LCPC (Public Works Laboratory) : Industrial achievements

Institution :

LCPC = Laboratoire Central des Ponts et Chaussées (Public Works Laboratory - France)

Authors:

- Vincent Le Cam*,
- Frédéric Bourquin*,
- * LCPC Instrumentation Division

Synopsis

- Introduction LCPC identity
- Zoom on LCPC Industrial achievements
 - A SHM development : cable health monitoring.
 A Case Study : Aquitaine Bridge,
 - Monitoring of Stayed Cables,
 - Structures monitoring by means of UAV
 - Wireless and distributed sensor network development Contribution of wireless sensors on a real case study,
 - Capacitive sensor for cable—sheath health diagnosis
- Roadmap & Conclusion

LCPC Identity

LCPC is :

- The French Public Works Research Laboratory
- A national organization for applied research and development
- 650 employees (technicians, ingineers, searchers)
 - Maintain and develop the existing infrastructure heritage
 - Ensure road user safety
 - Mitigate the environmental impact of infrastructures during their service life (and better control natural hazards)
 - Optimize civil engineering structures in urban environments
 - Promote Promote the introduction of new materials and new technologies in civil engineering and transport.

Industrial and International cooperations

A Structural Health Monitoring development : => Crack in-cable health monitoring => A Case Study : Aquitaine Bridge.

NSF/ESF : Smart Structures and Advanced Sensor Technologies -Greece June 2005

4

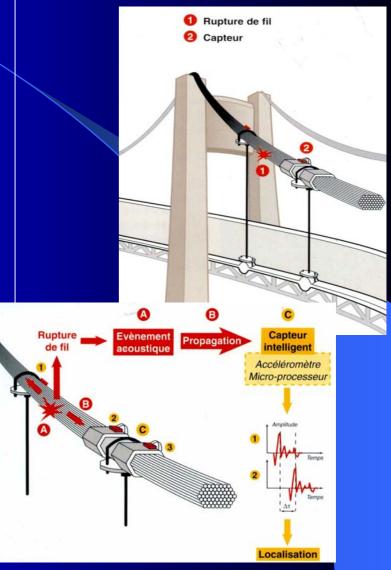
A SHM development : cable health monitoring

One of LCPC missions : cable health monitoring

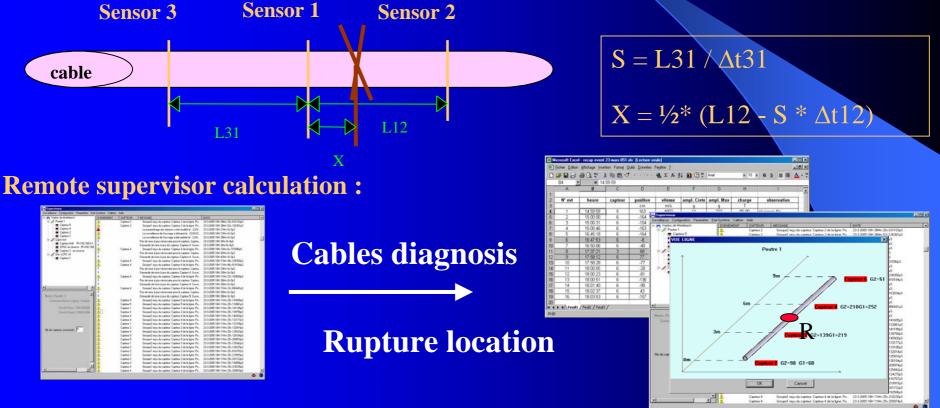
- Safety,
- Structure durability,
- Cost efficiency.

Goals of the system :

Knowing the number of wire breaks and their location contributes to understand the well-being of the structure (diagnosis).

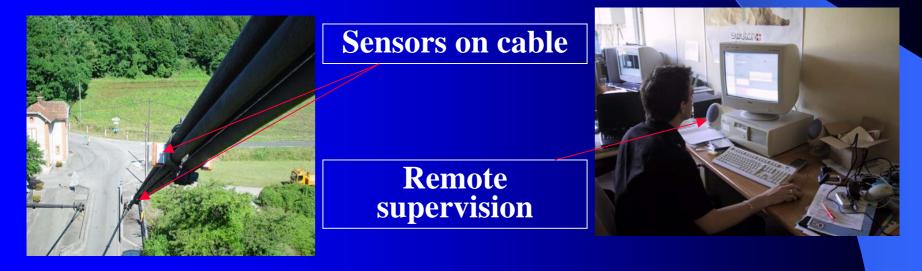

To prevent structure manager from critical accidents. A better structure maintenance.

Principle of detection by sensors :


- When a wire breaks, an acoustic wave is generated,
- Wave is detected by sensors, recorded (during 8ms) and very precisely dated,
- Then, sensors transmit those informations to a remote supervisor
- By 3 acoustic sensors informations, the remote supervisor is able to evaluate when and where a rupture occured

Principle of localization by supervisor :

- Wave speed "S" is estimated by informations from sensor 1 and 3,
- Localization "X" is evaluated between sensor 1 and 2.



NSF/ESF : Smart Structures and Advanced Sensor Technologies -

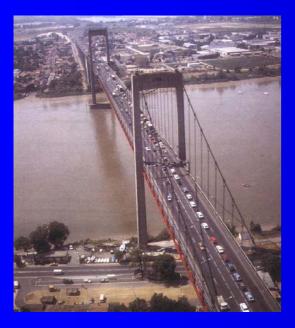
Greece June 2005

A first generation of the system has been developped and put into form. Each sensor is a smart system that embedd :

- An accelerometer as the sensitive element (for wave detection),
- A micro-controller that ensure data digitalization and runs algorithms
- Sensors and supervisor are connected by a RS485 serial link,

- Sensors are 10m equispaced,
- Threshold is around 0.8g,
- Speed wave is around 5000 m/s

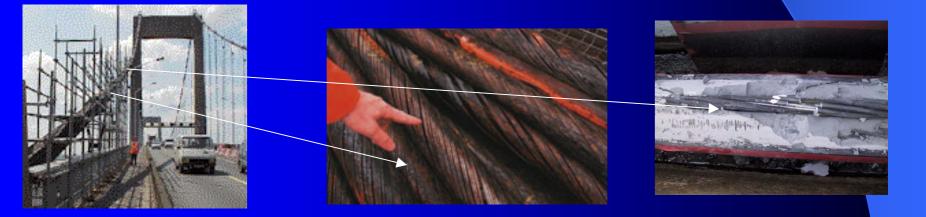
Iseron Bridge


Contrôle en temps réel de la sécurité des ponts suspendus

Tancarville Bridge

Results : an accuracy of +/-15cm in wire breaks localization.

Aquitaine suspended-bridge put under acoustic surveillance (corrosion, fatigue) during 1995-1998 period.


Sensors on cable

Results :

- Several ruptures detected,
- Acceleration of the ruptures phenomenon (average of 14 ruptures / month),
- Complementary analyses of the cable and its collar prooved that numerous ruptures occured

Conclusion :

LCPC acoustic SHM system contributed to decide the cables replacement (2000-2003).

Insdustrial cooperations :

- Quasar Concept Company,
- AdVitam (Freyssinet Group) Company.

. . .

A Structural Health Monitoring development : => Rotation of stayed cables monitoring. => A Case Study : Saint Nazaire Bridge.

NSF/ESF : Smart Structures and Advanced Sensor Technologies -Greece June 2005

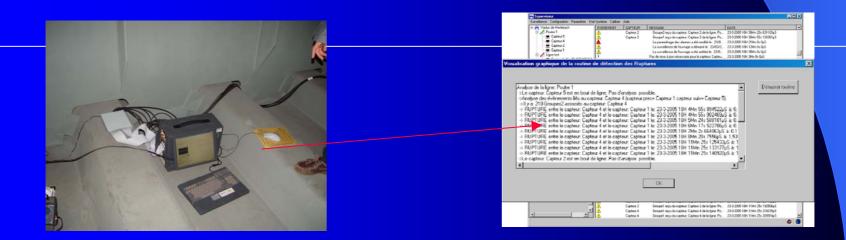
14

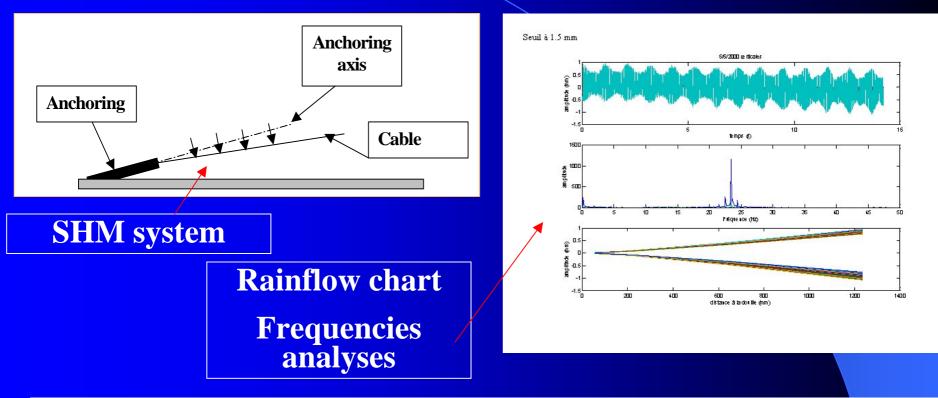
Problem :

Cable displacements at stayed cables anchoring causes ruptures due to fatigue.

Solution : Monitoring system

- Measures cable displacements,
- On two axis (on bridge and orthogonal-to-bridge directions),
- For each axis : 4 displacements (mm) measurements,
- A supervisor : record measures (at 300 Hz sampling) and provide statistics.




Results : Monitoring system installed on Saint Nazaire Bridge

A interesting diagnosis could be established :

- Major displacements in bridge direction (while the reserve was expected),
- Displacements could be due to wind as musch as trafic (correlation was made)
- Frequency analyses and Rainflow chart furnished the frequencies to attenuate on the cable

Prospects : Attach to cable a controlled active dumper system to stabilize cable...

- Investigation of bridges using a mobile platform : Why ?
- → Actuals inspection methods
- → An experimentation case study
- \Rightarrow Results

To improve human security conditions

To reduce the financial cost

To increase the frequency

To develop automated investigation methods

Actuals inspection methods

NSF/ESF : Smart Structures and Advanced Sensor Technologies -Greece June 2005

THEFT

Actuals inspection methods

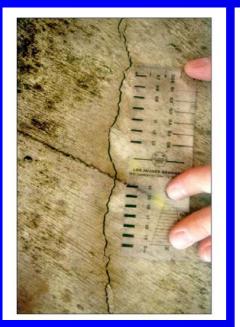
Epsilon

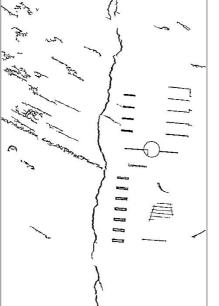
Difficult to access

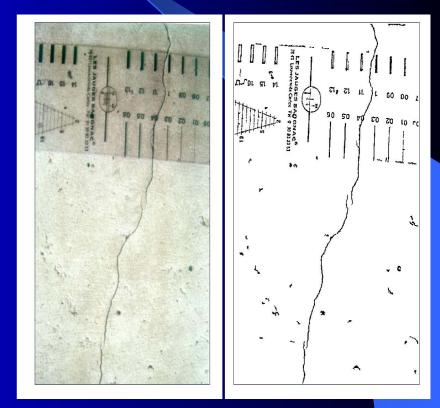
Inside bridges : cables, few

place...

Structures over rivers




Complex shape structures


Manual measurements :

Crack width ruler

Image processing perspectives

- Goals of the Mobile Platform for Instrumentation (PMI project):
- TO VIZUALISE STRUCTURE DEFECTS
- TO CARRY OUT NON DESTRUCTIVE MEASUREMENT
- TO LOCALIZE THE DEFECTS ON THE STRUCTURE
- TO STORE AND TRANSMIT COLLECTED DATAS
- TO SET UP AN INSTRUMENTATION
- TO CUT OFF SAMPLES OF THE STRUCTURE

A Feasibility study on the « Saint-Cloud » bridge

IMAGES EXTRACTED FROM THE VIDEO OF THE TRIALS :

Results :

- **A video of the structure was recorded and stored**
- **First image analyses were done by a structural engineering manager and discussed**

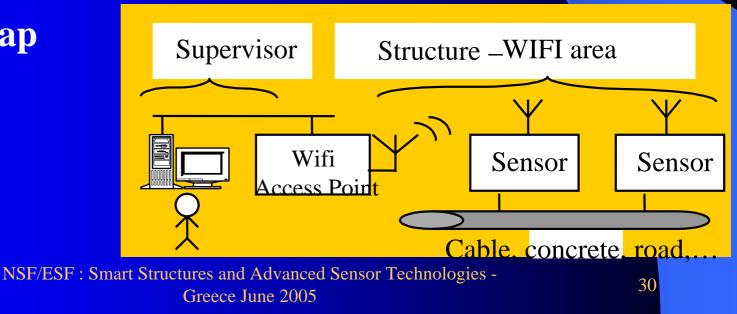
Extracted pictures and video have the sufficient quality to consider development of Automatic Image Processing algorithms for defects detection.

Concept is validated

Defects identification have to be located on the structure

EAN UAV platform is under development with an Industrial Partner : Bertin Company

Driving research across networks



Wireless and distributed sensor network. Smart Sensors

- → Motivation and needs
- \rightarrow The LCPC generic wireless platform
- ⇒ A case study : Wireless monitoring of Merlebach Bridge

⇒ Roadmap

Wireless and distributed sensor network. Smart Sensors

Even if use of sensors is a need and a reality, cables of wired instrumentations are a source of limitations.

-> Poor flexibility -> Geographically limited

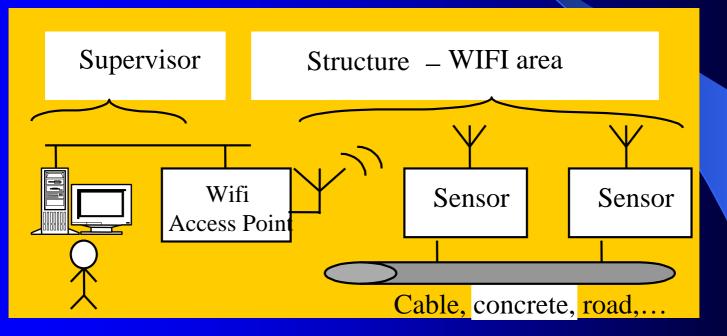
-> Non-massive instrumentations

->Fragile -> Sensitive to electromagnetical noise

Wireless : Motivation and needs

Conclusions :

Wireless technologies offer more than a pratical simplification ! It enables new way of monitoring.


Wireless technologies are in adequation with growing needs and developments of smart sensors and distributed networks.

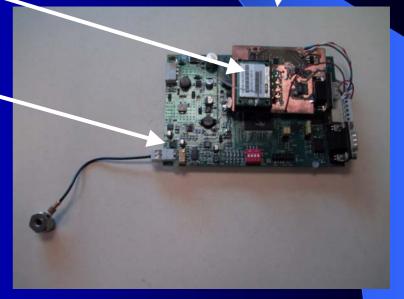
Thus, wireless instrumentation emerges as a source of progress.

LCPC Wireless platform description LCPC has developed a wireless sensor network platform with the following characteristics : the platform is a "N sensors 1 supervisor" distributed network.

Sensors are seen like computers of a traditionnal computer network

LCPC Wireless platform description Network communication : TCP/IP Wireless implementation of TCP/IP exists : WIFI (802.11x), TCP/IP is an open-source low-cost world-wide protocol, Point to point, connected and reliable procotol, Easy to embedd and customize in small electronic components, Wifi areas can easily be adapted to Bridges context.

A simple access point connected to a traditionnal PC provides a wireless TCP/IP area.



LCPC Wireless platform description

LCPC smart sensor:

- Sensor core is a DSP : dedicated to signal processing (FFT, filtering...). Hosts an OS
- DSP embedd the real-time µcLinux OS. Permanently runs the application algorithms
- A TCP/IP Wifi module for wireless communications
- A 12 bits converter that runs data digitalization up to 1 Mhz. Sensitive element : piezzo, strain-gauges, T°c...
- A GPS module for sensor absolute time synchronization

LCPC Wireless platform description

LCPC Supervisor :

- An Oriented Object developed software : easy to customize from one application to another. Reusable software bricks.
- **Runs on any standard PC : that all include a native TCP/IP stack = communication with sensors is fully transparent**
- **Offers intuitive interfaces to manage and configure the sensor network :**
 - To add/remove sensors object in the monitoring system
 - To change a sensor parameter,
 - To dis/enable a sensor in the network,

Superviseur					
E 🕂 Viaduc de Merlebach	EVENEMENT	CAPTEUR	MESSAGE	DATE	1
Poutre 1	1	Capteur 2	Groupe2 reçu du capteur: Capteur 2 de la ligne: Po	23-3-2005 18H 38Mn 20: 631103µS	
- 💻 Capteur 5	*	Capteur 2	Groupe1 repu du capteur: Capteur 2 de la ligne: Po	23-3-2005 18H 36Mn 52s 126361µS	
💻 Capteur 4	A		Le paramétrage des alarmes a été modifié le: 23/0	23-3-2005 18H 21Mn 0s 0µS	
Capter 2 Capter 1 Capter 1	1		La surveillence de l'ouvrage a démarré le: 23/03/2	23-3-2005 18H 12Mn 0s 0µS	
	1		La surveillence de l'ouvrage a été arrêtée le: 23/0	23-3-2005 18H 35Mn 0s 0µS	
	i		Pas de mise à jour nécessaire pour le capteur: Capteu	23-3-2005 18H 3Mn 0s 0µS	<u> </u>
	i /		Demande de mise à jour du capteur. Capteur 4. Surve	23-3-2005 18H 3Mn 0: 0µS	
	<u>4</u>	Capteur 4	Groupe2 repu du capteur: Capteur 4 de la ligne: Po	23-3-2005 18H 12Mn 6s 737090µS	
	i		Pas de mise à jour nécessaire pour le capteur: Capteu	23-3-2005 18H 42Mn 0s 0µS	
	i		Demande de mise à jour du capteur: Capteur 4. Surve	23-3-2005 18H 42Mn 0s 0µS	
		Copteur 4	Groupe1 reçu du capteur: Capteur 4 de la ligne: Po	23-3-2005 18H 11Mn 49s 238350µS	
	1	Capteur 4	Groupe1 repu du capteur: Capteur 4 de la ligne: Po	23-3-2005 18H 11Mn 46s 818184µS	
	i		Pas de mise à jour nécessaire pour le capteur: Capteu	23-3-2005 18H 33Mn 0s 0µS	
	i		Demande de mise à jour du capteur. Capteur 4. Surve	23-3-2005 18H 33Mn 0s 0µS	
	1	Capteur 4	Groupe2 recu du capteur: Capteur 4 de la ligne: Po	23-3-2005 18H 11Mn 37s 163034µS	
	i		Pas de mise à jour nécessaire pour le capteur: Capteu	23-3-2005 18H 26Mn 0s 0µS	
	i		Demande de mise à jour du capteur: Capteur 4. Surve	23-3-2005 18H 26Mn 0: 0uS	
<u>د ک</u>	1	Capteur 4	Groupe2 reçu du capteur: Capteur 4 de la ligne: Po	23-3-2005 18H 11Mn 32: 866441µS	
	i		Pas de mise à jour nécessaire pour le capteur: Capteu	23-3-2005 18H 26Mn 0s 0µS	
Nom: Poutre 1	i		Demande de mise à jour du capteur: Capteur 5, Surve	23-3-2005 18H 26Mn 0s 0uS	
Commentaire Ligne: Comm	1	Capteur 5	Groupe2 reçu du capteur: Capteur 5 de la ligne: Po	23-3-2005 18H 11Mn 25: 141605µS	
	1	Capteur 5	Groupe2 repu du capteur: Capteur 5 de la ligne: Po	23-3-2005 18H 11Mn 25: 133851µS	
Seuil Bas: 100.00000	1	Capteur 1	Groupe2 reçu du capteur: Capteur 1 de la ligne: Po	23-3-2005 18H 11Mn 25: 141199µS	
Seuil Haut: 1000.000	1	Capteur 2	Groupe2 recu du capteur: Capteur 2 de la ligne: Po	23-3-2005 18H 11Mn 25s 139758uS	
	1	Capteur 4	Groupe2 recu du capteur: Capteur 4 de la ligne: Po	23-3-2005 18H 11Mn 25s 140920µS	
	1 Contraction	Capteur 4	Groupe2 reçu du capteur: Capteur 4 de la ligne: Po	23-3-2005 18H 11Mn 25: 133177µS	
	T.	Capteur 1	Groupe2 recu du capteur: Capteur 1 de la ligne: Po	23-3-2005 18H 11Mn 25s 133185uS	
	Ň	Capteur 2	Groupe2 recu du capteur: Capteur 2 de la ligne: Po	23-3-2005 18H 11Mn 25: 132014uS	
Nb de capteurs connectés 0	1	Capteur 4	Groupe2 reçu du capteur: Capteur 4 de la ligne: Po	23-3-2005 18H 11Mn 25s 125433uS	
	Ň	Capteur 5	Groupe2 recu du capteur: Capteur 5 de la ligne: Po	23-3-2005 18H 11Mn 25: 126104uS	
	1	Capteur 5	Groupe1 reçu du capteur: Capteur 5 de la ligne: Po	23-3-2005 18H 11Mn 25s 209974uS	
	Ň	Capteur 1	Groupe2 recu du capteur: Capteur 1 de la ligne: Po	23-3-2005 18H 11Mn 25: 125442uS	
	Ň	Capteur 2	Groupe2 recu du capteur: Capteur 2 de la ligne: Po	23-3-2005 18H 11Mn 25: 124270µS	
	1	Capteur 2	Groupe1 recu du capteur: Capteur 2 de la ligne: Po	23-3-2005 18H 11Mn 25: 616707uS	
	Ň	Capteur 2	Groupe1 recu du capteur: Capteur 2 de la ligne: Po	23-3-2005 18H 11Mn 25s 219915uS	
	1	Capteur 2	Groupe1 recu du capteur: Capteur 2 de la ligne: Po	23-3-2005 18H 11Mn 25c 201722uS	
	T.	Capteur 2	Groupe1 repu du capteur: Capteur 2 de la ligne: Po	23-3-2005 18H 11Mn 25s 192506uS	
	Ň	Capteur 4	Groupe1 recu du capteur: Capteur 4 de la ligne: Po	23-3-2005 18H 11Mn 25: 218235uS	
	Ň	Capteur 4	Groupe1 recu du capteur: Capteur 4 de la ligne: Po	23-3-2005 18H 11Mn 25: 209974µS	

LCPC Wireless platform description

LCPC platform main contributions :

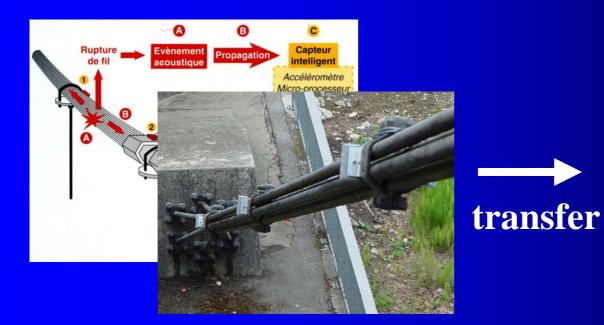
Abstraction : TCP/IP protocole makes the supervisor-sensors system independent of the physical link (wired or wireless) and of the distance (from meters to 1 km)

Transparent communications : applications hosted by the platform fully profit from the abstraction level of the network protocole

Important : Thanks to the embedded OS and the TCP/IP protocole, running softwares can be upgraded without uninstalling the sensor of the structure.

Generic : Platform could host different types of sensitive element : piezzo-electric, anemometer, strain gauges, etc.

High time synchronisation (1 µs) thanks to **GPS module**



NSF/ESF : Smart Structures and Advanced Ser Greece June 2005

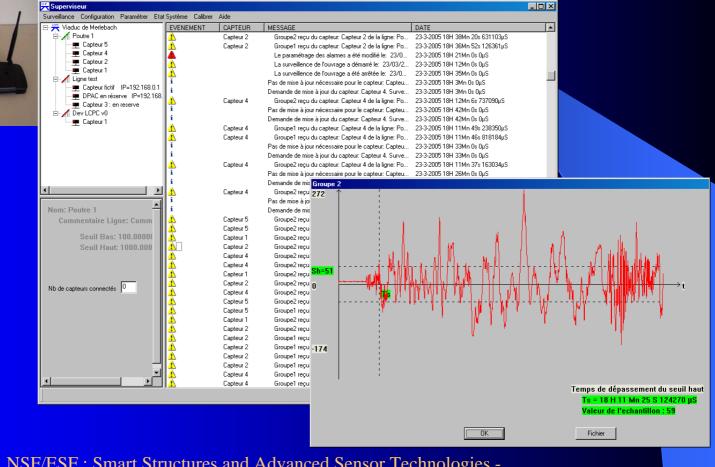
The idea :

The cable health monitoring system (that detect wire breaks in cables) is transferred to be hosted by the LCPC wireless platform.

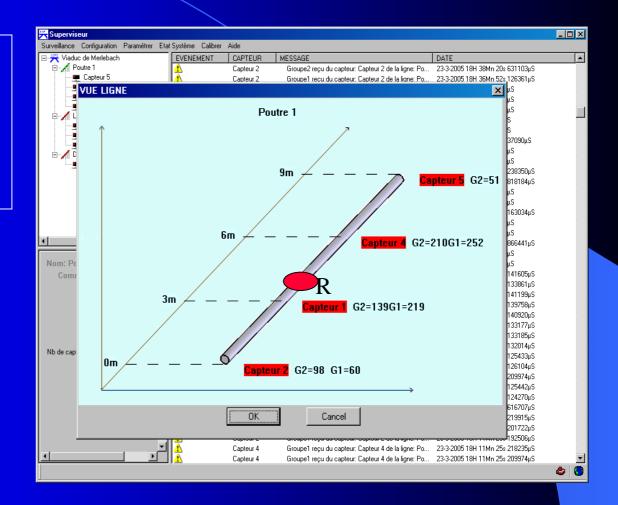
Wired SHM system

Wireless platfo<mark>rm</mark>

Instrumentation of Merlebach Bridge by the wire and the wireless version of the SHM platform.

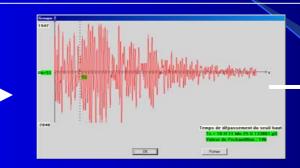


Loading tests on a beam to evaluate residual stress


Many acoustic signals recorded due to cable ruptures

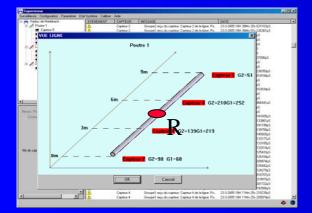
Results :

The wireless system detected and located ruptures of cables in the beam !

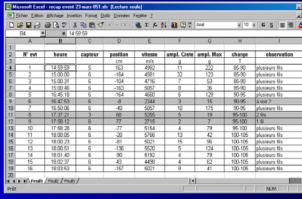

NSF/ESF : Smart Structures and Advanced Sensor Technologies -Greece June 2005

4]

That application validated the contribution of a real wireless SHM system on a real structure.



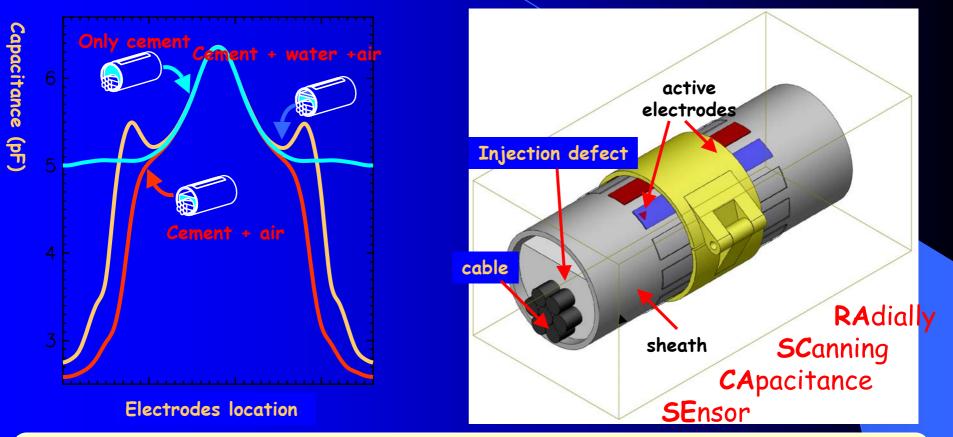
Sensor distribution



Wave digitalization

TCP/IP Wifi transmission

Supervisor analyses



Structure diagnosis

CAPACITIVE SENSORS

Electromagnetic interrogation of prestressing cables

Electrodes coupled to an oscillating electric circuit system constitute a condenser whose capacity varies according to the nature of the components

Roadmap

Developments focused on :

- SHM products (infrastructures are getting old),
- Sensor network & smart systems to integrate more and more relevant algorithms for structure diagnoses (embedded OS, ...),
- Wireless communications to enable a breakthrough in structural monitoring (Wifi, Zigbee,...)
- Automatic instrumentation (UAV inspection),
- Supervising systems that provide a global and synthetic comprehension of the phenomenon
- Technological barriers : battery limitations, energy recovering,...
- Cooperation with important industrial partners, other laboratories, answers to international call for proposition...

- New technologies (smart systems, wireless) are a breaktrough but real conditions must be taken into account,
- Structures lifespan are often longer than instrumentation lifespan
- Real and efficient smart systems exist and proove the relevance of our works,
- In an international context, standard developments must be required,
- International cooperation is a need. You are welcome !

