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Condensed semi-implicit dynamics
for trajectory optimization in soft robotics

Etienne Ménager1∗, Alexandre Bilger1, Wilson Jallet2,3, Justin Carpentier2 and Christian Duriez1

Abstract— Over the past decades, trajectory optimization
(TO) has become an effective solution for solving complex mo-
tion generation problems in robotics, ranging from autonomous
driving to humanoids. Yet, TO methods remain limited to robots
with tens of degrees of freedom (DoFs), limiting their usage in
soft robotics, where kinematic models may require hundreds of
DoFs in general. In this work, we introduce a generic method to
perform trajectory optimization based on continuum mechanics
to describe the behavior of soft robots. The core idea is to
condense the dynamics of the soft robot in the constraint space
in order to obtain a reduced dynamics formulation, which can
then be plugged into numerical TO methods. In particular,
we show that these condensed dynamics can be easily coupled
with differential dynamic programming methods for solving
TO problems involving soft robots. This method is evaluated
on three different soft robots with different geometries and
actuation.

Keywords: Optimization and Optimal Control. Modeling,
Control, and Learning for Soft Robots. Soft Robot Applica-
tions.

I. INTRODUCTION

In rigid robotics and humanoid robotics in particular,
optimal control is an efficient way to formalize and solve
multi-time step control problems [1], [2], [3]. The general
idea of this method is to minimize a cost function over a time
horizon while satisfying the system dynamics and various
constraints, such as actuation constraints. Many methods
exist to solve this kind of problem. Among them, Differential
Dynamic Programming-based methods [4], [5] are often used
because they efficiently exploit the temporal structure of the
problem and satisfy the dynamics of the robot for every
iterate of the method. Recent variations of this method [6],
[7], [8], [3], [9] allow accounting for additional constraints
related to the actuation or system state.

In soft robotics, Model Predictive Control (MPC) models
have been studied in previous works and are used for
multistep control. MPC is a model-based control method
that predicts future trajectories and realizes online planning
using this prediction horizon. However, in [10], [11], [12],
the robots are controlled in the joint space, which limits
their applications. In [13], the robot is controlled in the task
space, but the problem formulation is based on the Piece-
Wise Constant Curvature (PWCC) assumption, which limits
the type of robot or actuation that can be used. Finite Element
Methods (FEM) is a good candidate for accurate simulation
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of a wide range of geometries and actuations. However,
FEM simulation is based on the discretization of continuous
mechanics and represents the soft robot as a mesh. Such a
representation is unsuitable for large optimization problems
such as multistep predictive control, because it involves ma-
nipulating high-dimensional mathematical quantities. Some
learned-based methods can be used to speed up simulation
and write MPC problems for soft robots. In [14], authors
attempt to capture the dynamics of the system using a
spectral submanifold. However, the method uses an approx-
imation of the dynamics, and the applications are limited to
robots with equilibrium points. Other works such as [15] use
Reduced Order Finite Element Models to implement optimal
control methods. The model allows achieving computational
efficiency but is based on the construction of a reduced
order piecewise affine model to approximate the FEM. To the
best of the authors’ knowledge, there is no efficient optimal
control method based on the FEM modeling of a soft robot.

Contributions: Inspired by the current one-step control in
soft robotics and the trajectory optimization tools developed
in rigid robotics, we propose a formulation of the trajectory
optimization problem in soft robotics based on a condensed
semi-implicit dynamics. The general idea of the method is to
use the high-dimensional FEM model of the robot to simulate
its behavior and a low-dimensional linearized condensed
dynamics to optimize the actuation. This method is tested
in simulation on three robots with different geometries and
actuation.

II. BACKGROUND

A. FEM simulation of soft robot

The behavior of soft robots can be described via the
mechanical equations of continuous media. FEM simulation
software is used to obtain an approximate solution of these
equations [16], [17]. They can be written as:

Mq̈t = fint(qt, q̇t) + fext +HT
a u (1)

where M is the mass matrix, fint the internal forces, fext the
external forces, q̈t, q̇t, qt are respectively the acceleration, the
velocity and position of the nodes of the FEM mesh, Ha can
be seen as the Jacobian matrix of the actuation and depends
on the type of the actuator, and u is the Lagrange multiplier
which represents the actuation constraints.

The dynamics equation is discretized in time using an
integration scheme. In soft robotics, an implicit Euler inte-
gration scheme is generally used because of its unconditional
stability and its capacity to adapt to the ”time-stepping”
used in non-regular mechanics to deal with speed jumps on



contact. In addition, internal forces are linearized using a
first-order approximation. Using h the time step, qk = qkh
and q̇k = q̇kh the discretized position and velocity, and
dq̇ = hq̈ = q̇k+1 − q̇k, the discretized dynamics is written:

A = M − hD − h2K

b(qk, q̇k) = hfint(qk, q̇k) + h2Kq̇k + hfext

Adq̇ = b(qk, q̇k) + hHT
a u

(2)

where K and D are respectively the compliance and the
damping matrices.

The system Adq̇ = b + hHT
a u is solved to find the next

position and velocity of the FEM mesh points. First, the free
configuration of the robot Adq̇free = b obtained with no
actuation u = 0 is solved using a linear solver. Then, this
value is corrected with the value of the actuation according to
dq̇ = dq̇free+hA−1HT

a u. Finally, the position and velocity
of all the mesh points are computed using the integration
scheme.

B. One-step control in soft-robotics

Until now, the control of soft robots using FEM simulation
is done on a time step using inverse modeling of the soft
robot and a condensed description of its behavior [18]. The
movement of a soft robot is controlled using specific points
called effectors. The concept of effector and actuator in soft
robotics is illustrated in Figure 1, using the Diamond soft
robot as an example (see Section IV)).

Fig. 1. Example of the Diamond soft robot’s actuation and end-effector,
that will be developed in Section IV. The effector is a particular point on the
robot that we want to control. Its position is modified by applying forces
on the actuators.

To achieve position control of the soft robot, the idea is
to minimize the distance between the effectors and goals:

δe = p− pgoal (3)

where p is the position of the effectors.
From this equation, the Jacobian matrix of the effector

He can be defined. It corresponds to the identity for the
corresponding point in the mesh and 0 otherwise. As with
the forward modeling described by equation (2), inverse
modeling is solved in two steps. In the first step, the free
configuration of the robot is computed. Then the violation
of the constraints in the free configuration of the robot δfreei

for i ∈ {a, e} is evaluated. Finally, this value is corrected
using the actuation by making a linear approximation of the

displacement of the nodes with a FEM interpolation. Using
the condensed FEM modeling [19], this approximation is
written:

δe = Weau+ δfreee

δa = Waau+ δfreea

(4)

with Wij = HiA
−1HT

j for i, j ∈ {a, e} the projections
of A in the constraint space. The matrices Wij represent
the mechanical coupling between the effectors e and the
actuators a. These quantities can be used in an optimization
scheme to find the actuation that minimizes the distance δe
and respects some constraints on the actuator’s displacement
δa.

C. Multi-step control in robotics

We consider the following numerical optimal control prob-
lem [20]:

min
x,u

J(x, u) =
N−1∑
k=0

lk(xk, uk) + lN (xN )

s.t. xk+1 = fk(xk, uk)

x(0) = x̄0

(5)

with J the objective function, N the number of time steps,
x = [x0, ..., xN ] a sequence of states xk = [qk, q̇k],
u = [u0, ..., uN−1] a sequence of control inputs, fk the
discrete dynamics, lk the cost function at time k depending
on the state and the actuation, and lN the terminal cost
function depending on the final state.

There exist several methods [1] for solving this problem.
In this article, we consider Differential Dynamic Program-
ming (DDP) [21]. DDP is based on the Bellman principle of
optimality, which gives the following recursive formula:

Vk(x) = min
u

lk(x, u) + Vk+1(f(x, u)) (6)

where Vk is the value function at time k, with the terminal
condition VN (x) = lN (x).

To solve this equation, DDP computes a Newton step δu
in the control input uk + δu for a given variation xk + δx
of the previous state xk during the backward pass. To do so,
DDP relies on a quadratic approximation of the so-called
Hamiltonian function, defined by:

Qk(x, u) = lk(x, u) + Vk+1(f(x, u))

This quadratic approximation around the nominal values
(x, y) is given by:

Qk(x+ δx, u+ δu)−Qk(x, u) ≈

1

2

 1
δz
δu

T  0 QT
x QT

u

Qx Qxx Qxu

Qu Qux Quu

 1
δx
δu

 (7)

where the different quantities Qij with i, j ∈ {x, u} are
written as a function of the data of the problem, i.e., l, f
and Vk+1 and their first and second derivatives.

As Qk is quadratic, Vk is too, allowing the backward
propagation of its value along the temporal structure of the



problem starting from the end. We can add constraints to the
equation [7] and solve it thanks to augmented Lagrangian-
based approaches [9]. Once the backward step has been
performed, i.e., once the δu sequence has been computed,
it is possible to find the step size of the optimization process
thanks to backtracking line-search procedure [5] and then
perform the forward step. The forward step allows the
calculation and evaluation of a new nominal trajectory from
a given control sequence.

III. METHOD

A. Condensed dynamics in soft robotics

To solve multi-step control problem with DDP, we have
to write the dynamics of the system using Equation (5)
formalism. Equation (2) gives the general dynamics equation
of a soft robot using an implicit Euler integration scheme
with only one linearization of the internal forces per time
step. By isolating dq̇ and writing the time dependence of
actuation uk, we can write a semi-implicit scheme:

dq̇ = A−1b(qk, q̇k) + hA−1HT
a uk (8)

Equation (3) gives the relation between the effectors and
the points of the mesh p = Heq. Equation (8) projected in
the effector space can be written:

dṗ = HeA
−1b(qk, q̇k) + hHeA

−1HT
a uk (9)

where we recognize the condensed FEM matrices in the
right member of the equation. Using the implicit integration
scheme, the condensed dynamics of the system can be
written as:

ṗk+1 = ṗk +HeA
−1b(qk, q̇k) + hWeauk

pk+1 = pk + hṗk+1

(10)

The condensed dynamics of the soft robot can be written
in matrix notation:

Xk+1 =

[
h2Wea,k

hWea,k

]
uk +

[
I hI
0 I

]
Xk

+

[
hI
I

]
HeA

−1b(qk, q̇k)

⇔ Xk+1 = fk(Xk, uk)

(11)

where Xk = [pk, ṗk]
T .

B. Derivative of the condensed dynamic

As explained in section II-C, DDP uses the derivative
of the dynamics to compute the Hamiltonian value. By
differentiating Equation (11) according to uk and Xk we
have for the control part:

∂fk
∂u

=

[
h2Wea,k

hWea,k

]
(12)

and for the state using the chain rules and the fact that He

is its own pseudo-inverse:

∂fk
∂X

=

[
I hI
0 I

]
︸ ︷︷ ︸

∂fk
∂X linear

+

[
HeA

−1 0
0 HeA

−1

] [
h2K h3K + h2D
hK h2K + hD

] [
HT

e 0
0 HT

e

]
︸ ︷︷ ︸

∂fk
∂X non-linear

(13)

This quantity is composed of two terms: one corresponding
to the derivative of the linear part of the dynamics (with
respect to Xk) and the other one to the derivative of the
non-linear part.

C. Constraint on the actuation

We can define additional mathematical constraints
hk(X,u) ≤ 0 in the optimization problem. In this paper,
these constraints correspond to actuator limits.

They can be expressed as:

hk(X,u) = hk(u) =

[
−I
I

]
u+

[
umin

−umax

]
≤ 0 (14)

D. General method to solve the trajectory optimization prob-
lem

The function fk corresponds to the projection of the robot
dynamics into the effectors/actuators space. As explained in
section II-B, this projection has already been used for one-
time step control. The idea is to use the condensed FEM
model to find the actuation that minimizes the cost function
around each step of the nominal trajectory.

The derivatives used for the optimization problem depend
on the mechanical quantities Wea, A−1, K, and D. Techni-
cally, these quantities depend on the position and velocity
of all the mesh points of the robot. We assume that we
are looking for an actuation around a nominal trajectory
and that the mathematical quantities vary slightly around
this trajectory. This means that these quantities are constant
for one time step of the backward phase. Moreover, by im-
proving the nominal trajectory with a succession of forward
and backward steps, the error of the linear approximation is
reduced (small displacement around the nominal trajectory)
and there is little change in the values of W .

It is, therefore, necessary to compute a faithful nominal
trajectory to obtain useful admittance, stiffness, and damping
values for the optimization problem. To do so, the forward
phase uses the complete dynamics of the robot, and the
simulation is used to compute the next values of Wea, A−1,
K, and D for the backward phase. When only the derivative
of the linear part of the dynamics is used in the backward
phase, only Wea is recovered from the simulation.

The global method is summarized in Figure 2. Trajectory
optimization is achieved through several forward and back-
ward phases. At each iteration of the optimization process,
the actuation sequence is tested with the complete FEM



Fig. 2. Illustration of the trajectory optimization pipeline. Starting from an initial position, the forward phase computes the different positions and
velocities of the complete mesh using the full dynamics (in orange). From the simulation data, a nominal trajectory is extracted, and the mechanical
quantities necessary for the DDP are saved (in blue). The nominal trajectory (green) is used with the condensed trajectory (red) to compute the new action
sequence that will be given to the forward pass. Several forward and backward steps may be necessary to converge to a solution.

model during the forward phase and a new nominal trajectory
is computed. Mechanical quantities are extracted from this
nominal trajectory to create the condensed FEM model. This
model is used in the backward phase to calculate a new
actuation sequence that minimizes the cost function.

IV. MATERIALS AND RESULTS

A. Soft robots

We propose to illustrate the method using three different
robots. These robots have different geometry and/or actuation
and are simulated using the FEM model based on SOFA
framework [17].

• The Diamond robot is a soft parallel silicone robot
actuated by 4 cables. The FEM model of this robot has
been validated in [16].

• The Stiff-Flop robot is a slender soft robot actuated by
pneumatic cavities. Each section of the two sections of
the robot is composed of three cavities, allowing the
bending in two directions. The FEM model of this robot
has been validated in [22].

• The Liandford robot is a soft parallel robot with 6
deformable legs developed for haptic applications. Each

Fig. 3. Representation of the robots used in this work, simulated using
SOFA. 1) The Diamond robot. 2) The Stiff-Flop robot. 3) The Liandford
robot.

end of the legs is attached to a DC motor, whose rotation
causes the legs to deform. The effector is attached
to a central bar, whose movement is imposed by the
deformation of the legs.

Figure 3 shows these different robots in simulation.

B. Trajectory optimization

The trajectory optimization is performed using the Prox-
DDP solver [3], [9] implemented within the ALIGATOR
library [23]. This solver uses a primal-dual augmented La-
grangian approach to solve the optimization problem. The



Fig. 4. Results obtained for Diamond robot control. End effector position along x (A), y (B), and z (C) axes. End effector speed along x (D), y (E), and
z (F) axes. Green dot: the objective. Blue cross: results obtained by considering the derivative of the non-linear part of the condensed dynamics. Orange
dot: results obtained by considering only the linear part. Three robot positions along the trajectory (1, 2, 3) are shown.

user interface allows for defining the underlying optimal
control problem using a node-by-node basis, to write the
dynamics and constraints, and to specify the differences
between forward and backward stages. The forward step has
been adapted in order to link with SOFA. Each time step
in the simulation corresponds to 0.01 seconds. The different
goals are selected according to the points that can be reached
with one-time step-control approach. This allows to obtain
scenarios with goals in the workspace of the robot. The
code is available in Open Source on the GitHub page of
the project. The results are presented for a fixed maximum
number of iterations and tolerance.

1) Scenario 1: Use both derivatives of the linear and
nonlinear part of the dynamic in the backward step: The
first scenario compares the positioning performance obtained
when the derivative of the non-linear part of the dynamics
is used in the backward phase and when this is not the case.
This comparison is illustrated with the Diamond robot and
shown in Figure 4. The goal is to position the effector of the
Diamond at two successive positions.

From these results, we can see that using condensed
dynamics allows the control of the position and velocity of
the robot, both with and without the derivative of the non-

linear part of the condensed dynamics. The results in terms
of positioning error are similar with and without the use
of ∂fi

∂X non-linear. However, the number of iterations to reach
the same performances is more critical with the nonlinear
part (reach the maximum of 1000 iterations set for this
experiment) rather than without (208 iterations). In addition,
using the derivative of the non-linear part leads to additional
calculations, as the resulting matrix is not calculated directly
in the forward stage. More precisely, the matrix W is
obtained with O(m2) operations, where m is the number of
constraints. The non-linear part of the derivative is obtained
with O(m×n) operations, where n is the number of elements
in the FEM mesh. n is a large number that depends on the
accuracy of the FEM model. Therefore, considering only the
linear part of the derivative of the dynamics according to X
in the backward stage improves the calculation time.

This scenario shows that in the case of the Diamond robot,
using the derivative of the linear part alone in the backward is
sufficient to control the soft robot. One possible explanation
of this result is that the full non-linear FEM model is used
to find the nominal trajectory, and linearization around this
nominal trajectory in the backward is sufficient to converge
to a solution. According to this result and the computation



Fig. 5. Results obtained for the Stiff-Flop robot. First row: Effector at the middle of the robot. Second row: Effector at the end of the robot. Example of
actuation (A-D); position of the effectors along one axis (B-E); velocity of the effectors along the same axis (C-F); three configurations of the robots (1,
2, 3). Green: the objective. Orange: position and velocity of the effector. Pink: actuation bounds.

time reduction, only the derivative of the linear part of the
dynamics is used in the remainder of this work. The practical
impact of this approximation for more general cases, such
as highly non-linear materials, is left for future work.

2) Scenario 2: Constraint actuation with the Stiff-Flop
robot: The second scenario shows that we can constrain the
actuation during the trajectory. This scenario is illustrated
using the Stiff-Flop robot. The results are shown in Figure
5. This robot illustrates the method with a different type
of actuation. The objective is to position the end-effector
attached to the center or the end-effector of the robot.

The results are shown for one axis and one actuator, but
similar results can be plotted for the other axis and actuators.
The framework enables to take into account constraints on
the actuation and can integrate various kinds of geometry and
actuation. Different deformations can be obtained depending
on the position of the end-effector and the target. In practice,
all the positions in the robot’s workspace can be reached if
enough time steps are available to solve the task.

C. Scenario 3: Multiple goals with the Liandford robot

The first two scenarios focus on positioning one effector
with a maximum of two targets. In addition, the two previous
robots are simulated with volumic FEM models, while the
Liandford robot is simulated with a lattice of beam FEM
elements. The third scenario involves optimizing a trajectory
with multiple goals. We consider three different cases. The
first is a spiral trajectory, where each time step corresponds
to a new goal. The second is a pick-and-place task where
the effector at the center of the robot has to move back and
forth between two positions. The last is an orientation task
using two effectors at the same time. The results are shown

Fig. 6. Results obtained for the Liandford robot control for the first case:
position on the x-z plane for the spiral trajectory. Green: the objective.
Orange: position of the effector on the considering plane.

in Figure 6 and Figure 7.
The first task shows that the robot can be controlled over

several time steps, with a goal that varies at each time
step. The obtained trajectory corresponds to the one that
minimizes the cost function and follows the constraints at
the tolerance level set. There are a few differences between
the target trajectory and the computed trajectory: the target
trajectory only takes into account the positioning of the effec-
tor, whereas the computed trajectory minimizes an objective
that includes not only the position but also the velocity of
the effector and the actuation value. Changing the weight of
these elements in the loss leads to different results. Here, the
emphasis is on positioning. The second task shows that it is
possible to control the robot’s dynamics on more complex
trajectories, such as tasks where it has to navigate between



Fig. 7. Results obtained for the Liandford robot control for the second and third cases. First row: actuation (A), position (B), velocity (C), and three
configurations of the robot for the pick and place task. Green: the objective. Orange: position and velocity of the effector. Pink: actuation bounds. Second
row: actuation (D), position (E), velocity (F), and three configurations of the robot for the orientation task. Green and Blue: the objective. Orange and
Red: position and velocity of the effector. Pink: actuation bounds.

two different positions. Finally, the third task shows that it
is possible to control several effectors simultaneously.

V. DISCUSSION AND CONCLUSION

We have proposed a method for optimizing the trajectory
of soft robots using dynamic FEM models. This method is
based on the joint use of a full FEM model to obtain an
accurate nominal trajectory in the forward phase and the
use of a condensed FEM model to find the actuation in
the backward phase. This method can handle several types
of robot geometry (parallel or slender), several types of
FEM elements (tetra, hexa, beam), several types of actuation
(cable, pneumatic, joint), and several types of task (one goal,
several goals, one trajectory). We have used three different
examples to illustrate all these features.

For the moment, we realize trajectory optimization and not
an interactive control. The trajectory is optimized during an
offline phase and then applied to the robot in an open loop.
Future work will be to mix this method with a correction loop
to obtain a robust controller of the soft robots. In addition, the
method is based on the simulation of all the FEM models
during the forward phases, which is a bottleneck for real-
time simulation. The simulation time depends on the length
of the trajectory and the size of the FEM mesh. One way
to overcome this limitation is to use model reduction or a
learned model in the forward phase. The advantage of this
method over previous ones is that the optimization does not
depend on the choice of model used for the simulation, the
condensation being valid for FEM models, reduced models,
or beam models. The only criterion that the forward model
must satisfy is to provide the mechanical quantities needed
to build the condensed model.

The fact that only the derivative of the linear part of
the dynamics is used in the backward step means that no
additional computations are required to be compared with the
forward step and speed up the convergence of the method.
The Diamond example showed that the two approaches lead
to similar results. Using the derivative of the non-linear part
of the dynamics with the other robots didn’t yield the same
results as those obtained with just the linear part, with the
same number of iterations. To achieve the same performance,
some additional work on algorithmic performance and com-
putation is required. However, the linear part alone allows the
algorithm to converge on an optimal solution to our problem.
In addition, the dynamics used in the forward stage and the
linearized condensed dynamics used in the backward stage
are not the same. This leads to different gradients between
those calculated from the position of the end-effectors and
those calculated from the condensed model. This can lead
to the framework’s dual error not converging, although in
practice, this does not affect the control of the robots.

It is also possible to extend the capabilities of the method,
in particular by adding different constraints. For example, it
would be possible to imagine constraints on the maximum
displacement increment of actuators or constraints on the
position of the end effector by defining zones where it is
not allowed to go. Another extension would be to consider
perturbations in the trajectory. This would enable the devel-
opment of tasks where a force is applied to the robot at a
given point in the trajectory. Finally, we are using a line
search approach to update the variables, but other methods,
such as trust region approaches, could be considered.
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