrinsic characteristics of the churn data. Our study compares eight supervised machine learning methods
combined with seven sampling approaches on thirteen public churn data sets. Our evaluations, reported in terms of area under
the curve (AUC), explore the influence of rebalancing strategies and data properties on the performance of learning methods. We
rely on the Nemenyi test and Correspondence Analysis as means of visualizing the association between models, rebalancing and
data. This work identifies the most appropriate methods in an attrition context and proposes an effective pipeline based on an
ensemble approach and deep autoencoders segmentation. Our strategy can enlighten marketing or human resources services on the
behavioral patterns of customers and their attrition probability. The described experiments are fully reproducible and our proposal
can be successfully applied to a wide range of churn-like datasets.
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1. Introduction

Management and marketing services are trying to cope with
the ever-rising competition in industry by focusing their efforts
on a strong Customer Relationship Management (CRM). In par-
ticular, customer retention has attracted interest as it clearly ap-5

peared that retained customers can be of great help for the com-
pany by spreading positive word of mouth [1]. Such behavior
can subsequently lower the marketing costs of new customers
acquisition [2]. Besides, it has become clearer that the acquisi-
tion costs of a new customer can be much more higher than the10

retention costs of an existing one [3, 4, 5]. Hence, preventing
customer churn or attrition can be vital for subscription-based
service firms, that rely on fixed and regular membership fees, in
numerous areas among which insurance [6], banking [7], online
gambling [8], online video games [9], music streaming [10],15

online services [11] or telecommunication [12, 13, 14, 15].
Therefore, accurately predicting the customers who are prone
to churn has become a priority in many industries.

Beyond the churn prediction, the study of the dynamic re-
lationship between the customer satisfaction, the service qual-20

ity and the customer behavior – loyalty or switching – is to-
day a lively field of research. Indeed, a better understanding
of customers experience offers valuable information for mar-
keters. As an example, satisfied customers will be more tol-
erant to price increases which will in turn bring greater prof-25

its [16]. However, certain customer groups may have differ-
ent perceptions of service providers [17]. For instance, many
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studies propose to describe the customer satisfaction as a com-
posite of factors such as the corporate image, the internal or-
ganization, the physical environment, the staff service and the30

customer-personal interaction [18]. In the Banking industry,
Laroche et al. [19] decompose the customer satisfaction into the
speed service, the conveniency of the location, the staff com-
petence and the bank friendliness [19]. The amalgamation of
the multiplicity and divergence of customer expectations and35

perceptions naturally calls for customer base segmentation to
optimize churn behavior management.

While the negative effects of customer churn can be easily
observed – lack of revenues or supplementary costs of attract-
ing new customers –, the churn causes are under continuous40

study, as these causes generally vary across economical fields
and customer groups. For service industries, Cronin and Tay-
lor [20] relied on the effects of time, money constrains, lack of
credible alternatives, switching costs, habit, price, convenience
and availability to explain customers switching. Similarly,45

Keaveney [21] identified eight main causal variables for churn,
namely price, inconvenience, core service failures, service en-
counter failures, competitive issues, ethical problems and invol-
untary factors. Following on these proposals, Athanassopou-
los [22] proposed, based on Confirmatory Factor Analysis, five50

dimensions to describe different customer satisfaction profiles
in retail banking services. These dimensions are staff service,
business profile, innovativeness, convenience and price. The
author also validated the interest in dividing customers into
segments market that correspond to their preferences regard-55

ing particular aspects of service. The motivation behind cus-
tomers segmentation – which is one of the most significant
methods used in marketing studies – is to select appropriate cus-
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tomers for a campaign. This typically increase customer prof-
itability through adapted customer targeting [23, 24]. In fact,60

a large amount of segmentation methods are developed each
year [25, 26], making hard any exhaustive comparison between
them.

In this work, our first motivation is to evaluate several ma-
chine learning techniques on the churn prediction task. Con-65

cerned by the multidimensionality of attrition causes, we also
study the performance of ensemble learning approaches to im-
prove the attrition prediction. Finally, in order to explicitly take
into account the underlying customer segmentation, we rely on
a deep unsupervised clustering method before exploiting an en-70

semble machine learning approach. Hence, our global objective
is to compare several variants of a processing chain for churn
analysis.

This chain includes (Figure 1),

(i) a class rebalancing step or a clustering step,75

(ii) a supervised or a meta ensemble learning phase,
(iii) a robust evaluation procedure.

As all the variants of the algorithms in the proposed pipeline
can not be exhaustively studied in this article, we only consider
the algorithms in their original version. Furthermore, the80

benchmark datasets for our experiments have a relatively
important class imbalance between the minority class – unsub-
scribed individuals – and the majority class. This decreases
the performance of standard classifiers [27] which can be
aggravated by an overlap of the classes or a fragmentation85

of the minority class into subsets corresponding to different
customer profiles. This motivate the idea to combine the model
fitting step with class rebalancing approaches. Through our
results, we formulate practical recommendations and propose
a generic and novel ensemble approach that performs well on a90

wide range of attrition datasets. Beyond the good performance
obtained with our ensemble proposal, we also make the
customer segmentation explicit via a deep autoencoder-based
clustering. This clustering reveals the features associated to
each underlying customer group.95

We first introduce the imbalance class distribution issue and
describe seven widespread balancing techniques (Section 4).
Then, we provide an overview of supervised, ensemble su-
pervised machine learning techniques (Sections 5.1). We also100

discuss evaluation procedures (Section 5.2) and metrics (Sec-
tion 5.3) before providing the first comparative experimental
results of our pipeline variants (Section 6). These results reveal
interesting complementary behaviors between machine learn-
ing techniques (Section 6.1) which are summarized with Ne-105

menyi tests and Correspondence Analysis visualizations (Sec-
tion 6.2). Then, we propose an advisable ensemble churn analy-
sis pipeline which can be successfully applied to various churn-
like datasets (Section 6.3).Ultimately, we enrich our ensemble
proposal with a data segmentation that respect the underlying110

customer behavior patterns (Section 6.4). The corresponding
prediction results are given in Section 6.5 and compared with
the recent LLM [28] and RF-based [29] models. We discuss the

benefits of our approach in terms of churn prediction in Sec-
tion 6.5.1 and customer profiling in Section 6.5.2. The overall115

conclusion is given in Section 7.

2. Background

This section describes the churn prediction issue. It also
provides summarized information on the publicly available
datasets analyzed in this work.120

2.1. Notation and problem definition
Throughout the paper, we use bold uppercase characters to

denote vectors, uppercase characters to denote random variable
and lowercase characters to denote variable values. Let X =
(xi j) be a data matrix of n × d dimension. We assume that Y125

is the random variable indicating the class yi of an observation
xi = [xi1, . . . , xid]⊤ which denotes the ith instance of X. The
total number of observations is noted n, and G is the number of
classes C1, . . . ,CG. In a binary or churn prediction context, G =
2 and we consider the two classes +,− that correspond to the130

churn and non churn classes respectively. The churn prediction
problem can be modeled as a standard binary classification task.
Formally, it is an assignment task that amounts to estimate the
conditional probability of Y = yi given xi, P(Y = yi|xi), so-
called class posterior.135

2.2. Public datasets
This work involves a comparative evaluation of multiple

churn analysis techniques on publicly available datasets only.
A churn dataset usually comprises features of different types
– numerical and categorical variables – that reflect customers140

behavior. It also generally exhibits a strong class imbalance, as
the proportion of churners is typically lower than the proportion
of customers that remain with the company.

The Table 1 gives the public churn datasets that are consid-
ered in this work and provides their online access (see also Ap-145

pendix 7 for details). These datasets have diverse number of
instances, number of features, and percentage of churners and
dummified features. Specifically, before fitting a model, cate-
gorical variables are converted to their numerical representation
through a dummification process where each category becomes150

a binary variable. We also provide the number of continuous
and categorical variables after dummification.

Although the general data characteristics given in Table 1
suggest similarities between several datasets, it is important to
remind that multiple intrinsic data properties can impact the
prediction in the churn context. This includes in particular the
existence of small disjuncts, the overlap between classes, the
noisy data or the borderline instances (see Section 3.3). To es-
tablish the extent to which the classes may be intertwined, we
propose a mixture score, which is defined as follows,

mix.Score = (µ+ − µ−)⊤
(
Σ+ + Σ−

2

)−1

(µ+ − µ−), (1)

where µi is the mean vector and Σi the covariance matrix of
the cluster i respectively. Note that as we deal with mixed data
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Figure 1: Machine learning pipeline for churn prediction and analysis.

Table 1: Publicly available churn datasets with online access link

Dataset #Instances #Features #Cont.Feat. #Cat.Feat.1 mix.Score churn
nonchurn

K2009 50, 000 230 37 1, 001 7.28 × 10−4 0.08
KKbox 970, 960 49 12 43 1.48 × 10−2 0.10
UCI 5, 000 20 0 20 2.66 × 10−1 0.16
HR 1, 470 34 14 71 1.03 × 10−1 0.19
TelE 190, 776 19 15 10 3.75 × 10−2 0.19
News 15, 855 18 2 304 1.56 × 10−1 0.23
Bank 10, 000 12 5 10 2.30 × 10−1 0.25
Mobile 66, 469 62 57 5 1.07 × 10−1 0.27
TelC 7, 043 20 3 30 3.69 × 10−1 0.37
C2C 71, 047 71 32 42 1.89 × 10−2 0.41
Member 10, 362 14 4 21 6.26 × 10−2 0.43
SATO 2, 000 13 9 19 1.72 × 10−1 1
DSN 1, 401 15 10 21 2.68 × 10−2 1
(1) Categorical variables with more than two levels are converted to their numerical representation by dummification where each category becomes a binary variable.

(continuous and categorical variables) we perform the Factor155

Analysis for Mixed Data [30] on the original dataset, and de-
rive µi and Σi. Thereby, the higher the mixture score, the more
separable the classes.

Directly drawing conclusions on the most suitable machine
learning algorithm based on the general characteristics given in160

Table 1 remains challenging. To get a better overview of the
multiple datasets facets, we provide in Figure 2, PCA (Princi-
pal Component Analysis) biplot representations of the datasets
distribution over the characteristics identified in Table 1. As
different dimensions can provide different information, we give165

biplots for the 4 first PCA components explaining 94.5% of
the total variance. However, what is important is above all to

observe the diversity of these data by the characteristics that
describe them. To this end, we rely on the quality of repre-
sentations of datasets depicted in Fig. 2 (e) and the correlation170

between the variables and the components depicted in Fig. 2
(f). Thus in Fig. 2 (a,e,f), we note the opposition between
very balanced and mixed datasets, with many categorical vari-
ables (about 27 times of categorical variables than continuous)
such as K2009 and more balanced and less mixed datasets, with175

fewer variables and only about twice categorical variables than
continuous such as SATO, UCI and TeIC. In Fig. 2 (b,e,f), we
observe that dimension 2 is mainly characterized by the KKbox
dataset with a very high number of instances followed by TeIE
the closest dataset. The 3rd component in Fig. 2 (c,e,f) charac-180

3
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(a) PCA biplot, dimensions 1 and 2 (b) PCA biplot, dimensions 1 and 3

(c) PCA biplot, dimensions 1 and 4 (d) PCA biplot, dimensions 2 and 4

(e) Individuals representation quality (f) Variables representation quality

Figure 2: (a, b, c & d) Biplots visualization for publicly available churn-like datasets (individuals) and their characteristics (variables) for different PCA components.
(e & f) Quality of representations on the factor map.

terized mainly by the ratio-churn contrasts highly balanced and
less well separated data such as DSN, SATO and less balanced
and better separated datasets such as UCI and TeIC. Finally,
the 4th component makes it possible to show the opposition be-
tween datasets with a very high ratio of continuous variables,185

compared to the number of categorical variables, such as the
Mobile dataset and the rest of the datasets with opposite char-

acteristics. The other datasets not mentioned before share the
same interpretations, according to their proximity with the other
datasets cited, while taking into account their quality of repre-190

sentation.
To sum up, the diversity of datasets used in this paper will

make it possible to highlight the strengths and weaknesses of
the methods compared (Section 6.2).
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3. Related work195

Machine learning techniques are being increasingly used in
the customer churn context. These techniques include super-
vised and semi-supervised approaches that can be devoted to
churn prediction or profiling.

3.1. Machine learning for churn prediction200

The K-nearest neighbors, Naive Bayes classifiers, Linear
Regression, Logistic Regression, Linear Discriminant Analy-
sis [31], Decision Tree learning [32, 33] and Support Vec-
tor Machine are among the widely used supervised algorithms
in the context of churn prediction. Algorithmic modifica-205

tions [34] and cost-sensitive learning variants [35, 36] of the
aforementioned learning methods have also been proposed in
the context of imbalanced classes, as encountered in churn
datasets. Finally, several studies proposed to rely on ensemble
approaches such as Random Forest, AdaBoost [31], Gradient210

Boosting [33, 37] or XGBoost [38] to tackle the churn predic-
tion task. Successful semi-supervised methods have been pro-
posed [39], as well as deep learning approaches [11, 38, 32, 33].

The strong interest in churn prediction led to various com-
parative studies related to machine learning in the fields of215

telecommunication industry, human resources, bank subscrip-
tion or financial services. Sniegula et al. [40] compare three
machine learning techniques on a single churn dataset in the
context of telecommunication industry. Similarly, Saradhi et
al. compare three machine learning techniques in the employee220

churn context [41]. They provide results on a private dataset us-
ing a cross-validation procedure. Keramati et al. [42] proposed
a literature and comparative experimental study with four mod-
els on a private dataset.

Although interesting, these studies compare very few ma-225

chine learning techniques in the churn context. Besides, their
results usually involve private datasets, making the experiments
not reproducible and extrapolation to novel datasets difficult.
Finally, these works rarely raised the topic of evaluation pro-
cedures, that impacts the validity and robustness of the evalua-230

tions, and typically omit the techniques for classes rebalancing,
which is an important issue for churn prediction.

While our study does not analyze the customers’ churn deci-
sion through time, it is important to mention that multivariate
times series data have triggered innovative techniques last years235

in the context of churn. Indeed, it is reasonable to hypothesis
that the modifications of customers’ behavior can be detected
during the time leading to a churn decision. To deal with mul-
tivariate times series, several techniques were proposed that are
based either on the featurization of the time series data to con-240

struct a tabular dataset or on dimension reduction combined
with a binary classifier [43, 44]. More recently, Wang et al. [45]
propose to use recurrent neural networks to tackle the time se-
ries data classification task. Finally, Óskarsdóttir et al. [46] de-
signed extensions of the similarity forest method and success-245

fully applied them for classifying multivariate time series data
for churn prediction.

3.2. Machine learning for churn profiling

Recently, several studies focused on churn prediction models
that can reach a good trade-off between the prediction perfor-250

mance and the results interpretability in terms of customers pro-
file. As an example, De Caigny et al. [28] designed the Logit
Leaf Model (LLM), which consists in two phases, namely a seg-
mentation phase followed by a prediction step. For LLM, the
segmentation is based on the partitioning obtained at the leaves255

of a decision tree that exploits the churn label from the input
data. Then, for each data subset a logistic regression model is
fitted which offers prediction and interpretability capabilities.
LLM also include a random undersampling and a features selec-
tion phase. The authors provide experimental results on four-260

teen datasets ranging from the Financial Service to Telecom-
munication industry.

Following on LLM proposal, Ullah et al. [29] designed a churn
prediction model using Random Forest which aims at providing
both interpretability and prediction efficiency. The authors per-265

formed customers profiling using k-means and partition the data
into three groups labeled as Low, Medium and Risky churners.
As LLM, Ullah et al.’s RF-based model includes features selec-
tion. Customer churn data have usually a complex structure
which reflects a strong class imbalance and also an intrinsic270

data segmentation due to the multiplicity of customer behavior
patterns. Let us remember that the standard k-means algorithm
considers the uniform spherical Gaussian mixture model with
equal proportions. Hence, when the clusters are not easily sep-
arable, one should depart from the standard k-means assump-275

tions by using novel representations that takes into a account
the non linearity of the underlying data structure.

Successful clustering strategies have proposed to rely on
Deep AutoEncoders [47, 48] (DAE) to handle data that require
weak assumptions regarding the clusters shapes and filter out280

irrelevant features [49, 50]. Deep AutoEncoders can generate a
more cluster-friendly representation of the data (or encoding) in
an unsupervised manner while automatically learning important
features. This type of self-supervised neural network is trained
to replicate its input at output while optimizing a cost function.285

Several works have proposed to combine deep embeddings and
clustering in a sequential way or within a joint optimization.
Stacked DAEs were successfully used to learn the representa-
tion of an affinity graph before running k-means on the learned
representations in order to identify clusters [51]. In [52] the290

authors incorporate a DAE into the Deep Embedded Clustering
(DEC) framework [53] to jointly learn features and clustering.
A novel ensemble method was introduced in [54] that uses land-
marks and DAE to perform an efficient deep spectral clustering.

Customer data typically involved continuous and categori-295

cal features which should both be taken into account by the
embeddings. In this work, we propose the use of a DAE loss
function that jointly optimizes the novel representations based
on categorical and continuous variables, which avoids the usual
dummification pre-processing that can be damaging for the un-300

derlying data structure (Section 6.4).
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3.3. Our contribution

In this work, we first evaluate multiple alternatives within
a machine learning churn prediction pipeline composed of a
sampling stage, a model fitting phase and a robust evaluation305

procedure (Figure 1; green and gray parts). While there exists
deep machine learning variants that may sometimes competi-
tive traditional approaches on specific datasets, we choose to
focus solely on traditional machine learning that are less time-
consuming and commonly used in the churn context. Hence,310

our comparative study involves the following models, for which
we recall here the experimental studies or literature reviews
that support their use in a churn context (see Section 3.3):
Naı̈ve Bayes [41], Logistic Regression [33, 55], K-nearest
neighbors [42], Support Vector Machine [31, 41, 55], Deci-315

sion Tree [32, 33, 31, 41], Random Forest [41, 55] and XG-
Boost [38, 37].

To tackle the imbalance issue [56, 57, 58], we associate each
learning method with widespread sampling approaches to bal-
ance the classes distribution as it was shown to play a significant320

role in the performance of standard classifiers [27]. Based on
theses experiments results, we can identify the most effective
machine learning techniques and propose an ensemble method
that can be successfully applied to a wide range of churn-like
datasets.325

Finally, following on recent developments in machine learn-
ing customer profiling [28, 29] and the promising results
obtained with deep clustering approaches (Section 3.2), we
demonstrate the effectiveness of our ensemble proposal on a
segmented version of several churn benchmark datasets which330

makes it possible to directly draw conclusions on customer pro-
file (Figure 1; green and blue parts).

All our experiments are performed with freely accessible
Python packages (Appendix 7) and publicly available datasets
exclusively (Table 1 & Appendix 7). Thus, our results are fully335

reproducible and the proposed procedure can be easily applied
to novel datasets.

4. Data sampling

Attrition data typically requires the use of rebalancing tech-
niques to change the distribution of classes. These methods340

usually consist in introducing instances into the minority class
(oversampling), removing instances from the majority class
(undersampling), or combining these two strategies (hybrid).
Various rebalancing methods have been proposed [59] and sev-
eral studies tend to show that undersampling performs better345

than oversampling [60].

4.1. Oversampling

This technique usually replicates the instances of the minor-
ity class or synthesizes new ones. Random oversampling is a
straightforward approach that randomly selects the instances to350

be replicated. Yet, this can strongly degrade the quality of the
decision boundary, by repeating for example outliers.

More advanced approaches have been proposed, such as Syn-
thetic Minority Oversampling Technique (SMOTE) and Adap-
tive Synthetic Sampling (ADASYN, [61]). SMOTE oversam-355

ples the minority class by generating synthetic instances along
the segments created by a k-NN approach. The new SMOTE
instances are thus plausible observations that avoid overfit-
ting. But these synthetic instances can be ambiguous in case
of strong overlap between classes.360

Extensions have been proposed to overcome this problem, in-
cluding the widely used ADASYN, which generates adaptively
minority instances based on their distribution. Thus, many in-
stances are generated in regions of the feature space where the
observation density is low, and vice versa.365

4.2. Undersampling

The undersampling technique typically removes instances
from the majority class or selects a subset. The Random Under-
sampling is a straightforward approach that randomly removes
instances, which can lead to the removal of important instances.370

More advanced strategies have been proposed, such
as Neighborhood Cleaning Rule (NCR, [62]) and Tomek
Links [63]. NCR combines two rules that remove redundant
and ambiguous instances from the majority class. The first rule,
Condensed Nearest Neighbor (CNN, [64]), selects a subset of375

instances from the majority class that cannot be classified cor-
rectly. These instances are considered relevant for learning.
The second rule, Edited Nearest Neighbors (ENN, [65]), re-
moves ambiguous instances via a k-NN approach. A majority
class instance misclassified by its neighbors is removed from380

the dataset. A minority class instance misclassified by its ma-
jority class neighbors implies the deletion of these same neigh-
bors.

Tomek Links relies on CNN and identifies the cross-class
pairs of instances. These are the pairs composed of an instance385

of the majority class and an instance of the minority class iden-
tified as its nearest neighbor. The majority instances that belong
to the Tomek Links are noisy and should be deleted.

4.3. Hybrid strategies

Various combinations of oversampling and undersampling390

methods have been proposed to improve class separation by
balancing the data. A simple hybrid method is to combine
SMOTE with random undersampling. [59] have shown that
this combination gives better results than the undersampling
alone. A more complex combination, proposed by [66], as-395

sociates SMOTE with Tomek Links. It has been successfully
applied on an unbalanced genomic dataset.

5. Learning, Evaluation and Metrics

5.1. Supervised machine learning techniques

In this section, we provide an overview of the supervised ma-400

chine learning techniques that were considered for our churn
prediction and profiling pipeline. These approaches are of great
interest in the attrition context. We only consider approaches
that do not involve weights to compensate for class imbalance
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and choose instead to mitigate the imbalance issue with resam-405

pling approaches.
Thus, for this study, we compare the performance of seven

supervised machine learning techniques including two ensem-
ble approaches. The considered models are the naive Bayesian
classifier (Gnb, [67, 68]), the Logistic Regression (LR), the k-410

Nearest Neighbors (k-NN), the Support Vector Machine (SVM,
with and without kernel, [69]), and the Decision Trees (DT, [70,
71]).

We also consider two ensemble methods, namely Ran-
dom Forest (RF, [71]) and eXtreme Gradient Boosting415

(XGBoost, [72]), which generally perform well on attrition
data [73, 74]. RF relies on bagging [75] and constructs C deep
decision trees from C training sets obtained by bootstrap. Their
predictions are combined by a majority vote. A known short-
coming of bagging is the tendency for classifiers to be corre-420

lated because they share the same set of properties. RF decor-
relates the trees by forcing them to learn on a randomly chosen
subset of the properties. As shown in [29], this approach also
provides an interesting mean to identify the most important fea-
tures and thus decompose several customer behavioral patterns.425

XGBoost incorporates the boosting method which, like bag-
ging, combines the results of several classifiers. However, in
the boosting strategy, each model tries to minimize the errors
of the previous model. Well-known variants of boosting are
Adaboost, gradient boosting and stochastic gradient boosting.430

Instead of adjusting the weights like Adaboost, the gradient
boosting variant optimizes a cost function, while the stochas-
tic gradient boosting strategy adds observations and variable
sampling at each iteration. XGBoost is the most widely used
implementation for boosting.435

5.2. Evaluation

A simple evaluation process is the ”holdout set”, where a
subset of the data which is not used for training is used to eval-
uate the predictions of the trained model. A drawback is that
some of the data is lost to training. The cross-validation strat-440

egy alleviates this problem by defining a training set and a val-
idation set, then swapping these sets before combining the two
evaluation scores. This idea can be extended to multiple sub-
sets or folds. The data is divided into K folds of equivalent size
and the model is trained on K − 1 folds. The prediction error of445

the model is then calculated on the Kth subset. This strategy is
repeated K times before combining the K estimates. This strat-
egy is named the K-fold cross-validation (with typically K = 5
or 10).

However, this validation is not appropriate for attrition data450

because of the high imbalance. In this case, stratified folds
should be produced to guarantee that each fold will respect
the initial distribution of classes. The stratified K-fold cross-
validation (K = 5) is the strategy chosen for our experiments.

5.3. Metrics455

The top decile-lift and the Gini coefficient are the preferred
evaluation measures used by marketing departments to evalu-
ate predictive models. The lift considers instances in the order

of their probability of being in the minority class. Focusing
on the 10% of riskiest customers, the top decile lift gives the460

proportion of churned customers in the risky segment, π10%, di-
vided by the total proportion of churners in the validation set,
π, lift10% = π̂10%/π̂. This measure assesses whether the clients
predicted to be risky are actually risky. The Gini coefficient
takes into account the risky and less risky customers.465

In machine learning, the score F1 and the Area Under the
Curve (AUC) are two recommended metrics in the context of
attrition. F1 is the harmonic mean of the Precision and the Re-
call. The Precision estimates the ability of the model to obtain
positive true among its positive predictions. This measure is470

complementary to the Recall which estimates the ability of the
model to recover positive true predictions. The AUC requires to
express the performance of the model by a Receiver Operating
Characteristic (ROC) curve which gives the true positive rate
as a function of the false positive rate for a series of decision475

thresholds. It thus provides an aggregate performance measure
for all possible classification thresholds. The AUC, suitable for
unbalanced datasets, is the measure chosen for our experiments.

6. Experiments on public datasets

Our 13 public datasets have churn percentages ranging from480

0.07% to 0.50% (Table 1, %churn column), and accessible on-
line (Table 1, Access column). We have kept the default param-
eters, as provided in the Python packages scikit-learn (0.23.2)
and xgboost (1.0.2), for the 8 learning techniques considered;
Logistic Regression (LR), Linear Support Vector Machine (SVM)485

and with Radial Basis Function (SVM-rbf), Naive Bayesian
Classifier (Gnb), Random Forest (RF), Decision Tree (DT), eX-
treme Gradient Boosting (XGBoost) and K-nearest Neighbors
(k-NN). These approaches are evaluated without and with re-
balancing (oversampling/undersampling and hybrid strategies;490

(see Figure 1, Sampling).

6.1. Comparison of classification algorithms

We evaluated the churn prediction for all combinations of
the Figure 1 processing chain (gray and green parts). The
evaluation follows a 5-fold stratified cross-validation. Results495

were provided in AUC without sampling, with different over-
/under-sampling and with hybrid sampling approaches. The
Tables 2 & 3 were extracted from the results obtained with the
8 resampling approaches. The average rank and median AUC
(ÃUC) of each algorithm are shown in the last two columns.500

Our experiments indicate that the ÃUC is overall little affected
by the rebalancing mode. For RF, resampling globally de-
grades the ÃUC compared to the results obtained without sam-
pling (from 0.8095 to 0.7862). On average, the performance of
XGBoost is slightly improved with Tomek Links (+0.0014; Ta-505

ble 3) or SMOTE combined with NCR (+0.0048; not shown).
The approach that benefits the most from the resampling

strategies is LR, with a maximum increase for the ÃUC of
0.0051 using NCR. Finally, the three best approaches - regard-
less of dataset and rebalancing strategy - are LR, XGBoost, and510

RF, with an average rank of 2.01, 2.74, and 2.94 respectively.
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Table 2: AUC results and CD diagrams from our pipeline experiments (no sampling vs. oversampling).

Data Bank C2C DSN HR K2009 KKBox Member Mobile SATO TelC TelE UCI News Rang ÃUC

No Sampling

k-NN 0.7768 0.4387 0.6576 0.6575 0.5004 0.5835 0.5827 0.7567 0.6900 0.7822 0.8226 0.7731 0.7484 5.23 0.6900
Gnb 0.7166 0.5181 0.6671 0.7442 0.5002 0.6468 0.5914 0.7201 0.7272 0.8245 0.7505 0.8477 0.5655 4.62 0.7166
LR 0.8322 0.5222 0.7319 0.8596 0.5135 0.6763 0.6146 0.9030 0.7594 0.8458 0.7584 0.8244 0.8369 2.15 0.7594
SVM 0.6645 0.4578 0.6868 0.8091 0.5052 0.5022 0.4874 0.4605 0.7116 0.6498 0.5335 0.5963 0.5958 6.38 0.5958
SVM-rbf 0.7248 0.4656 0.6293 0.4984 0.4989 0.4983 0.5088 0.5463 0.7153 0.6548 0.6098 0.7528 0.6227 6.62 0.6098
DT 0.6908 0.4440 0.7350 0.6053 0.4993 0.5302 0.5462 0.6660 0.6365 0.6555 0.8514 0.8447 0.6754 5.62 0.6555
RF 0.8506 0.3518 0.8590 0.7867 0.5114 0.6442 0.6130 0.8095 0.7882 0.8210 0.9380 0.9182 0.8615 2.46 0.8095
XGBoost 0.8216 0.3862 0.8516 0.7993 0.5112 0.6800 0.5987 0.7816 0.7396 0.7983 0.9411 0.9174 0.8323 2.92 0.7983
Max-Min 0.1861 0.1704 0.2297 0.3612 0.0146 0.1817 0.1272 0.4425 0.1517 0.1960 0.4076 0.3219 0.2960

SMOTE (oversampling)

k-NN 0.7744 0.4375 0.6576 0.6631 0.5001 0.5918 0.5865 0.6479 0.6900 0.7650 0.8277 0.7871 0.7452 5.38 0.6631
Gnb 0.7861 0.5033 0.6671 0.7168 0.4991 0.6430 0.5936 0.6993 0.7272 0.8224 0.7497 0.8273 0.5664 4.38 0.6993
LR 0.8325 0.5160 0.7319 0.8501 0.5135 0.6763 0.6213 0.8942 0.7594 0.8451 0.7626 0.8278 0.8336 1.77 0.7626
SVM 0.583 0.4965 0.6868 0.7066 0.4965 0.559 0.5176 0.6185 0.7116 0.5098 0.5470 0.5327 0.5651 6.77 0.5590
SVM-rbf 0.7204 0.4751 0.6298 0.5040 0.4993 0.4370 0.5187 0.4404 0.7152 0.6881 0.5692 0.7729 0.6337 6.62 0.5692
DT 0.6940 0.4415 0.7314 0.6309 0.5022 0.5272 0.5489 0.6570 0.6385 0.6656 0.8482 0.8490 0.6881 5.38 0.6570
RF 0.8255 0.3944 0.8166 0.7304 0.5023 0.6129 0.6122 0.8138 0.7601 0.8007 0.9373 0.9130 0.8136 2.69 0.8007
XGBoost 0.8234 0.3878 0.8516 0.7905 0.4991 0.6414 0.5959 0.7835 0.7396 0.7941 0.9421 0.9154 0.8333 3.08 0.7905
Max-Min 0.2495 0.1282 0.2218 0.3461 0.0170 0.2393 0.1037 0.4538 0.1216 0.3353 0.3951 0.3827 0.2685

ADASYN (oversampling)

k-NN 0.7647 0.4408 0.6576 0.6612 0.5007 0.5899 0.5791 0.6203 0.6900 0.7515 0.8248 0.7791 0.7377 5.38 0.6612
Gnb 0.7865 0.5031 0.6671 0.7241 0.4987 0.6421 0.5958 0.6814 0.7272 0.8311 0.7551 0.8293 0.5661 4.38 0.6814
LR 0.8315 0.5171 0.7319 0.8476 0.5137 0.6777 0.6266 0.8848 0.7594 0.8444 0.7634 0.8276 0.8309 2.00 0.7634
SVM 0.6403 0.5271 0.6869 0.6768 0.5032 0.5491 0.5015 0.1398 0.7116 0.4093 0.4678 0.5512 0.5467 6.31 0.5467
SVM-rbf 0.7123 0.4734 0.6297 0.5026 0.5053 0.5239 0.5304 0.4864 0.7153 0.6822 0.5559 0.7601 0.6419 6.23 0.5559
DT 0.6865 0.4401 0.7336 0.5814 0.4985 0.5268 0.5479 0.6644 0.6375 0.6546 0.8382 0.8483 0.6876 5.69 0.6546
RF 0.8197 0.3971 0.8038 0.7597 0.4945 0.6107 0.6092 0.7970 0.7494 0.8003 0.9364 0.9112 0.8107 3.31 0.7970
XGBoost 0.8225 0.3905 0.8516 0.7978 0.5013 0.6468 0.5973 0.7937 0.7396 0.7968 0.9418 0.9156 0.8328 2.69 0.7968
Max-Min 0.1912 0.1366 0.2219 0.3450 0.0192 0.1538 0.1251 0.7450 0.1219 0.4351 0.4740 0.3644 0.2861

(a) No sampling (b) SMOTE (c) ADASYN

For some dataset/technique pairs, we can observe a more sig-
nificant improvement. For example, the combination of SVM
& NCR increases the AUC by 0.1081 on C2C (Table 3). The
AUC of XGBoost also increases when using the hybrid sam-515

pling SMOTE & Tomek Links (from 0.8516 to 0.8694; not
shown) on DSN. We find an increase in AUC of 0.0124 using
SMOTE & NCR on Member with LR. Therefore, while an over-
all improvement in all learning approaches cannot be observed,

there are local improvements, depending on the datasets.520

We propose to visualize the similarities and rankings of the
learning techniques via Critical Difference diagrams (CD, [76])
based on pairwise statistical comparisons computed from all
our AUC results (Tables 2 & 3; bottom Figures). For these com-
parisons, we consider the Nemenyi test (α = 0.05). Horizontal525

lines connect the approaches for which we cannot exclude the
hypothesis that the mean ranks are equal. The DC plots re-
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Table 3: AUC results from our pipeline experiments (no sampling vs. undersampling).

Data Bank C2C DSN HR K2009 KKBox Member Mobile SATO TelC TelE UCI News Rang ÃUC

No Sampling

k-NN 0.7768 0.4387 0.6576 0.6575 0.5004 0.5835 0.5827 0.7567 0.6900 0.7822 0.8226 0.7731 0.7484 5.23 0.6900
Gnb 0.7166 0.5181 0.6671 0.7442 0.5002 0.6468 0.5914 0.7201 0.7272 0.8245 0.7505 0.8477 0.5655 4.62 0.7166
LR 0.8322 0.5222 0.7319 0.8596 0.5135 0.6763 0.6146 0.9030 0.7594 0.8458 0.7584 0.8244 0.8369 2.15 0.7594
SVM 0.6645 0.4578 0.6868 0.8091 0.5052 0.5022 0.4874 0.4605 0.7116 0.6498 0.5335 0.5963 0.5958 6.38 0.5958
SVM-rbf 0.7248 0.4656 0.6293 0.4984 0.4989 0.4983 0.5088 0.5463 0.7153 0.6548 0.6098 0.7528 0.6227 6.62 0.6098
DT 0.6908 0.4440 0.7350 0.6053 0.4993 0.5302 0.5462 0.6660 0.6365 0.6555 0.8514 0.8447 0.6754 5.62 0.6555
RF 0.8506 0.3518 0.8590 0.7867 0.5114 0.6442 0.6130 0.8095 0.7882 0.8210 0.9380 0.9182 0.8615 2.46 0.8095
XGBoost 0.8216 0.3862 0.8516 0.7993 0.5112 0.6800 0.5987 0.7816 0.7396 0.7983 0.9411 0.9174 0.8323 2.92 0.7983
Max-Min 0.1861 0.1704 0.2297 0.3612 0.0146 0.1817 0.1272 0.4425 0.1517 0.1960 0.4076 0.3219 0.2960

Neighborhood Cleaning Rule (undersampling)

k-NN 0.7994 0.4069 0.6634 0.6761 0.5061 0.6099 0.5915 0.7274 0.7028 0.8028 0.8295 0.8052 0.7804 5.00 0.7028
Gnb 0.7460 0.4890 0.6328 0.7350 0.5004 0.6483 0.5886 0.7255 0.7348 0.8205 0.7468 0.8512 0.5672 5.15 0.7255
LR 0.8313 0.4985 0.7311 0.8580 0.5146 0.6762 0.6209 0.8867 0.7645 0.8438 0.7615 0.8234 0.8371 2.38 0.7645
SVM 0.6647 0.5659 0.7186 0.8332 0.5017 0.5353 0.4915 0.4912 0.7741 0.8007 0.4438 0.6309 0.6727 5.77 0.6309
SVM-rbf 0.7938 0.4533 0.6308 0.4984 0.5033 0.4797 0.5512 0.6077 0.7089 0.7920 0.6260 0.6288 0.6745 6.62 0.6260
DT 0.7327 0.4146 0.7214 0.6194 0.5027 0.5488 0.5693 0.6710 0.6615 0.7136 0.8583 0.8500 0.7306 5.77 0.6710
RF 0.8361 0.3527 0.8173 0.7430 0.5105 0.6397 0.6129 0.7862 0.7631 0.8201 0.9394 0.9145 0.8298 3.23 0.7862
XGBoost 0.8369 0.3668 0.8672 0.7918 0.5149 0.6824 0.6104 0.7745 0.7685 0.8216 0.9417 0.9200 0.8399 2.08 0.7918
Max-Min 0.1722 0.2132 0.2364 0.3596 0.0145 0.2027 0.1294 0.3955 0.1126 0.1302 0.4979 0.2912 0.2727

Tomek Links (undersampling)

k-NN 0.7797 0.4359 0.6535 0.6671 0.4999 0.5873 0.5890 0.7514 0.6891 0.7882 0.8236 0.7773 0.7533 5.38 0.6891
Gnb 0.7196 0.5164 0.6632 0.7426 0.5002 0.6470 0.5924 0.7182 0.7247 0.8240 0.7501 0.8487 0.5653 4.69 0.7182
LR 0.8321 0.5208 0.7286 0.8585 0.5138 0.6761 0.6170 0.8991 0.7573 0.8459 0.7589 0.8252 0.8376 1.92 0.7589
SVM 0.5793 0.4803 0.7000 0.8260 0.5007 0.5335 0.4801 0.3813 0.7253 0.7019 0.5695 0.6336 0.6010 6.31 0.5793
SVM-rbf 0.7500 0.4567 0.6241 0.4990 0.4961 0.4762 0.5162 0.5211 0.7029 0.7055 0.6031 0.7540 0.6395 6.69 0.6031
DT 0.6963 0.4427 0.7293 0.6152 0.5044 0.5337 0.5474 0.6619 0.6415 0.6683 0.8543 0.8431 0.6909 5.31 0.6619
RF 0.8243 0.3863 0.8294 0.7481 0.5106 0.6189 0.6036 0.788 0.7483 0.8001 0.9379 0.9134 0.8132 3.08 0.7880
XGBoost 0.8253 0.3855 0.8655 0.7997 0.5017 0.6805 0.6033 0.7868 0.7514 0.8017 0.9412 0.9150 0.8365 2.77 0.7997
Max-Min 0.2528 0.1353 0.2414 0.3595 0.0177 0.2043 0.1369 0.5178 0.1158 0.1776 0.3717 0.2814 0.2723

(a) No sampling (b) Neighborhood Cleaning Rule (c) Tomek

(d) SMOTE + Random Undersampling (e) SMOTE + NCR (f) SMOTE + Tomek
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flect well the fact that sampling strategies have little effect on
the ranking of learning approaches. We can also easily see that
RF is one of the two best approaches if we use SMOTE alone,530

or in combination with random undersampling, or without any
sampling.

6.2. Models and datasets CA
Based on AUC values, we propose to use Correspondence

Analysis (CA) [77, 78] to visualize the relationships between535

learning techniques and datasets. CA can assist in decipher-
ing the complex information contained in Table 3; it provides
a way for suggesting hypotheses and recommendations to the
user. Thereby Fig. 3 gives an overview of the results of this
analysis and highlights about the similar or opposite behaviors540

of methods according to the characteristics of the data. Be-
low we provide the salient interpretations from axes 1, 2 which
bring 85% of the total variance.

Fig. 3(a) shows similar behavior of RF and XGBoost. First,
recall that in Fig. 2(b), axis 3 is characterized by nb instances545

and TelE is distinguished by a high nb instances. In Fig. 3(a),
by interpreting axis 1, we deduce that both methods (on the left)
outperform the other methods for TelE that has higher number
of instances, few variables and not complex. However, their
performances decrease significantly with C2C (on the right)550

that has much less instances, more variables and more complex
given the recorded results by all methods. Note that, neither
method of both is superior to the other. Furthermore, as for
K2009 and SATO which are well presented but not sufficiently
eccentric to be preponderant in the interpretation, like TelE and555

C2C, means that both methods are indistinguishable from the
others for the two datasets.

On the other hand, Fig. 3(a) also highlights the difference
between SVM and SVM-rbf on axis 2; SVM-rbf appears signif-
icantly more effective than SVM when the number of categori-560

cal variables is preponderant (it is the case of the UCI dataset
well represented on this axis), however, this superiority declines
with the presence of continuous variables in favor of SVM as it
is the case for example of the HR dataset.

On axis 3, we mainly observe an interesting opposition be-565

tween Mobile and DSN. This opposition has been also observed
on axis 4 of Fig. 3(d) which is essentially described by the
number of continuous variables. Thus LR which is opposed
to XGboost and RF is the only method mainly characterizing
this axis, appears as a powerful method for data having a high570

rate of number of continuous variables compared to categorical
variables which is the case of Mobile and not that of DSN (11.4
vs. 0.47).

Considering the different analyzes of our experiments, we
have identified three complementary methods LR, XGBoost and575

RF taking into account the different characteristics discussed in
section 2.2 and observed in Fig. 3. This reinforces our belief
that an ensemble approach grouping the three methods could
perform well on a large part of the churn datasets.

6.3. Comparative study of ensemble methods580

The conclusions of the previous sections motivate the com-
bination of LR, XGBoost and RF in an ensemble approach for

churn prediction. More specifically, we compute for each ob-
servation the average of the probabilities predicted by two or
three techniques taken from these three approaches following585

the soft voting [79] technique described below.
For instance, let us consider an ensemble of 3 models M1,

M2 and M3. Using the soft voting, the expected score ŷens is
then expressed as a weighted sum of the individual scores,

ŷens = ω1ŷM1 + ω2ŷM2 + ω3ŷM3 , (2)

where

ω1, ω2, ω3 = softmax(ω̃1, ω̃2, ω̃3), (3)

with

ω̃k =
1

ρ(ŶMk , ŶMα ) + ρ(ŶMk , ŶMβ )
. (4)

where ρ denotes the Pearson correlation, α , k and β , k.

Fig. 4 shows, for each resampling strategy, and for all
datasets, the AUC for LR, XGBoost and RF (light gray), their590

pairwise ensembles (light orange), and the combination of the
three methods (dark orange). It appears that the ensemble ap-
proach LR|XGBoost|RF performs best, followed by the pairwise
ensemble approaches, LR|XGBoost and LR|RF. Table 4 shows
the ÃUC on all datasets for both ensemble and non-ensemble595

approaches. While the results for XGBoost and RF outperform
those for LR (ÃUC of 0.7956 and 0.7953 vs. 0.7622), com-
bining the XGBoost and RF approaches does not significantly
increase the ÃUC (0.8061). By contrast, the addition of LR in
the ensemble approach (LR|XGBoost and LR|RF) significantly600

increases the ÃUC (0.8413 and 0.8365 respectively). Over-
all, the best approach together is LR|XGBoost|RF, combining
the three techniques, with the oversampling strategy ADASYN
(ÃUC = 0.8483).

Table 5 provides the pipeline variant that produces the605

best AUC for each dataset (columns “Best Processing Chain”
and “Best AUC”). The ensemble approach we recommend–
LR|XGBoost|RF & ADASYN - provides an AUC score very
close to that of the best approach. The only exception is for
C2C, for which the set LR|Gnb without resampling is a better610

choice (AUC = 0.5247). Thus, in practice, we recommend us-
ing the ensemble approach LR|XGBoost|RF with ADASYN for
exploring new attrition datasets.

It is worth noting that LR|XGBoost and LR|RF also provide
high AUC results, without sampling. Their AUC almost reach615

the AUC of the ensemble proposal that lumps the three machine
learning models (0.8422 and 0.8440 versus 0.8483). This is in
line with the high similarity of the XGBoost and RF behavior,
which is clearly shown by their positioning on the planes (1.2)
and (1.3) of the CA biplots (Fig. 3).620

Next, we provide a detailed scheme that describes the em-
beddings learning process of numerical and categorical fea-
tures while combining simultaneously embedding and cluster-
ing tasks. To do this we rely on entity embedding and deep
clustering.625
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(a) CA biplot, dimensions 1 and 2, no sampling (b) Representation Quality

(c) CA biplot, dimensions 1 and 3, no sampling (d) Representation Quality

Figure 3: (a & c) Visualization of associations between machine learning approaches and churn-like datasets without sampling using Correspondance Analysis. (b
& d) Quality of representations on the factor map.
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Figure 4: AUC ensemble results on the three top machine learning approaches and all datasets.

Table 4: ÃUC for ensemble and non ensemble approaches and all datasets; the best results are in bold and the second ones results are underlined.

Sampling no sampling SMOTE ADASYN NCR
Tomek
Links

SMOTE
& R.U.

SMOTE
& Tomek

SMOTE
& NCR ÃUC

LR 0.7594 0.7626 0.7634 0.7645 0.7589 0.7626 0.7628 0.7633 0.7622
XGBoost 0.7983 0.7905 0.7968 0.7918 0.7997 0.7905 0.7939 0.8031 0.7956
RF 0.8095 0.8007 0.797 0.7862 0.788 0.7947 0.7951 0.7911 0.7953

LR|XGBoost 0.8422 0.8422 0.8422 0.8416 0.8433 0.8422 0.8419 0.8346 0.8413
LR|RF 0.8440 0.8369 0.8339 0.8402 0.8358 0.8334 0.8349 0.8325 0.8365
XGBoost|RF 0.8028 0.8078 0.8115 0.8015 0.8055 0.8047 0.8094 0.8055 0.8061

LR|XGBoost|RF 0.8443 0.8401 0.8483 0.8413 0.8468 0.8453 0.8434 0.8374 0.8434

Table 5: Our ensemble proposal vs. best non ensemble approach for each dataset.

LR|XGBoost|RF
& ADASYN

Best
AUC

Best
Processing Chain

Bank 0.8492 0.8506 no sampling & RF
C2C 0.3962 0.5659 NCR & SVM
DSN 0.8486 0.8694 SMOTE-T.Links & XGBoost
HR 0.8483 0.8596 no sampling & LR
K2009 0.5070 0.5153 SMOTE-NCR & LR
KKBox 0.6778 0.6805 Tomek Links & XGBoost
Member 0.6209 0.6270 SMOTE-NCR & LR
Mobile 0.8788 0.9030 no sampling & LR
SATO 0.7703 0.7882 no sampling & RF
TelC 0.8302 0.8458 no sampling & LR
TelE 0.9408 0.9421 SMOTE & XGBoost
UCI 0.9214 0.9200 NCR & XGBoost
News 0.8574 0.8615 no sampling & RF

ÃUC 0.8483 0.8506
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Figure 5: Deep network pipeline for the joint learning of instances embeddings and customer segmentation. Adapted from the online course walkwithfastai.com

6.4. Unsupervised machine learning techniques

An autoencoder is a neural network that is trained in an unsu-
pervised or self-supervised manner. Its parameters are learned
in such a way that the output values tend to replicate the in-
put training samples. The internal hidden layer can be used as
a low dimensional representation of the input which captures
the more salient features. We can decompose an autoencoder in
two parts, namely an encoder fθ, followed by a decoder gψ. The
first part provides the encoding of the input dataset by comput-
ing a feature vector yi = fθ(xi) for each input training sample.
Then, the encoding is transformed back to its original represen-
tation by the decoder part, following x̂i = gψ(yi). The sets of
parameters for the encoder fθ and the decoder gψ are learned si-
multaneously during the reconstruction task while minimizing
the loss, referred to as J given by

JAE(θ, ψ) =
n∑

i=1

L(xi, gψ( fθ(xi))), (5)

where L is a cost function for measuring the divergence be-
tween the input training sample and the reconstructed data.
The encoder and decoder parts can have several shallow lay-
ers, yielding a deep autoencoder (DAE) that enables to learn630

higher order features. The network architecture of these two
parts usually mirrors each other. Churn data typically contain
numerical and categorical data. A straightforward manner for
a neural network to process categorical input is by using the
one-hot encoding strategy. However, as shown in [80], embed-635

dings should be preferred to one-hot encoding vectors, as they
reduce memory usage and speed up the neural network learn-
ing. Besides, embeddings can capture intrinsic properties of the
categories and reveal relationship between them.

Inspired by Guo et al. [80] proposal, we adapt the entity640

embedding in a unsupervised context to automatically learn
the representation of categorical features in multi-dimensional
spaces which puts the feature’s values with similar effect close
to each other. Such an approach reveals the inherent continuity
of the categorical data. Practically, it consists in transforming645

categorical columns (vectors of size n) into an embedding ma-
trix (of size ninstances × embeddingdim) taken from a neural net-
work trained with those categories (Fig. 5). In this study, we set
embeddingdim to be 2 when the categorical variables have only
two unique values, and to be ceil(nunique × compression), where650

compression = 1
2 . We provide in Table 6 a toy example of

entity embeddings obtained for two categorical variables cata

(nunique = 2) and catb (nunique = 4), as done in our experiments.

Table 6: Toy example of an entity embeddings for 2 categorical variables

instance cata catb
xcat (entity embeddings)

cata0 cata1 catb0 catb1
i = 0 1 2 0.002598 −0.012928 0.036055 −0.003408
i = 1 1 1 −0.015642 0.016857 0.036055 −0.019931
. . . . . . . . . . . . . . . . . . . . .
i = n 2 4 −0.015642 0.016857 0.013035 −0.019931

Thus, to optimize the customer segmentation while learning
a combination of numerical and categorical features within a
unique embedding, we train the parameters of a DAE as given
in Fig. 52. Inspired by [52] we propose to combine embed-
ding and clustering simultaneously as depicted in Fig. 5. This
respects the idea of improving embedding taking into account
local structure preservation. Thereby the loss function to be
minimized amounts to the sum of a reconstruction loss noted
JDAE and a clustering loss noted Jclust given by

JDAE(θ, ψ) =
n∑

i=1

||yi − gψ( fθ(xcont
i ))||22 −

n∑
i=1

yi log(gψ( fθ(xcat
i ))),

(6)
and

Jclust(θ, ψ) =
n∑

i=1

G∑
k=1

rik ||gψ(xi) − µk ||
2
2, (7)

with n the number of samples, G the number of clusters, rik = 1
if sample i belongs to cluster k, and the concatenation of the655

vectors xcont
i and xcat

i gives xi. Ultimately, for our experiments,
each customers’ segments is then split in train and test embed-
dings subsets, before the machine learning models are fit on the
train part (see Section 6.5).

6.5. Ensemble method for profiling and prediction660

In this section, we propose to associate our churn prediction
ensemble method (LR|XGBoost|RF; Section 6.3) to a deep cus-
tomer data profiling. Data are segmented based on the approach

2Dropout refers to cutting the connection to a set of random neurons in or-
der to reduce overfitting; LinBnDrop is a sequence of linear layer and batch
normalization that aims at standardizing the input to improve training and
dropout. [81].
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described in Section 6.4 (see also Fig. 5) that jointly learns a k-
means partitioning (G clusters) with DAE encodings and entity665

embeddings. Each cluster Ci is split into a Ctrain
i train set and a

Ctest
i test set, in a stratified manner (80%/20%). The aggregated

score of the models {M j} j=1..m is then used to predict churn be-
havior on each segment Ci, and the average of all the test sets
AUCi provides the overall AUC prediction result (Fig. 6). In a670

supervised churn prediction context, labels are already known
for our benchmark datasets and can be used for the model eval-
uation. In practice, novel observations for which the company
requires a label would correspond to our test subsets.

Figure 6: Evaluation of the ensemble profiling and prediction approach. Two
customers subgroups are identified in an unsupervised manner (G = 2; see
Section 6.4). In practice, test subsets would correspond to novel observations
for which the company expects a label

6.5.1. Quantitative evaluation of churn prediction675

We compare our approach to state-of-the-art methods in the
context of churn, namely LLM and Ullah’s RF model. For LLM,
we used the implementation provided by the LLM R package
(V1.1.0) 3. Ullah’s RF-based model was implemented follow-
ing the author’s description and based on scikit-learn Python680

package. We performs 50 runs on all benchmark datasets 4 for
the compared approaches. Table 7 summarizes AUC results for
different number of clusters (from G = 2 to G = 6). As can be
seen, our ensemble proposal combined with the DAE data seg-
mentation outperforms the competitive approaches, with ÃUC685

between 0.8516 and 0.8546, while LLM and the RF-based model
reach 0.8450 and 0.8317 respectively. It should be highlighted
that LLM encounters difficulty to handle several datasets, for
which its execution could exceed 3 hours (vs. less than half an
hour on average) and our experiments should be stopped before690

the convergence of the approach (Table 7, overtime labels).
The AUC value embeds two metrics which are the Precision

and the Recall. While the Precision estimates the ability of the
model to obtain actual churners among its predicted churners,
the Recall estimates the ability of the model to recover actual695

churners. Usually, the cost of a false positive in the churn con-
text is considered as less damaging than the non identification
of actual churners. Indeed, contacting loyal customers to pro-
pose them with several advantages such as discounts generally
reinforce their loyalty at a fixed cost.700

3https://cran.r-project.org/web/packages/LLM/LLM.pdf
4for the largest datasets (K2009, KKBox and C2C), 20 runs were done

Yet, missing an actual churner could represent a significant
loss of profit. Hence, Recall is, along with AUC, an important
metric to consider when building a churn prediction model. Ta-
ble 8 summarizes the Recall of our ensemble approach com-
bined with data segmentation. Our proposal outperforms the705

Recall of LLM and Ullah’s RF-based model.

6.5.2. Qualitative evaluation of churn profiling
Beyond the performance in churn prediction for our ensem-

ble approach, it is important to highlight the benefit of the data
segmentation in terms of customers profiling. Indeed, the par-710

titioning of the customer data puts forward the most important
features on which the Mi models are fitted. These features can
be further assigned to subgroups of churners and non churn-
ers within each cluster. Hence, proactive marketing campaigns
could be designed to target a group of both churners and non715

churners – reinforcing the loyalty for the former while poten-
tially retaining the latter – or focus only on several churners
subgroups.

Table 9 provides the 3 most important features for three
datasets; Bank, Member and TelC. The features are ranked720

based on their importance score which is computed from the
mean impurity decrease of each split during class prediction
(Section 6.5). This score is further multiplied by the average
standardized mean value of each segment in each class. The
top most important features are obtained on these final impor-725

tance values. We present the features for 4 clusters, {Ci}G=1..4.
As can be seen, the top features are fairly different between the
clusters of a given dataset, sharing at most one or 2 variables.
Besides, the subgroups of churners/non churners customer also
exhibit different top features.730

Bank dataset As an example, the tenure5 feature helps to
discriminate churners and non churners in clusters C2 to C4 for
Bank, while geographical aspects and credit type information
are more important in cluster C1. The creditscore variable also
plays a discriminative role in clusters C1 and C3. A plausible735

interpretation would be that a customer with higher credit score
would tend to remain with the same bank. Hence, it would be
interesting for the company to conduct investigations along this
line in order to build efficient proactive marketing campaigns.

Member dataset Another example is given by Member,740

where only the cluster C3 is not concerned by the annual fees6

variable. It is rather impacted by the member gender infor-
mation. This is indicative of a particular customer subgroup.
We also notice for this cluster the impact of the member-
ship package on the non churner subgroup. This variable indi-745

cates whether fees are customized for member’s personal pack-
age, suggesting straightforward manner to improve member
loyalty.

TelC dataset With TelC, we can notice that clusters C1 to
C3 decomposes into churners subgroups that are concerned by750

different payment method (C1, bank transfer; C2, credit card;

5tenure refers to the number of years that the customer has been a client of
the bank

6annual fees are paid in return for using the exclusive facilities offered by
this club
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Table 7: AUC results for our ensemble proposal vs. LLM [28] and RF-based [29]. The best results are in bold and the second ones results are underlined.

LR|XGBoost|RF & DAE-based Segmentation LLM RF-based
G=2 G=4 G=6 (De Caigny et al. [28]) (Ullah et al. [29])

Bank 0.8620 ± 0.0088 0.8612 ± 0.0096 0.8605 ± 0.0086 0.8501 ± 0.0089 0.8422 ± 0.0119
C2C 0.6719 ± 0.0062 0.6671 ± 0.0048 0.6708 ± 0.0051 overtime 0.6558 ± 0.0046
DSN 0.8923 ± 0.0157 0.8867 ± 0.0185 0.8852 ± 0.0193 0.8589 ± 0.0278 0.8885 ± 0.0171
HR 0.8402 ± 0.0267 0.8449 ± 0.0294 0.8335 ± 0.0367 overtime 0.7491 ± 0.0355
K2009 0.5063 ± 0.0083 0.5059 ± 0.0113 0.5091 ± 0.0105 overtime 0.5091 ± 0.0112
KKBox 0.8764 ± 0.0009 0.8765 ± 0.0012 0.8756 ± 0.0014 overtime 0.8749 ± 0.0013
Member 0.7048 ± 0.0094 0.7028 ± 0.0122 0.6985 ± 0.0106 0.6708 ± 0.0118 0.6858 ± 0.0121
Mobile 0.9071 ± 0.0026 0.9074 ± 0.0028 0.9069 ± 0.0036 overtime 0.8985 ± 0.0039
SATO 0.8175 ± 0.0213 0.8142 ± 0.0199 0.8133 ± 0.0189 0.7835 ± 0.0188 0.8171 ± 0.0182
TelC 0.8465 ± 0.0097 0.8480 ± 0.0098 0.8490 ± 0.0096 0.8399 ± 0.0114 0.8212 ± 0.0107
TelE 0.9360 ± 0.0023 0.9341 ± 0.0022 0.9319 ± 0.0024 overtime 0.9409 ± 0.0016
UCI 0.9120 ± 0.0215 0.9152 ± 0.0209 0.9084 ± 0.0197 0.8732 ± 0.0323 0.9095 ± 0.0213
News 0.8639 ± 0.0076 0.8620 ± 0.0076 0.8541 ± 0.0071 overtime 0.8554 ± 0.0084

ÃUC 0.8620 0.8612 0.8541 0.8450 0.8219
AUC 0.8182 0.8174 0.8151 0.8127 0.7978

Table 8: Recall results for our ensemble proposal vs. LLM [28] and RF-based [29].

LR|XGBoost|RF & DAE-based Segmentation LLM RF-based
G=2 G=4 G=6 (De Caigny et al. [28]) (Ullah et al. [29])

Bank 0.7551 ± 0.0329 0.7548 ± 0.0346 0.7490 ± 0.0410 0.7398 ± 0.0376 0.7162 ± 0.0396
C2C 0.6663 ± 0.0490 0.6578 ± 0.0658 0.6750 ± 0.0466 overtime 0.6006 ± 0.0400
DSN 0.8356 ± 0.0459 0.8065 ± 0.0489 0.8027 ± 0.0408 0.8118 ± 0.0608 0.8376 ± 0.0507
HR 0.7488 ± 0.0591 0.7297 ± 0.0590 0.7311 ± 0.0789 overtime 0.6629 ± 0.0887
K2009 0.5376 ± 0.2220 0.4416 ± 0.2668 0.4669 ± 0.2608 overtime 0.4403 ± 0.1780
KKBox 0.7466 ± 0.0147 0.7507 ± 0.0195 0.7569 ± 0.0162 overtime 0.7440 ± 0.0144
Member 0.7482 ± 0.0635 0.7426 ± 0.0751 0.7276 ± 0.0867 0.7140 ± 0.0921 0.6996 ± 0.0776
Mobile 0.8365 ± 0.0152 0.8415 ± 0.0116 0.8388 ± 0.0111 overtime 0.8219 ± 0.0140
SATO 0.7371 ± 0.0797 0.7283 ± 0.0797 0.7106 ± 0.0712 0.7079 ± 0.0733 0.7631 ± 0.0417
TelC 0.7985 ± 0.0528 0.8026 ± 0.0443 0.7940 ± 0.0452 0.8060 ± 0.0450 0.7671 ± 0.0416
TelE 0.9313 ± 0.0092 0.9320 ± 0.0076 0.9322 ± 0.0091 overtime 0.9361 ± 0.0067
UCI 0.8155 ± 0.0289 0.8227 ± 0.0335 0.8208 ± 0.0424 0.7727 ± 0.0470 0.8257 ± 0.0385
News 0.7729 ± 0.0408 0.7772 ± 0.0362 0.7675 ± 0.0389 overtime 0.6715 ± 0.0681

ÃUC 0.7551 0.7548 0.7569 0.7563 0.7440
AUC 0.7638 0.7529 0.7518 0.7587 0.7297

Table 9: Top 3 features for our ensemble proposal with DAE-based segmentation (G = 4).

Bank Member TelC
churner non churner churner non churner churner non churner

C1

creditscore geography spain annual fees membership term years monthlycharges totalcharges
numproducts 2 numproducts 2 additional member 3 member annual income totalcharges techsupport no
geography germany hascrcard member occupation cd 2 annual fees paymentmethod bank transfer onlinebackup no

C2

estimatedsalary age annual fees member age at issue paymentmethod credit card gender
gender gender member age at issue payment mode semi-annual partner monthlycharges
tenure numproducts 2 payment mode annual member occupation cd 2 gender paymentmethod elec. check

C3

age creditscore member annual income membership package monthlycharges monthlycharges
balance balance membership term years member occupation cd 1 tenure group tenure 24-48 totalcharges
hascrcard tenure member gender payment mode annual paymentmethod elec. check techsupport yes

C4

estimatedsalary estimatedsalary member age at issue member age at issue totalcharges seniorcitizen
age balance membership term years additional member 0 seniorcitizen dependents
tenure gender annual fees member occupation cd 2 paperlessbilling streamingmovies yes
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C3, electronic check). The C4 TelC cluster stands out from the
rest of the clusters in terms of most important features, both for
churners and non churners. Interestingly, the C3 cluster seems
to indicate a non churner subgroup that is satisfied with the755

technical support.

All in all, these qualitative evaluations put forward the intrin-
sic multidimensionality and multiplicity of the customer behav-
ior patterns.760

7. Conclusion and perspectives

In this study, we propose to review, evaluate, and compare
several widespread machine learning approaches in the context
of churn prediction and profiling. We also provide insightful
visualizations and general recommendations for the choice of a765

processing pipeline for churn prediction and profiling based on
an ensemble approach.

Note that we only consider the default parameters for each
approach while the supervised context would also allow for
boosting versions of some of these techniques [82, 37]. This770

could significantly improve classification results, in particu-
lar for SVM [83]. Furthermore, churn prediction issue pertains
to the broader class of imbalance data problem. It is there-
fore related to the extreme case of anomaly or outlier detec-
tion [84] for which many approaches have been proposed [85,775

86, 87, 88]. In particular, semi-supervised approaches regu-
larly provide state-of-the-art results [86, 89]. Among the well-
known semi-supervised techniques for anomaly detection, one
could cite Local Outlier Factor (LOF) [90], One-Class SVM
(ocSVM) [91], Isolation Forest (iForest) [92] and Support Vec-780

tor Data Description (SVDD) [93] methods. These type of tech-
niques should be the object of our future works.

Another type of approaches for which a particular interest
should be taken in the context of attrition are the deep learning
methods. We can observe that the finance industry is gradually785

adapting various machine learning techniques. In particular, de-
tecting economic crimes (eg., accounting fraud, money laun-
dering) triggered successful applications of machine learning
to this area, where LR, Gnb and SVM are among the most clas-
sic methods exploited. However, the occurence of new kinds790

of fraud, with the growth of electronic market, has popular-
ized deep learning methods which enable the emergence of nu-
merous and innovative deep anomaly detection methods [94].
In particular, GEV-NN (Generalized Extreme Value Neural Net-
work) which proposes to use Gumbel distribution as an activa-795

tion function, reaches state-of-the-art results in the context of
imbalanced data [95].

It is also important to notice that most of the churn-like
prediction frameworks typically consider only structured data.
However, as a large proportion of big data consists of diverse800

unstructured data [96], it is important to find strategies that
enable the incorporation of the information that they contain.
Indeed, online communication means between customers and
companies or banks are expanding rapidly. Previous studies
demonstrate that textual data can improve the churn prediction805

performance. Examples can be found with the use of highly un-
structured data coming from social networks [97, 98, 55]. Re-
cently, De Caigny et al. [99] proposed the incorporation of tex-
tual information based on Convolutional Neural Network. Har-
nessing information from social network features – comments,810

friend sharing – [100] can also improve churn predictions by en-
abling causal information discovery [101]. Indeed, social influ-
ence is one of the key reasons for churn behavior [102]. These
last considerations should be part of an interesting short-term
study.815

Appendix A: Datasets complementary information

K2009 (KDD-Cup 2009 small) This dataset was proposed
in the context of the KDD Cup 2009: Churn relationship
prediction and originates from the French telecommuni-
cation company Orange in order to predict the switch of820

provider [103]. #Dummified Features: 1039.

KKBox’s (WSDM CUP 2018) This churn dataset was proposed
for the 11th ACM International Conference on Web Search
and Data Mining (WSDM 2018) and originates from the825

KKbox Taiwanese music streaming company. The proposed
challenge is to predict if a subscriber will churn as soon as the
subscription expires [10]. #Dummified Features: 56.

UCI (MLC Churn) This dataset is similar to the Telecom830

SingTel, CrowdAnalytix and UCI datasets. MLC Churn is
proposed in the R package modeldata [83]. #Dummified
Features: 21.

HR (IBM Employee Attrition) This dataset originates from835

IBM HR and includes 1, 470 records of individuals who left
the company or not. It is an artificial dataset created by IBM
data scientists from Watson analytics, and has been proposed
to uncover the factors that lead to employee attrition [104].
#Dummified Features: 86.840

TelE (Telco-Europa) This dataset corresponds to the real data
of a small telecommunications company in Oceania that has
only 14 months of historical data. It is found in online churn
prediction tutorials. #Dummified Features: 26.845

News (Newspaper) This datasets contains information on
Californian newspaper subscribers and an attrition variable.
It is found in online churn prediction tutorials. Other news-
paper private datasets were analyzed in previous studies;850

see [105, 55, 106]. #Dummified Features: 307.

Bank This data set contains details of a bank’s customers and
their departure. It is found in online churn prediction tutorials.
#Dummified Features: 16.855

TelC (IBM Telco Churn) This dataset is proposed by IBM and
is used in an online tutorial to train a model that predicts if a
customer is likely to leave the telecom provider. #Dummified
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Features: 34.860

C2C (Cell2Cell) The data sets is provided by the Teradata Cen-
ter for CRM (Customer Relationship Management). Data were
provided by the Cell2Cell company, which is one of the largest
wireless company in the USA [107]. #Dummified Features: 75.865

Member (Membership Woes) This dataset is cited in online
tutorials. #Dummified Features: 26.

SATO (South-asian) This dataset is provided by a South Asian870

Telecom Operator, also called SATO. Data were collected
between August 2015 and September 2015 [108]. #Dummified
Features: 29.

DSN (DSN-telecom ‘Nigerian Telecom’) This dataset has been875

proposed in the context of the DSN Telecoms Churn Prediction
2018 challenge, which is one of the pre-qualification to the
2018 Data Science Nigeria hackathon. #Dummified Features:
32.

880

Appendix B: Python package and functions

All experiments in this survey were performed on public
datasets using freely available Python packages. Hence, results
are entirely reproducible. Table 10 summarizes information on
packages, functions and parameters used for our experiments.885

It also provides links to the online description of each function.
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Table 10: Packages, functions and parameters summary for the churn pipeline

Approach Function parameters version online details
Sampling

over. SMOTE SMOTE default 0.7.0 imblearn.over sampling.SMOTE
ADASYN ADASYN ’not minority’ 0.7.0 imblearn.over sampling.ADASYN

under. Tomek links TomekLinks default 0.7.0 imblearn.under sampling.TomekLinks.html

NCR NeighbourhoodCleaningRule default 0.7.0
imblearn.under sampling.
NeighbourhoodCleaningRule

hybrid
SMOTE+Random

SMOTE

RandomUnderSampler
default 0.7.0

imblearn.over sampling.SMOTE
imblearn.under sampling.
RandomUnderSampler

SMOTE+Tomek links SMOTETomek default 0.7.0 imblearn.combine.SMOTETomek

SMOTE+NCR
SMOTE

NeighbourhoodCleaningRule

SMOTE: default
NCR: ’minority’ 0.7.0

imblearn.over sampling.SMOTE
imblearn.under sampling.
NeighbourhoodCleaningRule

Model Fitting

Supervised

k-nearest neighbors KNeighborsClassifiere default 0.23.2 neighbors.KNeighborsClassifier
Naı̈ves Bayes GaussianNB default 0.23.2 sklearn.naive bayes.GaussianNB

Logistic Regression LogisticRegression default 0.23.2 sklearn.linear model.LogisticRegression
Support Vector Machine SVC default 0.23.2 svm.SVC

Decision Tree DecisionTreeClassifier default 0.23.2 sklearn.tree.DecisionTreeClassifier

Ensemble
Supervised

Random Forest RandomForestClassifier default 0.23.2 sklearn.ensemble.RandomForestClassifier
XGBoost XGBClassifier default 1.0.2 xgboost.readthedocs.io

Evaluation

Strategy
Cross Validation train test split default 0.23.2 sklearn.model selection.train test split

K-fold validation KFold K=5 0.23.2 sklearn.model selection.KFold
Stratified k-fold validation StratifiedKFold K=5 0.23.2 sklearn.model selection.StratifiedKFold

Metric
Top-lift plot lift curve default 0.3.7 rasbt.github.io – lift score

F1-score f1 score default 0.23.2 sklearn.metrics.f1 score
AUC roc auc score default 0.23.2 sklearn.metrics.roc auc score
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