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Learning control strategy in soft robotics through a set of configuration
spaces

Etienne Ménager∗ and Christian Duriez∗

Abstract— The ability of a soft robot to perform specific
tasks is determined by its contact configuration, and tran-
sitioning between configurations is often necessary to reach
a desired position or manipulate an object. Based on this
observation, we propose a method for controlling soft robots
that involves defining a graph of configuration spaces. Different
agents, whether learned or not (convex optimization, expert
trajectory, and collision detection), use the structure of the
graph to solve the desired task. The graph and the agents
are part of the prior knowledge that is intuitively integrated
into the learning process. They are used to combine different
optimization methods, improve sample efficiency, and provide
interpretability. We construct the graph based on the contact
configurations and demonstrate its effectiveness through two
scenarios, a deformable beam in contact with its environment
and a soft manipulator, where it outperforms the baseline in
terms of stability, learning speed, and interpretability.

Keywords: Modelling, Control, and Learning for Soft
Robots. Soft Robot Applications.

I. INTRODUCTION

Soft robots can be controlled using either physics-based
or learning-based methods. In rigid robotics, various control
methods are employed to handle contact, in planning and
predictive control [1], [2], [3], [4]. However, soft robots
control based on Finite Element Method (FEM) is limited to
one time step with optimization and inverse modelling [5],
except for simplified robot models [6], [7]. Although this
method can handle contact [8], it does not account for
contact reconfiguration, as breaks in the optimization space
occur due to contact. On the other hand, Reinforcement
Learning (RL) has been successfully used in various appli-
cations, including robotics[9], [10], [11], [12], [13] and soft
robotics [14], [15]. This approach can solve complex tasks
that cannot be solved using optimization methods because of
its 0th order approximation of the gradient and exploratory
aspect [16]. However, it is generally less interpretable or less
sample-efficient than model-based optimization approach.

Various methods can be employed to limit the gap between
these two approaches. One approach is to modify the reward
function [17], [18], such as by incorporating the system’s
physics [19] or using examples of task resolution [20].
Another approach is to focus on the initialization of the
models, such as Transfer Learning and Imitation Learn-
ing [21] where knowledge is learned from one task or
an expert and transferred to the current task. Clustering
methods and prototypical representation [22], [23], [24] can
also be used to group similar states and facilitate learning.
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Finally, Hierarchical Reinforcement Learning (HRL) [25],
[26] decomposes a task into different subtasks to accelerate
learning. For example, in [27], an unlearned controller is used
to stabilize an object, whereas RL algorithms are used for
its manipulation. However, these methods may not always
be straightforward to implement, lack interpretability, or
training data may not always be available.

Contributions: In this paper, we present a novel approach
for incorporating prior knowledge into the learning process,
which is represented as a graph of configuration spaces.
This graph divides the robot states into distinct hand-defined
configuration spaces, and sequences of actions are used
to navigate between them. It enables the integration of
learning and convex optimization, enhances interpretability
and reusability, and enables the use of expert trajectories in
the learning process. We demonstrate the feasibility of this
method through simulations of a beam in contact with its
environment and a soft manipulator.

II. BACKGROUND AND NOTATIONS

We consider a Markov Decision Problem (MDP) with
states s ∈ S, actions a ∈ A, transition distribution st+1 ∼
P (st, at) and reward function rt ∼ R(st, at). Let πθ(a|s)
be a stochastic policy with parameter θ. In this situation, the
agent interacts with an environment by sampling an action
at ∼ πθ(.|st), receives a reward rt and a new state st+1.
The objective of the agent is to maximize the expected sum
of discounted rewards:

J(π) = Eτ∼π[Σ
T
t=0γ

tr(st, at)] (1)

where γ ∈ [0, 1) is a discount factor, τ =
(s0, a0, r0, s1, a1, r1, ...) is a trajectory sampled with the
policy π and T is the horizon. Different algorithms solve this
problem, like the Soft Actor-Critic (SAC) algorithm [28].

We add the definition of option [29]. Options allow
generalizing primitive actions, i.e. at one time step, to include
sequences of actions. Options are composed of a strategy π,
a termination condition β(s) and a starting set I ⊆ S. An
option < I, π, β > is available in the state s if s ∈ I . If
the option is taken, the actions are chosen according to π
until the termination condition is reached according to the
probability β. When an option is terminated, the agent can
choose another option.

III. METHODS

We propose a modular method that combines the advan-
tages of learning and prior knowledge (optimization-based
or user-supplied data) in control problems. It is formalized



Fig. 1. Schematic of the different elements constituting the knowledge graph. Each node in the graph corresponds to a configuration space, and each
observation belongs to one node. Each node has an identifier, a neighbourhood (other configuration spaces), an internal agent (in red), and an external agent
(in blue). The Evaluator (in pink) can either belong to a node or be shared between the nodes. The Selector (in orange) is global in the knowledge graph.
Three steps are then performed. (1) The Selector determines in which configuration space the robot is. (2) The Evaluator decides in which configuration
space to go. (3) The internal agent or external agent solves the task in the current space or moves to a different space.

as an HRL framework based on a user-defined knowledge
graph, where the nodes represent configuration spaces of the
robot. In this article, we assume that a configuration space
corresponds to a set of robot configurations that share the
same contact configuration. This method employs multiple
agents to identify the current node in the graph (e.g., which
contact configuration the robot is in), navigate through the
graph (e.g., how to change the contact configuration), and
solve the task in each node of the graph. This structure
allows for the integration of various optimization methods.
It enables also to reuse pre-trained agents and provides
interpretability. The details of this approach are presented
in the following sections.

A. General overview
The user defines a graph of N configuration spaces Si

covering the state space of the robot S (see section III-
B.1 for details). The use case limits the state space, and
the covering ⊔i≤NSi = S is defined according to the task.
Each configuration space is identified with a vector hi ∈ Rds .
The graph naturally induces a notion of neighbourhood Vi

of the configuration space Si. Two nodes are linked when

it is possible to go from one configuration space to another
by following a sequence of actions without going through a
third different configuration space.

Given this graph, several agents are used to solve the task:
1) The Selector S determines from the state st in which

configuration space the robot is. To do this, it calculates
the probability that the current state belongs to a given
configuration space:

S(Si|st) = p(st ∈ Si) (2)

where Si|st means ”being in configuration Si knowing
that the robot state is st”. The Selector is deterministic
when there is no uncertainty about the configuration
spaces. Indeed, when the Selector is learned, there is
uncertainty and the Selector’s aim is to maximise the
probability p(st ∈ Si). When the Selector is imple-
mented using collision detection algorithms, there is
only one possible choice and the probability is 1 or
0. The Selector is the agent that implicitly defines the
knowledge graph. It associates each state with the con-
figuration space that contains it, either by learning from



data labelled according to the configuration spaces or
by using an external criterion, such as a collision-
detection algorithm.

2) The Evaluator E determines if the robot should stay
in the current configuration space to solve the task, or
if it should change. It gives the probability of success
psucc that the task can be solved in the configuration
spaces:

E(Sj |Sj ∈ Vi ∪ {Si}, st ∈ Si) =

psucc(st+1|st+1 ∈ Sj , st ∈ Si) (3)

This probability corresponds to the action of the Eval-
uator (network output), and is trained to maximise
its cumulative reward. Depending on the configuration
space that maximises this probability, the Evaluator
uses one of the two last node-specific agents to find
the next action: the external agent or the internal agent.

3) An external agent Aext is used to switch from the
current space Si to another Sj ̸=i ∈ Vi in the neigh-
bourhood. This agent uses options.

4) An internal agent Aint is used to solve the task
inside the current configuration space. This agent uses
primitive actions.

Each agent can be either learned or not, and can share
information with other agents. The Selector and the External
agents are independent of the task to be performed, while
the Evaluator and Internal agent are not. An overview of the
method and the link between agents is shown in Figure 1.

B. Structure and Training of the different agents

In this section, we present all the trained agents, using
off-policy learning and replay buffers.

1) Train the Selector: The configuration spaces Si are
labelled according to the prior knowledge. The Selector is
based on an attention mechanism [30]:

α = softmax(
QKT

√
ds

) (4)

where K = F (st) is the encoded current state, F a Multi-
Layer Perceptron (MLP) network, Q is the matrix of the
identifiers hi, and ds the dimension of the identifiers. It gives
the similarity between the encoded current state and each
identifier. The softmax function gives a probability αi =
p(st ∈ Si) that the state st belongs to the space Si. The
current configuration space is given by the maximum of the
probability. For the training, labelled data are collected, and
the Selector has to predict the correct label in a supervised
way according to:

∀s ∈ Si : αi = 1 and αj ̸=i = 0 (5)

2) Train the Evaluator: The Evaluator finds the probabil-
ity of solving the task in Vi∪Si using an attention mechanism
as well. For the Evaluator, K is the matrix of the identifiers
and Q is the encoded current state. The result is given by
α ∼ N (αmean, αstd) where αmean and αstd are evaluated
using Eq. 4 and N is the normal distribution. The rest of the

learning is a classical RL learning process. Two different
transitions are used, depending on whether the Evaluator
chooses external or internal agents. They can be both express
as a list:

(st+k, at, st+T ,

t+T∑
t′=t+k

rt′ , δ) (6)

with k an integer in [0, T − 1], st+k ∈ Si, st+T ∈ Si

for internal agents and st+T ∈ Sj ̸=i for external agents, T
the duration of the option with T = 1 for internal agents
(primitive action) and T ≥ 1 for external agents, and δ
a flag to indicate the termination of the episode. Internal
and external agents are used to explore the state space. The
Evaluator can be penalized if it uses internal agents to move
from one configuration space to another one.

3) Train the internal agents: They are trained with all the
transitions starting from the current configuration space. The
internal agents may not find solutions in this space and have
to explore other spaces to do so. Although the Evaluator has
to choose the external agents for this exploration, it may
make mistakes or converge slower than the internal agents.
To solve this problem, each internal agent has information
about its neighbourhood. The idea is to update the Q-
function of each internal agent using the Q-function of its
neighbouring internal agents for the boundary states (which
allow switching from one configuration space to another in
one action). This allows the internal agents to know if it is
beneficial to visit adjacent configuration spaces or not.

4) Train the external agents: The implementation of ex-
ternal agents is not dependent on the task to be performed
and is based on concepts from HER [31] as follows. The
current state st is augmented by the value of the identifier
of the target configuration space hi to form the input of the
external agent [st|hi] where | represents the concatenation.
The idea is then to say that a trajectory τ allowing to reach a
configuration space Si does not allow reaching Sj ̸=i. [st|hi]
following τ is rewarded while [st|hj ] is penalized.

Fig. 2. Splitting the state space into different configuration spaces
(right) for two soft systems (left) based on the contact configuration.
(A) CartStemContact. (B) RodManipulator. In this example, some contact
configurations are gathered in one configuration space, not useful for the
manipulation task.



IV. MATERIALS: ROBOTS AND CREATION OF
CONFIGURATION SPACES

We illustrate our method with two examples: the Cart-
StemContact [32] and the RodManipulator made of two-soft
cylindrical robots called fingers [5]. These robots and their
associated configuration spaces graphs are shown in Figure 2.
Both systems are simulated using SofaGym [32], which is
based on SOFA [33]. The learning process is implemented
using an open-source implementation of SAC [34], [35].
Other RL algorithms were also used in [32], and led to
comparable performance. The hyperparameters are the same
between the baseline method and our method. The code and
the hyperparameters are open-source.

A. The CartStemContact example

The CartStemContact can be considered as a simplified
soft robot. As illustrated in Figure 3, it highlights the control
challenges that are associated with the contact configurations
in soft robotics.

Fig. 3. Illustration of the limitations of optimization-based control
approaches in the case of the CartStemContact robot. A deformable beam
is fixed on a mobile base that can move horizontally. Two obstacles limit
the movement of the beam. The objective is to minimize the distance
between the end of the beam and a horizontal position behind one of the
obstacles. (A) When the robot is not in contact with an obstacle, the use of
optimization-based control leads to a local minimum. (B) To solve the task,
the robot must first be in contact with the opposite obstacle. The presence
of the contact between the obstacle and the robot changes the optimization
space.

The objective is to position the tip of a mobile beam at a
specific horizontal location despite obstacles obstructing its
horizontal movement. These obstacles can be used to bend
the beam, and the solution to optimization-based control
methods depends on the initial configuration of the beam’s
contacts. If no contacts exist at the beginning, the optimiza-
tion falls into a local minimum. This task can be solved us-
ing reinforcement-learning algorithms; however, they require
significant learning time [32]. Because the solution to this
example is known, the proposed approach can be compared
with it.

An episode last at most 30 iterations, and the reward is
equal to the horizontal distance between the tip of the beam
and the goal. The position of the contact and the position
of the mobile base are randomly initialized. The state st

is [xcart, xtips, xleft, xright, lx, lz, xgoal] and contains the
horizontal position of the mobile base, of the tips, of the
obstacles and of the goal, and the dimension of the obstacles.
The mobile base is controlled in position with a constraint
on the maximum speed of the cart.

The state space is split according to the contact between
the beam and the obstacles, as defined by the geometric
conditions:

xcart >xleft + 1/2
√
l2x + l2z

xcart <xright − 1/2
√

l2x + l2z
(7)

This partitioning enables the identification of areas that
can be reached by the end effector of the robot. This process
does not require an explicit expression of the physical model,
but rather only the observation of the robot’s current state.

B. The RodManipulator example

The method is illustrated by an example of object ma-
nipulation. The RodManipulator robot is used to catch and
manipulate an object using two soft fingers. Each finger can
bend in four directions and translate vertically. The object to
be manipulated is a rod with a square cross-section placed on
a table, and the goal is to rotate it using both fingers to reach
a target vertical orientation. The state of the robot is defined
by the positions of three points at the end of each finger,
the position and orientation of the centre of the rod, and the
target orientation. The reward is based on the normalized
angle covered by the rod during its movement. Because
there is no simple formulation for modelling the mechanical
behaviour of the robot, a collision detection algorithm is used
to identify the contact configuration. In this case, the Selector
is deterministic and computed rather than learned. Contact
configurations that are not useful for the task are gathered in
the same configuration space, allowing to not have to define
them in the graph and explore/train the corresponding agents.

V. RESULTS

A. Solving the CartStemContact and convex optimization

The Selector’s training is achieved by randomly collecting
states and using them to train the model. In supervised
learning, the data set is generally separated into a training set
and a validation set. In this work, the validation set consists
of 20% of the labelled data, and the model has a success
rate of over 99.7% for 50000 test samples. The Selector
manages to associate each observation to its corresponding
configuration space.

The learning results are shown in Figure 4. The proposed
method can solve the task in 80000 iterations, whereas the
baseline SAC requires 140000 iterations. This corresponds
to a 42% reduction in the number of iterations required to
achieve the same performance level. Both approaches have
the same limitations, due to the definition of the reward:
when the goal is close to the bounds of the obstacle, the
cumulative reward is lowered by getting stuck to the obstacle.

The learned internal agents can be replaced by convex
optimization algorithms. The training for the other agents



Fig. 4. Learning results, reward as a function of the iterations. Results obtained with the SAC algorithm (orange), with our method (blue) and with our
method with internal agents performed with convex optimization (purple) in the case of the CartStemContact. The learning conditions are the same in all
three examples. The initial difference comes from the fact that the first results are obtained after 500 iterations, and that the method with internal agent
performed with optimisation learns to solve the task faster than the other methods. Sliding average is used to facilitate the reading of the results. The size
of the windows for the sliding average is approximately 2.5% of the number of iterations.

remains the same. In this setup, the task is solved in 40000
iterations, which represents a 72% reduction in the number of
iterations compared to the baseline. To validate the reusabil-
ity of the agents, the fully trained internal agents of the
network are replaced with convex optimization algorithms.
When one or several internal agents change, the overall
learning behaviour remains the same, as the value of the
cumulative reward changes by only 0.64% compared with
all learned internal agents. These features make the approach
particularly easy to combine with the existing methods.

B. Manipulation of the rod and expert trajectories

We define two expert trajectories. They allow the fingers
to: 1) move away from the rod, one finger being brought
forward and the other backward; 2) reverse the position of
the fingers, the one that was forward now being backward
and vice versa; 3) bring the fingers in contact with the rod in
a new contact configuration. An illustration of these expert
trajectories corresponds to the four images of the first row in
Figure 5. The expert trajectories are hand-defined to guide
the system from one contact configuration to another, but
they do not specify the target configuration space. In fact,
as they are not designed for a specific state, the Evaluator
cannot use them to precisely reach a given configuration.
However, the Evaluator can use these expert trajectories
(external agents) to move out of the configuration space
and modify the contact configuration. As these trajectories
involve moving the fingers away from the rod, a penalty is
included in the reward to encourage the Evaluator to use
them only when it would result in a significant increase in
its long-term reward.

The cumulative reward for the RodManipulator is shown
in Figure 6. The proposed method learns to use expert
trajectories effectively to solve the task. An example of
solving the task for a 280° target is shown in Figure 5.
Starting without contact, the algorithm uses an external agent
to create contact. The rod is then manipulated until it is
impossible to move further without changing the contact con-

Fig. 5. Example of RodManipulator task resolution for a target angle of
280°. Starting without contact, the algorithm first uses an expert trajectory to
position the robot in contact with the rod. The rod is then manipulated until
it reaches a configuration where it is not possible to move further without
changing the contact configuration. The Evaluator then uses another expert
trajectory to reconfigure the contacts and continues to rotate the rod until
it reaches 280°.

figuration. Finally, an expert trajectory is used to reconfigure
the contacts and solve the task.

The results achieved with this algorithm can be compared
to those obtained using a baseline SAC. When the robot
starts without contact, this algorithm requires a long time to
explore the space without finding actions to manipulate the
rod. To ensure that the robot approaches the rod, a distance
term can be added to the reward. In the proposed method,
the reward is easier to design because part of the complexity
is delegated to the expert trajectories and the definition of
the contact configurations that the robot must visit to solve
the task. Once the contact with the rod is made, the SAC
algorithm is unable to reconfigure the contacts in less than
200000 iterations.

VI. DISCUSSION

A. Use of configuration spaces in the learning

The previous results demonstrate that it is possible to inte-
grate prior knowledge into the learning process by defining a



Fig. 6. Learning results, reward as a function of the iterations. Results obtained with our method in the case of RodManipulator. Sliding average is used
to facilitate the reading of the results. The size of the windows for the sliding average is approximately 2.5% of the number of iterations.

knowledge graph based on configuration spaces. This graph
allows for greater sample efficiency while maintaining the
flexibility brought by learning.

This method provides interpretability during the learning
process. Examining the results of the Selector and the choices
of the Evaluator allows determining the agent’s current
configuration space and the targeted configuration space to
solve the task. The CartStemContact first navigates to the
space containing the goal and then solves the task within that
configuration space. The Evaluator of the RodManipulator
employs external agents to reconfigure the contacts.

B. Reusability

The Evaluator uses both external and internal agents to
solve the task at hand. It employs internal agents to correct
the results of external agents. The example of the Cart-
StemContact demonstrates that using learned or not learned
internal agents does not lead to a decrease in performance,
as the entire network has the same behaviour. The two
examples show the possibility of reusing and combining
pre-learned, learned, or not learned agents. This validates
the use of a task-independent structure as the basis of the
learning process. The Evaluator can leverage the knowledge
of external agents to solve a given task more efficiently.

C. Combine classical learning and prior knowledge

Optimization-based algorithms can only solve a task if
the goal belongs to the same convex space as the effector’s
one. The CartStemContact shows that we can continue
to use the advantage of optimization-based algorithms by
learning the transition between two configuration spaces,
even if they correspond to different convex spaces. This has
two benefits: it can improve general sample efficiency and
overcome the limitations of a convex approach. However, this
study should be extended to include simultaneously learned
and not learned internal agents. This would be particularly
interesting in the case of the RodManipulator, where two
opposite contact configurations can be handled using convex
optimization, whereas the other configurations are learned.

Another prior knowledge is provided by the expert tra-
jectories. Unlike Behaviour Cloning methods or other ap-
proaches that use entire trajectories, the definition of the
knowledge graph and sub-part of the trajectories guide the
learning by defining the passage point necessary to achieve
the desired behaviour. In the RodManipulator example, the
use of expert trajectories to reconfigure contacts is easier to
obtain than Behaviour Cloning because it is independent of
the task to be solved and does not correspond to an entire
episode. Although this trajectory is not optimal, the algorithm
can use it to solve the task and improve the efficiency of its
own strategy.

VII. CONCLUSION

In this article, we present a new method for integrating
prior knowledge into a learning model. By defining the
configuration spaces, we can effectively partition the state
space and facilitate the learning. These configuration spaces
can be derived from the equations of the agent’s behaviour,
examples of the agent’s configurations, or a desired sequence
of behaviours. The use of multiple agents allows compensat-
ing the weaknesses of one agent by using others, integrating
behaviours from other control methods such as convex op-
timization, and specialising agents in specific domains. As
some parts of the method are independent of the task to be
performed, they can be reused to speed up the learning.

In this article, we propose to use the contact config-
urations to create the configuration spaces, motivated by
the importance of optimisation approaches in soft robotics.
However, other approaches could also be considered, such
as automatically defining the configuration spaces based on
a robot’s workspace in a specific contact configuration. This
method is an intuitive way to incorporate prior knowledge
into learning algorithms. Even though it can be applied to
other fields than soft robotics, it is particularly relevant for
the control of soft robots as traditional methods for path
planning and predictive control with contact are limited.

One limitation of the method is the difficulty of defining
different contact configurations. We illustrated the method
with two examples with limited numbers of known contact



configurations. The definition of these contact configurations
in a more general case is not straightforward. In addition, the
complexity of the general structure of the network has some
limits. Each agent corresponds to one network, increasing
the number of hyperparameters and update at each time
step. Moreover, the definition of the configuration spaces
can influence the convergence speed. In fact, agents share
information, and an under-exploited agent takes more time
to learn and thus to provide reliable information. There are
several ways to improve this method. First, it would be
interesting to extend the application domain of this method,
for example, by using multitask and dynamic graph. With a
method for dynamically learning configuration spaces, these
spaces will be useful for the task and will be built to solve
the task. In addition, the more multitask objectives the robot
has to solve, the more general the configuration spaces will
be. Modifications of the learning conditions could also be
considered, such as local updates of the networks when
the number of configuration spaces becomes large or the
reward of the external agents depending on the length of the
sequence of action.
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