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Introduction

Context

Global Navigation Satellite Systems (GNSS) have revolutionized various industries by
providing essential navigation, timing, and positioning information. Widely employed in
applications ranging from intelligent transportation systems to autonomous unmanned
vehicles, GNSS has become integral for critical operations. However, the original design
of GNSS, tailored for clear sky nominal conditions, faces challenges in harsh environments,
impacting performance and reliability. Notably, issues like multipath effects, reflections,
spoofing, and intentional or unintentional interferences pose significant threats, especially
in safety-critical scenarios such as civilian aviation.

Addressing these challenges requires robust interference mitigation strategies. State-
of-the-art literature identifies various methods, among which pulse blanking, adaptive
notch filtering and Karhunen-Loeve Transform (KLT) play pivotal roles. In this project,
the focus is on countering interferences characterized by a constant envelope (CE), a
significant family of intentional interferences, including pure and time-varying tones like
chirped signals. These interferences exhibit a constant modulus property, leading to
complex circular search spaces at the receiver.

The primary objectives of this project are threefold. Firstly, the exploration of existing
methods proposed in the literature to mitigate constant envelope interferences. Secondly,
the modeling and implementation of the interferences. Finally, the implementation and
evaluation of selected interference mitigation methods.

To assess the performance of these mitigation strategies, the project adopts the Max-
imum Likelihood Estimator (MLE) for time-delay and Doppler shift estimation, com-
paring it post-countermeasure application. Further evaluation involves a comparison of
mean square error (MSE) solutions with the theoretical limits given by the Cramér-Rao
bound (CRB) under well-specified and misspecified conditional signal models, also known
as misspecified Cramér-Rao bound (MCRB).

Matlab is chosen as the platform for project implementation due to its extensive library
of base functions, facilitating signal and interference modeling as well as performance
analysis.

At the project’s conclusion, two deliverables will be provided: the Matlab source code
for implementing interference mitigation methods and signal modeling and a compre-
hensive report discussing state-of-the-art algorithms, implementation details, obtained
results, and future recommendations.

This project offers a unique learning opportunity, covering concepts of interference
in aeronautical communication systems, its implications in electronic warfare, standard
methods for attenuation, and the modeling and implementation of classic interference
methods.
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Motivations

Working as a group on the constant envelope interference mitigation project for GNSS
provides a compelling opportunity for several reasons:

1. Real-world Impact: Our collaborative efforts directly impact the reliability of
GNSS across critical applications, aligning with practical industry needs.

2. Diverse Skill Sets: Leveraging diverse backgrounds in electrical engineering, com-
puter science, and signal processing, we enhance our collective expertise and tackle
the project’s interdisciplinary challenges.

3. Efficient Division of Tasks: Collaborating allows us to efficiently divide re-
sponsibilities based on individual strengths, ensuring comprehensive coverage of
the project’s scope.

4. Innovation through Collaboration: Working as a team fosters creative thinking,
encouraging diverse perspectives that can lead to innovative solutions for interfer-
ence mitigation.

5. Professional Growth: Group collaboration not only advances academic knowl-
edge but also hones project management and communication skills, contributing to
our overall professional development.

Many in our group aspire to pursue careers in signal processing and GNSS tech-
nology. This collaborative project serves as a valuable opportunity for professional
development, allowing us to gain practical insights and hands-on experience in a
field we aim to join.

Beyond academic benefits, active participation in this project provides exposure to
the latest advancements, expands professional networks, and positions us at the
forefront of industry trends. This endeavor is not just an academic exercise but a
strategic investment in our collective professional growth.

In essence, our motivation extends beyond academic curiosity; it is a proactive
step towards shaping our future careers in signal processing and GNSS technology.
Through collaborative learning and problem-solving, we aim to meet project ob-
jectives while laying the groundwork for ongoing success in our chosen professional
paths.

Together, our motivation lies in addressing a significant challenge in GNSS technology,
making meaningful contributions, and preparing for future collaborative and professional
endeavors.
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1 Concepts and Tools

1.1 Introduction

1.1.1 Context

Interference modeling and mitigation play crucial roles in enhancing the performance of
GNSS receivers, such as GPS or Galileo. Interference can arise from various sources,
including radio frequency signals, atmospheric conditions, or electronic devices. To ad-
dress these challenges, interference modeling techniques are employed to analyze and
understand the impact of different interference sources on GNSS signals. This idea is
to implement at the receiver algorithms to distinguish between the GNSS signals broad-
casting by the satellites and unwanted or intentional interference. Then, the receiver is
required to mitigate the interference, enabling the position velocity and time (PVT) com-
putation. Mitigation strategies involve the development of robust filtering algorithms,
adaptive signal processing techniques, and advanced antenna designs to suppress interfer-
ence effects. Additionally, the integration of multiple constellations and signal frequencies
can enhance resilience against interference, ensuring reliable and accurate navigation so-
lutions in challenging environments. As GNSS technology continues to evolve, ongoing
research in interference modeling and mitigation remains crucial for achieving optimal
performance in diverse real-world scenarios.

1.1.2 Estimation Theory

In general, GNSS signal reception and interference mitigation can be considered as a sig-
nal processing application. The received signal in our case have different properties :

• It’s a random process due to environment noise (thermal noise for example).

• Every unknown parameter is stored in a vector θ.

• It can be sampled, so that a signal can always be represented as a vector of numbers.

Estimation problem can be expressed like this : x = [x(1), ..., x(N)]T is a vector
of observations whose Probability Density Function (PDF), is written as p(x;θ) is pa-
rameterized by a vector of unknown parameters : θ = [θ1, ..., θL]

T and those unknown
parameters are the ones we want to estimate.

For that we will use what we called an estimator θ̂ which is a function of the observa-
tions vector that we’ve seen previously : θ̂ = g(x)

1.2 Background on deterministic estimation theory

1.2.1 Conditional Signal Model

A Conditional Signal Model (CSM) pertains to a model where the parameter of interest
are assumed to be non-random, with the vector of unknown parameters θ considered
deterministic. In contrast, the Unconditional Signal Model (USM) describes a model in
which the signal of interest is assumed to be random, with θ having a prior distribution
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that must be considered [1].

Let us consider the following CSM:

x = A(θ)α + n

Where A(θ) = [a(θ1), ...,a(θL)] is the matrix of the measured signals a that depends
on the components of the unknown parameters θ,αT = (α1, ..., αL) is the vector of real
or complex amplitudes of the observed signals. Finally, n is the noise vector. It is often
assumed to be an additive complex circular white Gaussian noise vector with unknown
variance σ2

n so that : n ∼ CN (0, σ2
nIN). Consequently the observed data PDF is also

Gaussian with x ∼ CN (A(θ)α, σ2
nIN) and:

p(x; θ) =
1

(πσ2
n)

N
e
− 1

σ2
n
||x−A(θ)α|||2 (1)

The CSM described in (1) fits a large number of applications such as radar, sonar [2] or
navigation. This is the signal model that we will consider for our case study, as has been
done in numerous publications for the GNSS receiver under different conditions [3, 4, 5,
6, 7, 8, 9, 10, 11].

1.2.2 Estimator Quality

Considering the CSM along with its PDF, the vector that contains all the unknown
parameters can be defined as ϵT = (σ2

n,θ
T ,αT ). So ϵ̂ is an estimator of ϵ. An estimator

fulfill these requirements:

• An estimator is a random variable. It is a function of the data and is consequently
a function of random variables with its own properties.

• The bias of an estimator is a statistical measure that indicates how the expected
value of the estimator consistently deviates from the true parameter to estimate.
One can determine the bias of the estimator by:

b(ϵ̂) ≜ E{ϵ̂} − ϵ

where E{} is the expectation operator.

• The variance of an estimator is a statistical metric that measures the spread of the
estimator’s values around its expected value (mean).

Var(ϵ̂) ≜ E
{
(ϵ̂− E{ϵ̂})2

}
For vectors, one refers to the covariance matrix:

Cϵ̂
△
= E

{
(ϵ̂− E{ϵ̂})(ϵ̂− E{ϵ̂})T

}
4 BROCHARD Alexandre / FORNER Jessica / GOETHAL Julien / PASSERON Tristan
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The smaller this variance or covariance matrix is, the better the estimation is in terms
of precision.

• Another metric that includes both bias and variance is the Mean Squared Error
(MSE) defined as:

MSE(ϵi) ≜ E
{
(ϵ̂i − ϵi)

2
}
= b(ϵ̂i)

2 + var(ϵ̂i), for i ∈ [1, L].

For unbiased estimators, variance and MSE are the same.

Now let ϵN be an estimator of ϵ based on N signal samples. ϵN is a wide sense con-
sistent estimator if it converges in probability :

lim
N→+∞

P [||ϵ̂N − ϵ|| < δ] = 1, ∀δ > 0, ∀ϵ

where P [event] denotes the probability of event. Similarly, ϵ̂N is consistent in mean
square if:

lim
N→+∞

E
{
(ϵ̂N − ϵ) (ϵ̂N − ϵ)T

}
= 0,∀ϵ

and if an estimator is consistent in mean square, it is wide sense consistent as well.
Typically, users tend to prioritize mean square consistency as it is more manageable for
proofs. The remaining concern revolves around the convergence speed, which can vary
among different estimators. An ideal estimator would be one that is not only consistent
but also exhibits rapid convergence, indicating minimal variance. The Cramér-Rao bound
(CRB) is a tool that establishes a minimum limit for the variance of any locally unbi-
ased estimator. This lower bound plays a crucial role in comparing various estimators
and assessing the potential for improvement in an estimator. An estimator is considered
efficient if it is unbiased and its variance matches the corresponding CRB.

The CRB is defined for cases where the PDF p(x; ϵ) fits the following regularity con-
dition:

E

{
∂ ln p(x; ϵ)

∂ϵ

}
= 0 , ∀ϵ.

Then, for any unbiased estimator ϵ̂, its covariance matrix Cϵ̂ satisfies
Cϵ̂ − F−1

ϵ|ϵ(ϵ) ≥ 0 ,

where Fϵ|ϵ is the Fisher Information Matrix (FIM) defined as:

Fϵ|ϵ(ϵ) = −E

{
∂2 ln p(x; ϵ)

∂ϵ∂ϵT

}
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and the second derivative is evaluated at the true value of ϵ. At the GNSS receiver, the
signal at the output of the Hilbert filter can can be modeled as a complex circular Gaussian
distribution: x ∼ CN (µ(ϵ),C(ϵ)) where µ(ϵ) is the mean vector, which represent the
baseband signal time-delayed and C(ϵ) is the covariance matrix. For this particular case,
the Slepian-Bangs formulas give an expression of the FIM [12]:

[
Fϵ|ϵ (ϵ)

]
k,l

= 2Re

{
∂µH(ϵ)

∂ϵk
C(ϵ)−1∂µ(ϵ)

∂ϵl

}
+ Tr

{
C(ϵ)−1∂C(ϵ)

∂ϵk
C(ϵ)−1∂C(ϵ)

∂ϵl

}

where Tr{·} represents the trace operator. It is worth mentioning that in the context
of GNSS, the parameters to be estimated are those contained within the mean vector.
Recently, closed-form CRBs expressions [3, 13, 14, 15, 16, 17] for the associated parameter
of interest have been derived under specific assumptions, which will be elaborated on later
in the document. Furthermore, numerous publications have utilized these expressions and
confirmed their effectiveness.

Having acquired knowledge about standard tools for characterizing an estimator, the
objective is now to construct an estimator that is as effective as possible, preferably an
efficient one. However, achieving this is not always feasible, and the subsequent section is
dedicated to defining a set of estimators grounded in the maximum likelihood principle.

1.2.3 Maximum Likelihood Estimator

Finding a highly effective estimator for a particular problem is not always feasible. In
signal processing, a commonly adopted approach is to resort to the Maximum Likelihood
Estimator (MLE) [18], which exhibits numerous asymptotic properties, making it a rel-
evant option. The MLE principle is simply to find the parameter ϵ that maximizes the
likelihood function p(x; ϵ), which is the PDF when x is fixed and equal to the observed
data:

θ̂ = argmax
ϵ

p(x; ϵ)

The MLE possesses a noteworthy characteristic: it is asymptotically efficient. In other
words, as the number of observations increases or as the signal-to-noise ratio (as defined
later) grows large, the MLE becomes unbiased, and its variance equals the CRB. The
MLE seeks the vector ϵ that maximizes the likelihood. There is often a temptation to
examine the log-likelihood in order to eliminate the exponential term.

ϵ̂ = argmax
ϵ

{ln p(x; ϵ)} = argmax
ϵ

{
−N ln(π)−N ln

(
σ2
n

)
− 1

σ2
n

∥x−A(θ)α∥2
}
.

For the estimation of the variance term, σ2
n, one can find the σ2

n that cancels the first
derivative of the log-likelihood.
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∂ ln p(x;θ)

∂σ2
n

= −N

σ2
n

+
1

σ4
n

||x−A(θ)α||2 ,

so that that maximum likelihood estimate of the noise variance is simply:

σ̂2
n =

1

N
||x−A(θ)α||2 .

By replacing this estimate in the log-likelihood and omitting the constant terms, the
MLE problem becomes:

(
θ̂, α̂

)
= argmax

θ,α

{
− ln

(
∥x−A(θ)α∥2

)}
= argminϵ

{
∥x−A(θ)α∥2

}
.

Let PA = A(θ)
(
A(θ)HA(θ)

)−1
A(θ)H be the orthogonal projector on the vector

space defined by the column of A(θ), also referred as the data vector space. Then P⊥
A =

I−PA is the orthogonal projector on the noise space, and one can decompose the norm
to be minimized as follows:

||x−A(θ)α∥2=
∥∥(PA +P⊥

A

)
(x−A(θ)α

∥∥2
= ∥PA (x−A(θ)α)∥2 +

∥∥P⊥
A (x−A(θ)α)

∥∥2

and resorting to the definition of the projectors, one gets :

||x−A(θ)α∥2=
∥∥∥A((

A(θ)HA(θ)
)−1

A(θ)H −α
)∥∥∥2

+
∥∥P⊥

Ax
∥∥2

.

The goal is to minimize both terms of the previous equation. The first term minimiza-
tion yields a closed-form for the estimation of the complex amplitude:

α̂ = A(θ)HA(θ))−1A(θ)H

and the minimization problem reduces to:

θ̂ = argminθ
{
||P⊥

Ax||2
}
= argmaxθ

{
||PAx||2

}
The MLE becomes a robust estimator due to its asymptotic properties. However,

its effectiveness depends on the signal model and the complexity of parameter estima-
tion. In some cases, particularly when dealing with a multidimensional signal model and
many parameters, the MLE can pose challenges as it transforms into a highly non-linear
optimization problem. This complexity can render it intractable, primarily due to the as-
sociated computational costs. Alternative methods are available to address the complexity
of the MLE. In various scenarios, such as in an array of sensors, sophisticated algorithms,
such as the Multiple Signal Classification (MUSIC) [19] and the Capon algorithm [20],
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have been extensively researched for decades and continue to serve as benchmarks in the
field.

1.2.4 Misspecified Estimation

Until now, the estimation problem assumed a thorough understanding of the signal model
under examination. With this understanding, the PDF of the data could be formulated,
the corresponding CRB assessed, and the MLE, or at least suboptimal versions of it, could
be implemented. However, the signal model is not always well-established. Alternatively,
the true model might result in estimators that are too complex. One approach to address
this challenge is to assume a simplified signal model. When the assumed model differs
from the true data model, it is considered misspecified [21, 22, 23, 24]. Such misspeci-
fication can impact overall estimation performance in terms of bias and variance. This
case perfectly describes the case of low-cost receivers, which do not implement interfer-
ence mitigation measures. In this case, the receiver assumes an interference-free reception
model, however the reality differs, as interference is part of the true signal model.

Let p(x) be the PDF of the true data signal model and f(x;θ) be the PDF of the
assumed data signal model. If one applies the misspecified MLE (MMLE), that is, the
MLE that corresponds to the assumed signal model, to the observed data x, in the limit of
large sample support or at high SNR for the CSM, the estimated θ̂ converges to the vector
θpt, also known pseudo-parameter vector, and which would be the one that minimizes the
Kullback-Leibler Divergence (KLD) between the PDF of the true and the assumed signal
model.

θpt = argmin
θ

{D (px̄∥ fx̄} = argmin
θ

{Ep {ln p(x)− ln f(x; θ)}}

The pseudotrue-parameter might vary significantly from the expected value depending
on the degree of misspecification of the considered scenario. Furthermore, as mentioned
earlier, the MMLE is asymptotically consistent and the corresponding variance is equal to
a lower bound provided by the so-called Misspecified CRB (MCRB) [25]. In other words,
the MMLE is an efficient estimator of this pseudo-true parameter and the MCRB is a
generalization of the CRB defined by the following equation:

MCRB(θpt) = A(θpt)
−1B(θpt)A(θpt)

−1

where

[A(θpt)]k,l = Ep

∂2 ln f(x;θ)

∂θk∂θl

∣∣∣∣∣
θ=θpt

 ,

and

[B(θpt)]k,l = Ep

{
∂ ln f(x;θ)

∂θk

∣∣∣∣
θ=θpt

· ∂ ln f(x;θ)
∂θl

∣∣∣∣
θ=θpt

}
.

These expressions highly depend on the model misspecification. Depending on the
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scenario, they can be further developed to obtain nicer forms.

This section enables the characterization of misspecified estimators when the data
model is unknown and avoiding misspecification is not possible. It is worth mentioning
that significant contributions have been made in the field of GNSS misspecification theory.
Specifically, research has been conducted on the degradation resulting from not account-
ing for multipath scenarios. To address this, pseudo-parameters have been derived, and
closed-form expressions of the Pseudo-parameters and MCRB have been obtained [26,
27, 28]. Additionally, the estimation performance of parameters in high dynamic sce-
narios, involving the presence of acceleration parameters, has been assessed. Once again,
pseudo-parameters were computed, and closed expressions of the MCRB were derived [29].
Furthermore, there have been contributions regarding scenarios where interferences de-
grade receiver performance. In these cases, pseudo-parameters were calculated for various
scenarios [30, 31], and MCRBs were derived for different types of interference [32].

1.3 Global Navigation Satellite Systems

Navigation encompasses the art and science of monitoring and directing the movement
of objects from one point to another, whether it’s an individual trekking in the moun-
tains using traditional tools like a paper map, compass, and landmarks or a vehicle on
Earth requiring knowledge of its position, velocity, and orientation. One prominent cat-
egory within navigation solutions leverages radio frequency (RF) signals and is termed
radionavigation.

In the late 1970s, the United States launched the inaugural Navigation System with
Timing and Ranging (NAVSTAR) satellite, marking the genesis of the Global Positioning
System (GPS). Originally designed to provide precise estimates of an object’s position,
velocity, and attitude worldwide, GPS set the stage for a new era in navigation technology.
Subsequently, various countries developed their own navigation satellite systems, includ-
ing the Russian Federation’s Global Navigation Satellite System (GLONASS), China’s
BeiDou system, the European GALILEO system, India’s Navigation with Indian Constel-
lation (NavIC), and Japan’s Quasi-Zenith Satellite System (QZSS). The amalgamation
of these systems, along with their enhancements, constitutes what is widely recognized as
the Global Navigation Satellite Systems (GNSS).

This network of satellites collaboratively facilitates accurate and widespread position-
ing, navigation, and timing information, making GNSS an indispensable tool in a mul-
titude of applications ranging from civilian navigation to scientific research and military
operations. As we delve into the intricacies of GNSS in the following sections, we aim
to unravel its principles, constellations, and signal structures, laying the foundation for a
comprehensive understanding of interference modeling and mitigation for GNSS receivers.

1.3.1 Principle

GNSS operate on the fundamental principle of trilateration, utilizing constellations of
Medium Earth Orbit (MEO) satellites or Space Vehicles (SV) distributed across three
or six orbital planes. This configuration ensures that users worldwide have visibility to
a minimum of four to eight satellites at any given time, regardless of their location on
Earth’s surface.

Each satellite within the constellation continuously transmits a known ranging signal
towards Earth. A GNSS receiver captures and identifies the signal, determining which
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SV transmitted it. Moreover, the receiver calculates the time (τ) elapsed between the
signal transmission and reception. The product of this time, τ , and the speed of light (c)
provides a measure of the radio-electric distance between the SV and the receiver.

By performing this range estimation with signals from at least three satellites and
knowing the positions of all SVs, the receiver can compute its own position through
trilateration. This foundational concept of GNSS is illustrated in Figure 1.

To refine the position estimate and obtain a more accurate solution, a fourth mea-
surement is incorporated to address receiver clock uncertainty. Receiver clocks typically
employ standard quality oscillators that require continuous estimation, while SVs are
equipped with highly stable and precise atomic clocks. The process of solving the trilat-
eration problem, considering the Doppler effect, time, and additional measurements, is
commonly known as obtaining a Position-Velocity-Time (PVT) solution. This principle
forms the bedrock of GNSS functionality, enabling a myriad of applications ranging from
navigation in daily life to advanced scientific and military operations.

Figure 1: Schematic representation of a pulse blanker

1.3.2 Constellations & Signals

General GNSS Signal Structure

The challenge in designing Global Navigation Satellite System (GNSS) signals lies in
creating a signal family that not only facilitates detection but also enables the identifica-
tion of the corresponding transmitting Space Vehicle (SV). Moreover, the chosen signal
must ensure high-ranging precision for an accurate solution to the Position-Velocity-Time
(PVT) problem. To meet these requirements, GNSS signals employ a spreading technique
known as Direct Sequence Spread Spectrum (DSSS).

This spreading technique involves multiplying a low data rate signal with a high
data rate Pseudo-Random Noise (PRN) sequence. Removal of the spreading is achieved
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through cross-correlation with the correct PRN sequence upon signal reception. The selec-
tion of the PRN sequence must adhere to specific properties. Firstly, the auto-correlation
function (ACF) of a sequence should exhibit a main peak significantly higher than others,
ideally with sharpness for optimal estimation performance. Secondly, the cross-correlation
function (CCF) between two different sequences, corresponding to different SVs within the
same constellation, should feature very low values, ensuring quasi-orthogonality between
PRN codes.

For modernized signals, only the data channel carries a navigation message. It’s
important to note that for signals of the BOC family, an additional feature, the sub-
carrier (sc(t)), is part of the signal definition, tuning spectral occupancy and signal ranging
performance.

All GNSS signals considered here can be described by three primary elements:

• Carrier frequency (fc): Denotes the center frequency of the transmitted signal.

• Ranging code or PRN sequence (c(t)): A family of codes that should be quasi-
orthogonal, with each code comprising Nc discrete values of duration Tc called chips.
Ranging codes are often transmitted at a high rate, e.g., F0 = 1023000 Hz or
multiples of F0.

• Navigation message (d(t)): Contains all necessary data to compute the position
of the transmitting satellite, a prerequisite for obtaining a PVT solution. This coded
message is transmitted on GNSS data channels at a slower rate (e.g., 50 Hz for GPS
L1 C/A).

The transmitted signal is then a product of all these components, modulated at fre-
quency fc:

sT = d(t)c(t) cos(2πfct) (2)

Global Positioning System (GPS)

The NAVSTAR GPS [33] space segment comprises 24 or more satellites evenly dis-
tributed across 6 quasi-circular orbital planes, each inclined at 55 degrees. This configu-
ration ensures that four or more satellites are continually visible from any point on Earth,
facilitating the computation of a Position-Velocity-Time (PVT) solution at any location.
The satellites orbit at an average altitude of 20,200 km, with a revolution period of half
a sidereal day. Consequently, considering the Earth’s rotation, the satellite ground tracks
are revisited every sidereal day.

GPS broadcasts several signals across three bands: L1 with a carrier frequency fL1 =
1575.42 MHz, L2 with fL2 = 1227.60 MHz, and L5 with fL5 = 1176.45 MHz. Initially,
signals over L1 were modulated by the Coarse Acquisition (C/A) code and the Precise
(Encrypted) (P(Y)) code. The C/A code, designed for civil open-access use, is the most
widely utilized. It consists of a low-rate navigation message (50 bits per second) spread
with a PRN code from the Gold family with a length of Nc = 1023. The PRN code
is modulated using Binary Phase Shift Keying (BPSK) modulation at a clock rate of
1.023 MHz, denoted as BPSK(1), where the number in parentheses is a multiple of the
frequency f0 = 1.023 MHz. As a result, the code duration is 1 ms, and the main lobe of
its Power Spectral Density (PSD) is 2.046 MHz wide.
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Over time, the GPS system has undergone modernization, introducing blocks IIR(M),
IIF, and more recently, blocks III satellites transmitting military M code, L1C, L2C, and
L5 codes with distinct time and spectral properties. For instance, the L5 signal pos-
sesses the unique feature of being separated into two orthogonal channels: the in-phase
channel with BPSK(10) modulation carrying the navigation message (data channel), and
the quadrature channel, also employing BPSK(10) modulation but without a navigation
message (pilot channel). Pilot channels are designed for extended integration processing.

Galileo

The GALILEO program [34] stands as a European initiative to develop and operate an
independent Global Navigation Satellite System (GNSS). The GALILEO space segment
consists of 30 Medium Earth Orbit (MEO) satellites evenly distributed across three quasi-
circular orbital planes with a 56-degree inclination and an average altitude of 23,222 km.
Each satellite takes 14 hours to complete an orbit around the Earth, resulting in a ground
track revisiting time of 7 sidereal days.

GALILEO signals are transmitted across three bands: E1 with a carrier frequency
fE1 = fL1, E5 with fE5 = 1191.795 MHz, and E6 with fE6 = 1278.75 MHz. Additionally,
the E5 band can be seen as two side-by-side bands: E5A with fE5A = fL5 and E5B with
fE5B = 1207.14 MHz. Notably, the E1 and E5A bands share the same carrier frequencies
as GPS L1 and L5 bands, fostering interoperability between the two constellations. A
GPS receiver would only require an update at the processing stage, not the RF front-end,
to function as a GALILEO receiver.

For GALILEO E1 Open Service (OS) signals, which are the most common, two chan-
nels are transmitted simultaneously: i) the data stream E1B and ii) the pilot stream E1C.
Both components have a spreading code with 4092 chips over 4 ms and are modulated
by a Composite Binary Offset Carrier (CBOC(6,1)) modulation. CBOC is defined as a
combination of two Binary Offset Carrier (BOC) modulations, specifically a BOC(1, 1)
and a BOC(6, 1). BOC(m,n) serves as an alternative to BPSK pulse shaping, with pa-
rameters fs = m · f0 for sub-carrier frequency and fc = n · f0 for code chipping rate,
producing different temporal and spectral properties based on the choices of n, m, and
the cosine or sine function.

The E5 band has a unique structure, consisting of two side-by-side bands (E5A and
E5B). Both bands employ BPSK(10) modulations with in-phase data channels and
quadrature pilot channels. When combined, the resulting signals over the entire E5 band
create a complex signal known as Alternative BOC or AltBOC, characterized by a broad
bandwidth, facilitating potential high-accuracy measurements.

1.3.3 GNSS receivers : Signal Processing

Now that an overview of the main GNSS signals has been done, the question of how
these signals are processed to obtain a final position must be addressed. In particular,
in this section, the focus is done on the two very first steps of a standard GNSS signal
processing, namely, the acquisition and the tracking stages whose outputs are the pseudo-
ranges between the receiver and each satellites in view.

Considering the reception of four different satellite signals of the same constellation
and assuming an ideal model (all clocks synchronized, no group delay at transmitters and
receiver level, no group delay from ionosphere and troposphere, no relativistic effect), the
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baseband signal, that is, after filtering, down-conversion and sampling, can be written as:

x =
4∑

i=1

αisi(τi, Fd,i) +w

where, w is a complex additive white Gaussian noise so that w ∼ CN (0, σ2
nIN) and for

n ∈ [1, N ] the sample index,
xT = (. . . , x(nTs), . . .),

si(τi, Fd,i)
T = (. . . , s(nTs− τi)e

−j2πFd,i(nTs−τi), . . .),
wT = (. . . , w(nTs), . . .),

T s the sampling period, for i ∈ [1, 4], αi is the complex amplitude of the i-th signal, τi
is the time-delay, and Fd,i is the Doppler frequency. This model or its continuous-time
version are typical models that are used in most of the GNSS literature.

For the considered CSM, the acquisition step aims to provide an estimate of (τi, Fd,i) for
each satellite in view. The classical approach is to compute the cross-correlation between
the received signal and each satellite PRN code and take the set (τ, Fd) that maximizes
this function. This is somehow equivalent to a single-source maximum likelihood estimator
or 1S-MLE, as predicted in the interpretation of the MLE. This CCF, also known as
ambiguity function, can be defined as:

Rx,si(τ, Fd) = T si(τ, Fd)Hx (3)
Thanks to the quasi-orthogonality of the PRN sequences, if the signal of the i-th SV is

in the received signal, the CCF will present a single peak that is located around the true
values of (τi, Fdi). Otherwise, the CCF will present only small values that correspond to
the noise floor. This has been illustrated in Figure 2

(a) (b)

Figure 2: Example of ambiguity function in two cases, (a) the PRN tested is present in
the received signal and (b) the PRN tested is not present in the received signal [35].

In conclusion, our exploration of GNSS has covered the principles, constellations,
and signal structures that drive this transformative technology. From the inception of
GPS in the late 1970s to the collaborative efforts of various constellations, including
GPS, GLONASS, GALILEO, BeiDou, NavIC, and QZSS, GNSS has become integral to
positioning, navigation, and timing globally.

The trilateration principle, utilizing MEO satellites or SVs, is fundamental to GNSS
functionality. We delved into signal intricacies, such as ranging codes and navigation
messages, highlighting the design complexities of signals like GPS and GALILEO. Signal
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processing, with a focus on acquisition and tracking, revealed the significance of cross-
correlation functions in estimating time-delay and Doppler frequency.

1.4 How to model an Interference Signal at the GNSS receiver

In the realm of Global Navigation Satellite Systems (GNSS) signal processing, the in-
terference mitigation process assumes a central role by alleviating the impact of various
radiofrequency interference (RFI) sources and noise on received GNSS signals. Mitiga-
tion techniques are purposefully designed algorithms intended to counteract the adverse
effects introduced by external factors, thereby ensuring the resilience and precision of
GNSS receiver positioning and navigation capabilities.

To effectively tackle this challenge, the first step involves characterizing the interfer-
ences and having tools to assess their impact on the receiver. In the context of GNSS
receivers, interferences can introduce biases in estimating synchronization parameters like
time delay and Doppler frequency. In the past year, some tools to analyze the effects of
interferences on GNSS receivers have been derived. These tools [32] are built upon the
misspecified estimation theory discussed in Section 1.2.4. Our focus is primarily on the
signal model, where the received signal at the output of the receiver’s Hilbert filter can
be approximated by.

x(t; ϵ) = ρejΦs(t− τ)e−j2πfcb(t−τ) + I(t) + w(t;σ2
n). (4)

which differs from the signal model considered in reception, which does not assume
the presence of interference:

x (t;ϕ) = κ(t;θ) + w(t;σ2
n) (5)

with

κ(t;θ) = ρejΦs(t− τ)e−j2πfcb(t−τ), (6)
and ϵ⊤ = (σ2

n, ρ,Φ,η
⊤), where σ2

n is the power of the white noise vector w (such that
w ∼ CN (0, σ2

wIN)). Note that η⊤ = [τ, b] and represents the time-delay and Doppler
effect. Those parameters are the parameter of interest to be estimated. The primary
goal of a mitigation techniques is to enhance signal quality by mitigating the effects of
interference I(t) at the GNSS receiver. In this project, our focus will be on intentional
interference. Within this category, the most recognized interferences in the state-of-the-
art include the following:

• Pulse Gaussian interference introduces random noise peaks in order to prevent
the receiver from demodulating the navigation message. These noise peaks can be
characterized by a Gaussian noise distribution with a variance of several orders of
magnitude greater than the power of the thermal noise.

• Tone interference introduces a single tone located at a frequency fi. The inter-
ference at the output of the receiver’s Hilbert filter is defined as:

I(t) = Aie
j2πfit+jϕ (7)

where Ai denotes the amplitude of the tone and ϕ denotes the initial phase. These
interferences are known to be the first identified in the state of the art. Due to the
fact that GNSS signals are of higher bandwidth, their effects can be mitigated more
easily.
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• Chirp interference introduces a tone which change the instantaneous frequency
with respect to the time. These interference can be both narrowband and broadband
generating many more problems when implementing mitigation methods. The most
commonly used chirp is linear frequency modulation (LFM) which at the output of
the receiver’s Hilbert filter can be modeled as:

I(t) = ΠT (t)× ejπαct2+jϕ, ΠT (t) =

{
Ai for 0 ≤ t < T
0 otherwise , (8)

with αc the chirp rate, Ai the amplitude and T = NTs the waveform period. The
instantaneous frequency is f(t) = 1

2π
d
dt
(παct

2) = αct, and therefore the waveform
bandwidth is B = αcT . We consider the case where, after the Hilbert filter, the
chirp is located at the baseband frequency, i.e., the central frequency of the chirp is
fi = 0. Then, the chirp equation can be rewritten as,

I(t) = ΠT (t)× ejπαc(t−T/2)2+jϕ, ΠT (t) =

{
Ai for 0 ≤ t < T
0 otherwise . (9)

It should be noted that in the last few years definitions of non-linear frequency
modulation chirps [36] have appeared. Those can be defined as:

I(t) = ΠT (t)× ejπφ(βc;t)+jϕ, ΠT (t) =

{
Ai for 0 ≤ t < T
0 otherwise (10)

where φ(βc; t) is a non-linear function with βc a parameter which controls the band-
width of the chirp.

1.4.1 Mitigation Techniques

Mitigation techniques are characterized by their ability to selectively suppress or mini-
mize the impact of specific interference sources, allowing the GNSS receiver to extract
precise positioning information from the received signals. These algorithms often leverage
advanced signal processing techniques to identify and counteract unwanted components,
ensuring the integrity and reliability of GNSS signals. The following is a brief description
of the main methods used in the state of the art:

• Pulse blanking [37] emerges as a method to combat the impact of pulsed interfer-
ence. In scenarios where the incoming signal surpasses a predefined power threshold,
samples are strategically set to zero. This technique proves effective in reducing the
influence of pulsed interferences, ensuring a more accurate reception of GNSS sig-
nals. Given its application in safety-critical domains such as civilian aviation, pulse
blanking stands out as a valuable tool for real-time interference mitigation. Further-
more, this technique can be extended to the frequency domain and is particularly
useful for low bandwidth tone and chirp mitigation.

• Adaptive notch filter [38] is a dynamic method employed in the time domain to
counteract the influence of interference. By continuously estimating the instanta-
neous frequency of the jamming signal and filtering out the corresponding frequency
from the incoming signal, this method excels in scenarios where interference charac-
teristics evolve rapidly. Its real-time adaptability makes it well-suited for mitigating
dynamic interference sources, enhancing GNSS signal fidelity in applications like in-
telligent transportation systems.
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• Discrete Fourier transform (DFT) projects a signal into frequency domain.
By transforming the signal into the frequency domain and applying a threshold to
identify and eliminate suspicious frequency components, this method provides an
effective means to suppress unwanted interference. Its adaptability across various
frequency regimes makes it a valuable tool for mitigating interference sources with
diverse spectral characteristics.

• Karhunen-Loeve transform (KLT) [39, 40] introduces a transformation based
on the autocorrelation eigenvalues and vectors of the incoming signal. This method
explores the statistical properties of the signal, enabling a sophisticated analysis for
interference mitigation. Its application is particularly relevant in scenarios where in-
terference exhibits complex statistical patterns. By leveraging the KLT, the project
aims to enhance interference mitigation capabilities and refine GNSS signal recep-
tion in challenging environments.

• Bayesian EM under constant modulus [41] proposes a methods to mitigate
the interference characterized by the constant envelope property. It proposed to
uses a maximum likelihood estimator for the relevant parameters (time delay and
Doppler shift) while considering the presence of latent variables characterized by
the constant modulus property.

2 Implemented Mitigation Techniques

The objective of this section is to describe the methods implemented during this project.
Namely:

• The Karhunen-Loeve Transform (KLT).

• The Pulse Blanking (PB).

The choice to test this methods primarily stems from their established reputation as state-
of-the-art benchmarks, making them the standard to beat. Nevertheless, these methods
have not previously been evaluated against open-sky conditions (classical CRB) and the
theory of misspecified estimation, making it challenging to compare their effectiveness
in interference mitigation. On,the other hand, "Bayesian EM under constant modulus"
method offer enhancements to these approaches under specific conditions, such as in the
presence of wideband interference. However, recent comparisons of this method against
the tools presented above have already been conducted in [41]. Therefore, we have not
included the study of this method in the manuscript.

2.1 Karhunen-Loeve Transform

The Karhunen-Loève Transform (KLT) is a signal processing technique that can be em-
ployed for interference mitigation in the GNSS context. In comparison to the Fast Fourier
Transform (FFT), the KLT offers distinct advantages that are presented in the following
table:
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Fast Fourier Transform Karhunen-Loeve Transform
Decomposition functions Sines and cosines Any orthonormal functions
Type of signal analysis 1 Deterministic Deterministic and stochastic
Optimal frequency range 1 Narrowband signals Narrowband and Wideband signals
Potential detect feeble signal Small High
Complexity O(1n ∗ log(n)) O(n2)

The main difference with respect to the FFT is that KLT can be applied to stochastic
process, generating an ideal framework for interference mitigation, since it allows us to
differentiate between deterministic signals and random processes such as thermal noise.
Let us define the random variable X(t) over the finite time interval 0 ≤ t ≤ T , we can
describe the X(t) as the following series:

X(t) =
∞∑
n=1

ZnΦn(t) ,

with,

• Zn : Random scalar variables,

• Φn(t) : Eigenvectors of X.

Here the given equation looks like the FFT decomposition. However, the main differ-
ence is that X(t) is a pure random variable. In [42] Maccone proposed to compute the
random variable Zn as follows:

Zn =

∫ T

0

X(t)Φn(t)dt

In this configuration, we observe that we can encompass the entire signal due to
the continuity of the integral. The main advantage of this equation is that it allows us
to retrieve information from an interfered signal by examining the variance of the KL
expansion coefficient Zn (these variances correspond to the eigenvalues of Φn(t)). In fact,
Maccone discovered that a signal consisting solely of pure noise is characterized by KLT
eigenvalues uniformly distributed and equal to 1. Therefore, this serves as an indicator
of any concealed signal within our main signal if certain eigenvalues exceed one. Then,
to obtain the the eigenvalues/eigenvectors of the signal, the KLT method computes the
covariance of the random variable as follows:∫ T

0

E[X(t1)X(t2)]Φn(t1)dt1 = λnΦn(t2)

Note that it represents the auto-correlation of a stochastic process X(t) at instant t1
and t2. Thanks to this, we can identify the eigenvalues/eigenvectors related to the non-
stochastic content of the signal. Nevertheless, as we are working with sampled signals, we
can replace the integral by a sum :
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N∑
k=1

E[XkXl]Φnk∆t = λnΦnl

With E[XkXl] a Toeplitz auto-correlation matrix of size N × N , which can lead to
some complexity issue if N become high. Consequently our main objective for KLT is
to marked significantly high eigenvalues as interference eigenvalues and the others as the
eigenvalues of the signal. To illustrate this idea, we can illustrate the following graph (To
make it clear that this is merely an illustrative example, far from reality.) :

Figure 3: Representation of eigenvalues for a PRN signal vs PRN with interference

For this toy example, it is easy to see a clear separation between eigenvalues, but what
about the eigenvalues that do not exhibit this type of pattern, i.e., eigenvalues where it
is impossible to clearly distinguish those that reflect an interference signal from those
that simply reflect the signal? Also, what happens when we add thermal noise to our
signal? Obviously the most difficult thing is to automatize the detection process in order
to mitigate the interference as much as possible and to leave the corresponding signal
components.

Numerous state-of-the-art methods were examined, yet none yielded conclusive results.
Consequently, we opted to conduct an analysis of eigenvalue patterns for instances of signal
reception in the presence and absence of interference. For instance, in Figure 5, we depict
the eigenvalues for scenarios involving the reception of a 1 ms GPS L1 C/A signal sampled
at 4 MHz, both with and without a 20 KHz bandwidth chirp interference. Here, we observe
a pattern closely resembling that depicted in Figure 3, suggesting a natural inclination to
filter out eigenvalues surpassing the magnitude of the non-interference scenario. However,
upon analyzing a different type of interference, such as a higher bandwidth chirp (please
refers to Figure 7 for a chirp with B = 1MHz), we notice a modification in this pattern.
Specifically, interference components are represented by eigenvalues that may fall below
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those of the non-interference scenario. To address this issue, a proposed solution involves
fixing the threshold not based on eigenvalue magnitude, but rather on its derivative. This
is due to the heightened concentration of energy in the interference, causing eigenvalues
corresponding to interference to increase non-linearly, thus allowing to find a detection
pattern. Note that thank to this method, for the particular case in Figure 7, we can
detect until 200 extra eigenvalues corresponding to the interference.
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Figure 4: Eigenvalues for the GPS C/A signal at Fs = 4MHz without and with a Chirp
Interference with B = 20KHz.
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Figure 5: Eigenvalues derivative for the GPS C/A signal at Fs = 4MHz without and
with a Chirp Interference with B = 20KHz.

After implementing the method, we assess interference mitigation under ideal con-
ditions, meaning without additional noise. This evaluation covers both a single tone
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Figure 6: Eigenvalues for the GPS C/A signal at Fs = 4MHz without and with a Chirp
Interference with B = 1MHz.
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Figure 7: Eigenvalues derivative for the GPS C/A signal at Fs = 4MHz without and
with a Chirp Interference with B = 1MHz.

scenario (please see Figure 9) and a chirp scenario with a bandwidth of 1 MHz (please
refer to Figure 11). In both scenarios, it is be evident that although the recovery may
not be flawless, interference has been significantly reduced. Lastly, before discussing the
pulse blanking method in detail, it is important to highlight the high complexity of the
KLT method. This complexity stems from the necessity of conducting an eigenvector
decomposition, a procedure known for its O(N3) complexity.
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Figure 8: Signal GPS C/A signal at Fs = 4MHz without and with a tone interference.
Signal with interference after KLT algorithm.
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Figure 9: Zoom Signal GPS C/A signal at Fs = 4MHz without and with a tone interfer-
ence. Signal with interference after KLT algorithm.

2.2 PB : Pulse Blanking

Pulse Blanking (PB) is an effective method for mitigating pulsed interference. The basic
principle of PB is illustrated in Figure 12. If the input signal, y[n], has a magnitude
greater than a fixed threshold Th, then the output signal yB[n] is set to zero. Otherwise,
yB[n] is equal to the input signal, y[n]. The filter obtained by applying the PB is usually
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Figure 10: Signal GPS C/A signal at Fs = 4MHz without and with a chirp interference
B = 1MHz. Signal with interference after KLT algorithm.
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Figure 11: Zoom Signal GPS C/A signal at Fs = 4MHz without and with a chirp
interference B = 1MHz. Signal with interference after KLT algorithm.

denoted as a pulse blanker and is characterized by the following input-output relationship:

yB[n] =

{
yB[n] if |y[n]|< Th

0 if |y[n]|≥ Th

(11)

The blanking threshold is usually set to guarantee a fixed probability of false alarm,
i.e., the probability of blanking samples even if the interference pulse is absent. Thus,

P (|y[n]|> Th | p[n] = 0) = Pfa, (12)
where Pfa is a target false alarm probability. Under the Gaussian approximation of
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Figure 12: Schematic representation of a pulse blanker [37]

the input signal and considering that the signal is i.i.d, the false alarm probability is given
by

P (|y[n]|> Th | p[n] = 0) = exp

(
− T 2

h

2σ2

)
, (13)

yielding to a threshold equals to

Th =
√
−2σ2 logPtfa (14)

The primary issue with this approach lies in the inability to assume that samples
obtained from signal + noise reception are independent and identically distributed (i.i.d)
and follow a zero-mean Gaussian distribution. This assumption becomes even less realistic
as the signal-to-noise ratio increases, causing the signal magnitude to approach that of
the noise. Additionally, having a GNSS signal with an associated Pseudo-Random Noise
(PRN) causes the noise to exhibit coloration as soon as the sampling frequency exceeds
the signal bandwidth. This undermines the hypothesis test and consequently compromises
the accuracy of the theoretical threshold calculation. Once again, similar to the challenge
encountered with the KLT, the main obstacle lies in identifying an automated threshold
detection method. With this aim in mind, the following approach is proposed in this
study: we propose to analyze the histogram of the absolute value of the FFT of the input
signal samples produced by the receiver front-end in the absence of interference. Then, we
perform the same analyze for the case with interference. Both cases have been illustrated
in Figures 13 and 14. Both figures have been made with the same noise power, in this
case, a sufficiently high signal ratio.

Based on the patterns depicted in the figures, a potential mitigation approach emerges
as follows: establish the threshold at the peak attained in the histogram of the interference-
free scenario. Subsequently, in instances where interference is identified, apply frequency
filtering—specifically, set to zero all frequency points associated with histogram values
surpassing the established threshold. Then, recompute the signal in time from the ifft
algorithm. As an example of this method, we assume a chirp interference with a bandwidth
equal to 20 KHz. In Figure 15, we illustrate the PSD for the signal without interference,
the signal with interference and the signal with interference after applying the PB filter.

In Figure 16, we present a simulated example featuring a chirp interference band-
width of 1MHz. It is apparent that the primary constraint of this method is that as
the interference bandwidth increases, the capability to recover the signal of interest is
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Figure 13: Histogram of the absolute value of the FFT of the signal without interference.

Figure 14: Histogram of the absolute value of the FFT of the signal with interference.
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Figure 15: PSD for the signal without interference, the signal with interference and the
signal with interference after applying the PB filter.
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Figure 16: PSD for the signal without interference, the signal with interference and the
signal with interference after applying the PB filter.
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3 Simulations and Discussion

In order to evaluate the performance of the algorithms presented in Sections 2.1 and 2.2, it
is shown several figures depicting the estimation effectiveness in regard to the mean square
error of the time-delay and Doppler parameters. These figures include curves illustrating
the following metrics:

• the
√

CRB (as mentioned in [3]), representing the asymptotic estimation perfor-
mance of the parameters when no interference is present

• the
√

MCRB + Bias2, depicting the asymptotic estimation performance of the pa-
rameters when the receiver is unaware of interference presence (as discussed in [27,
29, 32]). This encompasses the Root Mean Square Error (RMSE) of the misspeci-
fied maximum likelihood estimator, as noted in [25]. Please note that these metrics
evaluate the RMSE under the assumption that the receiver does not consider any in-
terference, meaning it assumes a misspecified model with a probability distribution
differing from the true model. The bias is determined by minimizing the Kullback-
Leibler Divergence between the probability distributions of the true model and the
assumed model (i.e., the misspecified model).)

• the Root MSE (
√

MSE) generated by the Misspecified MLE, which converges to the
the

√
MCRB + Bias2

• the Root MSE (
√

MSE) generated by the MLE once the mitigation technique has
been applied.

All this metrics are included as a function of the signal to noise ratio at the output of the
match filter, denoted as SNRout.

The scenarios we present involve the LFM chirp. This choice is based on the straight-
forward nature of the tone, making it highly manageable for mitigation and yielding
effective results with the algorithms. As for the chirp, we have the flexibility to vary its
bandwidths and observe the constraints of the proposed algorithms. We begin by examin-
ing scenarios where the interference induces only a minor estimation bias. Subsequently,
we move on to situations where the interference entirely disrupts the functionality of the
receiver. First of all, let us remember the chirp equation.

I(t) = ΠT (t)× ejπαc(t−T/2)2+jϕ, ΠT (t) =

{
Ai for 0 ≤ t < T
0 otherwise ,

with αc the chirp rate, Ai the amplitude and T = NTs the waveform period. The
instantaneous frequency is f(t) = 1

2π
d
dt
(παct

2) = αct, and therefore the waveform band-
width is B = αcT . Due to the computational complexity of the KLT algorithm, it is
limited to carry out simulations at a maximum of 1ms. Therefore, we use the GPS L1
C/A signal, with a sampling rate of Fs = 4 MHz.

Scenario 1: In a first scenario we assume a chirp with a bandwidth equal to B = 200
KHz and an amplitude Ai = 12.5, i.e. 11 dB greater than the amplitude of the signal.
Then, Figures 17 and 18 illustrate the RMSE for time-delay and Doppler estimation.
Each RMSE simulation employs 1000 Monte Carlo runs.

In the figures, it can be observed that the mitigation methods outperform the MMLE.
Specifically, they are able to mitigate interference from signal-to-noise ratios much smaller
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Figure 17: RMSE for time-delay estimation of the GPS L1 C/A signal received along
with a centered LFM chirp signal of bandwidth B = 200KHz and amplitude A = 12.5.
The sampling frequency is set to Fs = 4 MHz.
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Figure 18: RMSE for Doppler estimation of the GPS L1 C/A signal received along with
a centered LFM chirp signal of bandwidth B = 200KHz and amplitude A = 12.5. The
sampling frequency is set to Fs = 4 MHz.

than the MMLE’s convergence to its asymptotic limit. Additionally, we observe that the
methods successfully eliminate the bias generated by the interference. In the case of delay,
they are nearly able to achieve the performance of the interference-free scenario, i.e. the
limit shown by the CRB. Finally, it should be noted that in this case, the PB method
outperforms the KLT as it converges up to 4 dB earlier.
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Scenario 2: In a seconds scenario, we assume a chirp with a bandwidth equal to
B = 1 MHz and an amplitude Ai = 10, i.e. 10 dB greater than the amplitude of
the signal. Then, Figures 19 and 20 illustrate the RMSE for time-delay and Doppler
estimation. Each RMSE simulation employs 1000 Monte Carlo runs.
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Figure 19: RMSE for time-delay estimation of the GPS L1 C/A signal received along
with a centered LFM chirp signal of bandwidth B = 1MHz and amplitude A = 10. The
sampling frequency is set to Fs = 4 MHz.
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Figure 20: RMSE for Doppler estimation of the GPS L1 C/A signal received along with a
centered LFM chirp signal of bandwidth B = 1MHz and amplitude A = 10. The sampling
frequency is set to Fs = 4 MHz.

In the Figure 19 and 20, it is evident that the MMLE converges earlier than the miti-
gation methods. It is observed that increasing the bandwidth of the interference reduces
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the effectiveness of the mitigation methods. Specifically, they are able to mitigate inter-
ference from much higher signal-to-noise ratios than the convergence of the MMLE to
its asymptotic limit. From an SNRout of 25dB, the methods successfully eliminate the
bias generated by the interference, and in the case of delay, they nearly achieve the per-
formance of the interference-free scenario. Not much performance difference is observed
among the methods for this particular case.

Scenario 3: In a third scenario, we assume a chirp with a bandwidth equal to B = 2
MHz and an amplitude Ai = 40, i.e. 16 dB greater than the amplitude of the signal.
Then, Figures 19 and 20 illustrate the RMSE for time-delay and Doppler estimation.
Each RMSE simulation employs 1000 Monte Carlo runs.
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Figure 21: RMSE for time-delay estimation of the GPS L1 C/A signal received along
with a centered LFM chirp signal of bandwidth B = 2MHz and amplitude A = 40. The
sampling frequency is set to Fs = 4 MHz.

In Figures 21 and 22, it is evident that the MMLE does not work, meaning the receiver
is unable to find a coherent solution. However, the mitigation methods can mitigate the
effect of interference from a certain SNRout onwards. It should be noted that the KLT
method works much better than the PB filter, as the PB filter practically nullifies the
entire useful signal component.

Extra Scenario: This scenarios aims to compare the PB with respect to the algorithm
proposed in [41]. We assume a chirp with a bandwidth equal to B = 1 MHz and an
amplitude Ai = 40, i.e. 16 dB greater than the amplitude of the signal. Then, Figure 23
illustrates the RMSE for time-delay. Each RMSE simulation employs 1000 Monte Carlo
runs.

With this scenario, we aim to demonstrate the superiority of the proposed method
in [41] over the classical state-of-the-art methods such as PB. It is observed that the
convergence of the proposed method in [41] is at 7 dB.
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Figure 22: RMSE for Doppler estimation of the GPS L1 C/A signal received along with a
centered LFM chirp signal of bandwidth B = 2MHz and amplitude A = 40. The sampling
frequency is set to Fs = 4 MHz.
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Figure 23: RMSE for time-delay estimation of the GPS L1 C/A signal received along
with a centered LFM chirp signal of bandwidth B = 2MHz and amplitude A = 40. The
sampling frequency is set to Fs = 4 MHz.
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4 Conclusion

In conclusion, existing literature extensively acknowledges the significant impact of inter-
ference signals on the performance of GNSS receivers. Various methods in the state of
the art have been proposed to mitigate these interferences. However, we have identified a
notable gap in the current literature regarding the performance evaluation of these meth-
ods using recent tools that enable the computation of GNSS synchronization parameter
estimation performance.

The objective of this work has been to address this gap in the state of the art. To
achieve this, we have identified the most common interferences and mitigation methods
in the literature. We implemented them and calculated their performance using recently
proposed estimation tools based on misspecified estimation theory. We have presented
several interesting results that allow us to identify the drawbacks of classical methods.
Additionally, we have included a comparison with a recent method that has emerged
as a potential reference method for mitigating interferences characterized by constant
envelope.
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