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Abstract—Despite continuous improvements, cloud physical re-
sources remain underused, hence severely impacting the efficiency
of these infrastructures at large. To overcome this inefficiency,
Infrastructure-as-a-Service (IaaS) providers usually compensate
for oversized Virtual Machines (VMs) by offering more virtual
resources than are physically available on a host. However,
this technique—known as oversubscription—may hinder perfor-
mances when a statically-defined oversubscription ratio results
in resource contention of hosted VMs.

Therefore, instead of setting a static and cluster-wide ratio,
this article studies how a greedy increase of the oversubscription
ratio per Physical Machine (PM) and resources type can preserve
performance goals. Keeping performance unchanged allows our
contribution to be more realistically adopted by production-scale
IaaS infrastructures. This contribution, named SCROOGEVM,
leverages the detection of PM stability to carefully increase the
associated oversubscription ratios. Based on metrics shared by
public cloud providers, we investigate the impact of resource
oversubscription on performance degradation. Subsequently, we
conduct a comparative analysis of SCROOGEVM with state-of-
the-art oversubscription computations. The results demonstrate
that our approach outperforms existing methods by leveraging
the presence of long-lasting VMs, while avoiding live migration
penalties and performance impacts for stakeholders.

Index Terms—Cloud, IaaS, oversubscription.

I. INTRODUCTION

Initially, virtualization technologies paved the way for build-
ing more energy-efficient cloud infrastructures by increasing
the physical resources usage [11]. Unfortunately, most cloud
operators keep observing that the VMs they host in their
data centers are underused [19]. These observation can be
explained by several reasons: (i) their customers order cheap
servers, without necessarily using them over time (as a conse-
quence of a rebound effect); (ii) their customers over-provision
their VMs to anticipate potential workload peaks; (iii) the
fixed-size VM configuration might be inappropriate—e.g.,
imposing to provision 32 GB of memory to host a hypothetical
workload of 18 GB.

Various cloud providers report on relatively low usage
of their infrastructure, even over the past decade [7], [19],
[21]. We believe that optimizing this usage is one of the
most promising leads to reducing the energy consumption
and carbon footprint of data centers. While CPU resources
are often effectively allocated, as reported by [23] indicating
that 80% of Azure servers have less than 15% unprovisioned
cores, there is still substantial underutilization of CPU on
PMs [21]. This underutilization highlights the significance of

provisioned, yet unused, resources. We chose to address it
through the prism of resource oversubscription, also known
as overcommitment or overbooking, which is defined as the
amount of virtual resources made available for each unit
of physical resource [26]. Resource oversubscription allows
cloud providers to boost physical resource utilization and is
widely adopted in production, as reported in the literature [9],
[19].

However, setting an appropriate oversubscription ratio for a
given cloud infrastructure remains an open challenge. While
an under-loaded platform is inefficient, an over-loaded plat-
form may impact its performance and stability. Therefore,
state-of-the-art hypervisors adopt a configurable threshold of
oversubscription ratio per resource type, and at the scale of
a cluster. For example, the OPENSTACK platform sets by
default the oversubscription ratios to 16:1 and 1.5:1 the
oversubscription ratios for vCPU and vRAM, respectively.
This implies that all the computing cores and memory of
PMs are multiplied by 16 and 1.5 when exposed as virtual
resources. Nonetheless, the effective value for each of these
ratios has to be carefully estimated by cloud providers by
taking into account resource and workload characteristics, as
well as an acceptable risk [18].

Instead of statistically determining an optimal global value,
we argue that clusters can better benefit from a dynamic
oversubscription ratio per PM. In particular, we believe that
higher gains at lower risk can be achieved by learning from
the deployed workloads and resource utilization of individual
PM, instead of reasoning at the scale of a whole cluster.
In this article, we propose SCROOGEVM, a new approach
to dynamically increase the oversubscription ratio per PM,
while maintaining performance goals. SCROOGEVM monitors
effective PM resource usage by combining resource utilization
metrics and overload signals. This approach, decoupled from
the resource optimization of a given IaaS platform, allows
our solution to be generic and leveraged by most cloud
schedulers in any IaaS context. SCROOGEVM leverages state-
of-the-art machine learning techniques to capture periods
of stability for a PM—i.e., periods of foreseeable resource
usages. During these periods, SCROOGEVM can analyze the
utilization statistics to better understand resource usage and
increase the oversubscription ratio of each resource accord-
ingly. SCROOGEVM, therefore, adopts a greedy approach to
increase little-by-little oversubscription ratios, to never trigger
VM consolidation phases, which could penalize the cloud
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infrastructure and its customers. Step by step, and as long as a
PM is labeled as stable, SCROOGEVM adjusts the amount of
available resources by reasoning on the long term. This more
natural solution to resource consolidation learns from VMs
requirements and can be used to balance the IaaS allocations
and performances across all PM in a cluster.

In the remainder of this article, we start by discussing
the state of the art in the area of cloud resource usage
and oversubscription (cf. Section II). Then, we introduce the
principles of greedy oversubscription and our implementation,
named SCROOGEVM (cf. Section III). We also perform an
empirical analysis of the impact of different parameters of our
approach in an environment that mimics the characteristics of
Microsoft Azure (cf. Section IV). Additionally, we evaluate
SCROOGEVM oversubscription computation and compare it
to other dynamic approaches (cf. Section V). Finally, we con-
clude and share the perspectives for this work in Section VI.

II. RELATED WORK

A. Improve Cloud Resources Usage

While under-utilization of cloud platforms has a significant
operational cost for cloud providers, low resource utilization
also corresponds to the least-energy efficient range of opera-
tion for a PM [8]. Therefore, even if energy proportionality
kept improving over the last decade [43], [53], resource under-
utilization inevitably imposes higher power consumption and
hardware costs [19]. In this context, the utilization ratio of a
cloud platform can be modeled as a workload consolidation
problem for PM. This problem can be addressed statically
(VM placement) and dynamically (VM live migration) through
different scheduling strategies [2]. Dynamic placement, or
consolidation, has been widely studied in the literature [27]
to deliver significant gains based on the behavior of VM,
but VM migrations remain costly and should be limited in a
cloud infrastructure. Our approach only leverages the initial
placement decision, hence minimizing its impact on cloud
infrastructures. Unlike traditional bin-packing problems, VM
usage window is dynamic, even if they are bounded by
their inner configuration limits. We, therefore, aim at better
estimating overall PM usage and providing more insightful
feedback to the cloud provider.

More recently, new types of VM have been specifically
promoted by cloud providers to increase their cloud utilization
ratio. For example, unallocated resources can be used to deploy
a SPOTVM [5], [16], [42], whose deployment is preempted
when the allocated resources are requested by a traditional
VM. This VM type is usually proposed at a lower price.
The HARVESTVM [3] extends this concept and allows the
size of a SPOTVM to be dynamically adjusted according
to the resources available on the PM. The harvesting of
unallocated—or unused—resources is performed in addition
to CPU oversubscription on at least some cloud offers [6],
[41]. Service providers do not usually communicate their
oversubscription ratio, potentially considering this information
as sensitive given its potential impact on performance. Our
solution, instead, pays particular attention to performance
consistency.

B. Hypervisor Oversubscription

Most hypervisors enable oversubscription by allowing the
sum of all allocated virtual resources to exceed the PM
capabilities [10], [45], [48]. Oversubscription relies on the fact
that a VM resources usage is usually lower than its allocation.
It may be explained by a low resource-demanding workload,
but also by resource optimization implemented by the host.
For example, hypervisors may implement Kernel Samepage
Merging (KSM), ballooning, memory compression, or swap
mechanisms to reduce VM usage from the host perspective.
Some hypervisors, such as VSPHERE [49], natively support
these features and may, therefore, oversubscribe their memory
to higher levels.

An overload situation occurs when a VM requires more
resources than available from the PM. This may happen due
to an undersized configuration, or due to an excessive over-
subscription ratio. With an oversized CPU oversubscription
ratio, VMs will not be able to use their allocated time slices,
which may lead to Service-Level Agreement (SLA) violation.
This highly impacts smaller VMs as usual hypervisors, such
as KVM and VSPHERE, allocate an equal share of time-slices
per virtual CPU (vCPU). When memory overload occurs,
VMs will swap memory pages leading to highly degraded
performance [36]. To avoid such critical situations, some
cluster managers, such as OPENSTACK [39] and BORG [4],
limit the oversubscription ratio to a common static value for
each PM.

[17] aims to estimate the optimal cluster-scale CPU over-
subscription for a given workload trace, according to an
accepted risk, by modeling the problem as a bin packing
with chance constraints. Unfortunately, they did not support
memory. Furthermore, we argue that the oversubscription ratio
is highly dependent on the workload and the PM configura-
tion, which is highly heterogeneous and unforeseeable in the
context of a IaaS platform. Typically, we believe that more
gains could potentially be identified by computing a PM-scale
resource oversubscription ratios, covering memory and CPU.

[19] computes a PM-scale CPU oversubscription ratio by
considering the sum of VMs in a given percentile. However,
this technique limits the potential gain, as it is unlikely that all
peak VMs usages will occur at the same time [9]. Furthermore,
they did not support memory oversubscription.

CLOUDVAMP [52] targets dynamic memory oversubscrip-
tion by leveraging the amount of memory retrieved from
ballooning. In our approach, we compute an oversubscription
ratio without a priori knowledge of the platform optimization
mechanisms, which allows us to propose a more generic
approach that can work with ballooning, but also other types of
memory optimization proposed by the literature. The Dynamic
Oversubscription ratio Adjustment (DOA) is introduced in [51]
to mitigate cascading failures. Due to its purpose, it is highly
reactive and only takes into account the last resource usage of
a given PM. We aim to provide a more stable and conservative
ratio leveraging resource usage histories.

Finally, N-SIGMA [9] derives the CPU oversubscription
from a prediction of the CPU usage peak, computed as
cpu+N×σ, where cpu and σ capture the average and standard
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deviation of CPU usage, respectively. The study, which draws
upon Google Borg traces, recommends a N = 5 configuration.
While this value effectively covers the worst-case scenarios
observed in Borg, it also results in underutilized resources in
the majority of cases. In light of this limitation, we propose
to adjust any resource oversubscription by considering the
quiescent state of the PM, especially in long-running IaaS
workloads.

C. Memory Optimisation

In some cloud infrastructures, memory is reported as the
system resource that limits the deployment of new VMs [25],
due to the memory capacity wall [30]. However, it is more
challenging to oversubscribe memory due to its inherent
harvesting limits, compared to the CPU. For a given VM, its
host memory usage is defined by Resident Set Size (RSS),
the amount of physical memory allocated, in opposition to,
for example, swap space. However, actively used pages are
usually lower and, therefore, RSS can potentially be reduced
close to the Working Set Size (WSS), the minimal amount of
memory required [38]. WSS estimation may rely on different
techniques, such as [50], which periodically invalidates a set
of pages to trap their access at the hypervisor level. Others
rely on a ballooning mechanism, which inflates a driver in
the VM to fill the memory until the VM starts using its swap
partition [14]. Different techniques also attempt to estimate
the optimal WSS when the VM is under-provisioned, using a
dedicated cache [29], [35]. WSS estimation may also benefit
from new hardware features to reduce its performance over-
head [12]. The ballooning driver can return to the hypervisor-
occupied virtual page addresses on the VM for further us-
age within the host scope. In the context of virtualization,
hotplug can also be used to adjust the memory capacity at
runtime [32]. While dynamic memory management reduces
(ballooning, hotplug) or increases (hotplug) the RSS of VM,
other mechanisms can also impact memory consumption. For
example, KSM allows VMs to share common pages [31]
with a daemon that periodically scans the allocated pages and
merges the identical ones into a single read-only page. If a
process updates this page, KSM duplicates it into its original
form. ZRAM [34] can also be used to reduce a process RSS
by creating a set of virtual disks. Pages written to these disks
are compressed using a run-length encoding algorithm, trading
CPU cycles for memory while keeping good I/O performance.

We argue that the proposed resources oversubscription ratios
should be generic, and therefore independent from platform-
specific optimizations. What limits the deployment of new
VMs is the PM resources usage and thus forms the basis of
our work. This usage can be reduced due to optimization or
limitation on system resources, which gives us an indirect, but
sufficient, view of the platform optimizations.

III. GREEDY OVERSUBSCRIPTION WITH SCROOGEVM

We introduce greedy oversubscription as a novel approach
to implement a dynamic resource oversubscription strategy at
the scale of individual PMs. More concretely, our approach
gradually increases the oversubscription ratios intending to
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Fig. 1. CDF of memory availability in a IaaS infrastructure.

never trigger live migration, as long as a PM is assumed to
be stable, thus reasoning over the long term. While migra-
tion consolidation techniques may penalize the stakeholders
by imposing temporary service unavailability and complex
migration strategies, we believe that greedy oversubscription
can offer an alternative approach that incrementally increases
resource utilization by hosting more and more VMs, while
minimizing costly VMs consolidations.

A. Principles of Greedy Oversubscription

a) Preliminary analysis of cloud resource availability:
In 2017, Microsoft Azure released traces from a 3-month
IaaS workload [19]. Interestingly, this dataset—reflecting a
production-scale cloud infrastructure—reveals several insights
that we leverage as part of this article:

• Not all VMs resource requirements are the same: VM
configuration distribution—coined size in the article—
reports that typical VMs are quite small, with around
80 % of VMs having less than 2 vCPUs and 70 % of
them less than 4 GB of memory;

• Not all VMs lifespan are equal: Long-running VMs
account for more than 95 % of the total core hours;

• Not all VMs provisioned resources are used: While re-
source usage figures are only provided for the CPU, a col-
laboration with OVHCLOUD1 reveals that a production-
scale IaaS infrastructure with guaranteed resources—i.e.,
no oversubscription—succeeds to allocate most of the
memory of PMs, with 80 % of their PMs reporting less
than 35 GB of unallocated memory (cf. Figure 1). How-
ever, when including the amount of allocated memory
that remains unused by their customers, one can observe
that 75 % of their PMs have a potential of at least 35 GB
of available memory.

Furthermore, when considering the evolution of memory
allocation over time, one can observe that the memory ef-
fectively used by VMs remains stable. In particular, Figure 2
reports that 95 % of the PMs of OVHCLOUD infrastructure
report on a variation of at most 6 GB over a 24-hour window.

1https://www.ovhcloud.com/

https://www.ovhcloud.com/
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Fig. 2. CDF of memory allocation variations in a IaaS infrastructure.

b) Definition of the resource oversubscription ratio: An
oversubscription ratio is used to ”map” a quantity of physical
resources into virtual ones that can be exposed to third parties.
For example, ˙̇CPU and ˙̇RAM are the oversubscription ratios
commonly used by IaaS platforms to boost CPU and memory
utilization, defined respectively as:

˙̇CPUIaaS =
targeted(vCPUs)∑

p∈PM cores(p)
(1)

˙̇RAMIaaS =
targeted(vRAM)∑

p∈PM RAM(p)
(2)

where targeted(vCPU) and targeted(vRAM) are the number
of virtual resources that a cloud infrastructure aims to offer for
each PM, with regards to the number of cores and the quantity
of memory exposed by the associated hardware configuration.

When statically defined at the scale of a IaaS, these over-
subscription ratios rely on a high-level analysis of work-
load patterns and an accepted risk in terms of performance
degradation. However, a IaaS is a general-purpose computing
platform that can host a wide diversity of VMs, hence inducing
a different profile on resource utilization from one PM to
another. Therefore, we believe that the oversubscription ratios
should rather be estimated in Rreal-time and at the scale
of individual PM to minimize resource over-utilization while
maximizing VMs performance.

c) Insights from Azure-like IaaS platforms: IaaS bot-
tlenecks may differ, depending on VM flavors, distribution
and PM configuration. Based on Azure VM size distributions
and IaaS configurations, we studied potential oversubscription
limitations.

We applied Operations Research (OR) techniques to max-
imize the number of VMs for a given PM, while respecting
VMs size distribution reported by Azure. We considered a
share of 4 GB memory per thread as a PM configuration
baseline. Considering this PM configuration, and no resource
oversubscription, the CPU is the bottleneck. For example, a
256-cores PM with 1 TB of memory can host a maximum of
101 VMs for a total of 251 vCPUs and 481 GB of VRAM.

When increasing the CPU oversubscription to 2:1, more
memory is consumed, with a total of 949 GB of VRAM
provisioned across 204 VMs. A higher CPU oversubscription
would, however, induce memory overload.

In the current Azure configuration, dynamic CPU oversub-
scription based on the sum of VM percentile is unlikely to
improve resource usage compared to a static 2:1 ratio, as they
do not oversubscribe memory [47]. Moreover, the sum of VMs
percentiles is known to overestimate actual requirements [9].

d) Capturing the effective resource utilization of hosted
VMs: VMs hosted by a IaaS are considered black boxes
provisioned with a given amount of resources ordered by
the customers. Nevertheless, from the perspective of a PM,
system-level metrics can be monitored to better understand the
resource utilization of hosted VMs. In particular, actual CPU
and memory utilization can be observed using CPU usage and
RSS, respectively.

In addition to these raw usage metrics, each PM can also
monitor resource overload signals. A good indicator is the
scheduling latency extracted from Linux scheduler statistics
exposed by the Process File System (ProcFS) [33]. When
overloaded, CPU time slices granted to each hosted process
decrease, because the number of requested time slices is higher
than the number physically available on the system. As a
consequence, the scheduling latency—defined as the sum of
task wait times—increases. Regarding memory, we used page
faults count as memory signals. Major page faults are used
by the Linux Kernel to increase the virtual address space of a
given process. When overloaded, a new memory page requires
the writing of an existing page, which can be accessed shortly
after, resulting in a new page fault, thus increasing the overall
amount.

The combination of resource utilization metrics and re-
source overload signals are the key features to better under-
stand the effective exploitation of PMs by VMs. To achieve
optimal usage of computing resources, every PM is expected
to maximize its resource utilization metrics, while minimizing
resource overload signals. To do this, PMs require a better
understanding of their resource utilization profile by aggre-
gating metrics, commonly adopted by the state of practice.
Nevertheless, these resource profiles are particularly relevant
when the PM reaches a quiescent state—i.e., their resource
utilization is stable enough to be anticipated. We believe
that the quiescent state of a PM can better reflect the actual
resource availability and be exploited to increase the number
of hosted VMs by gradually increasing the oversubscription
ratio without triggering resource overload signals.

e) Dynamic resource utilization profiling of hosted VMs:
SLA violation prevention constrains cloud providers from
sizing their infrastructure according to usage peaks. Quantiles
and percentiles are commonly used to compute them at the
cluster scale [19], [20]. A cluster resource usage distribution
may be considered stable, making percentiles computation
practical, but inappropriate at the scale of a PM due to potential
instability. We consider it as an opportunity and leverage PM
specificities, caused by their inner unique workloads evolution,
to compute available resources using metrics closer to the real
PM usage.
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Fig. 3. Resource usage traces. Reference data is in grey, data seen as new in
red

Given that PM reactivity is also a challenge, metrics com-
puted at a PM scale must address two questions: how to ensure
confidence in usage metrics computed from a smaller sample
composed of a single PM? How to account for workload
evolution that can be observed at the PM level? Our solution
proposes to mitigate this issue with a quiescent indicator.
This indicator answers our two previous questions by ensuring
confidence in metrics computed on a quiescent PM and by
properly reacting to a PM with an evolving workload.

f) Identifying quiescent states: The quiescent state must
be independently estimated for each resource of interest: a PM
may have a stable memory usage, but an unstable CPU one. A
resource is considered as quiescent whenever its current usage
can be estimated from past observations. Thus, whenever
the workload changes significantly, we consider that the PM
resource becomes unstable and leaves its quiescent state.

To the best of our knowledge, the detection of a quiescent
state in IaaS PMs has never been extensively explored. It could
be aligned with more general approaches in time series data
mining [15], where similarity measures are utilized to identify
specific sequences in a series [1], [22]. However, there are
some major distinctions in our notion of quiescence. Particu-
larly, the observation of a pattern not previously encountered
is common, as VMs-based workloads often exhibit a chaotic
behavior [46] due to the variety of conditions affecting the
load of each VM. These new patterns may still be associated
with a quiescent state depending on their amplitude, as small
changes may not significantly impact the overall trend.

Therefore, we evaluated different detection heuristics under
multiple generated IaaS workloads. Under each workload,
samples of resource usage are continuously monitored and
attached to a time window of a fixed duration. Whenever a
time window ends, we evaluate the PM quiescent state by
comparing the current window samples to previous ones. To
better understand the evaluation, we illustrated four resource
usage traces from our workloads in Figure 3. We want to
compare if the latest received window (shown in red) may
be considered as quiescent with regards to the historical data
(in grey). The illustrated traces cover behaviors observed in
production, where cases n°1 and n°4 should be labeled as
quiescent, while cases n°2 and n°3 highlight a difference in
scale in the new window.

We now describe the stability detection heuristics we con-

sidered for this component of SCROOGEVM. As PM usage
is usually compromised in a Gaussian distribution [28], the
average classifier computes the new average value and com-
pares it to bounds defined by average and standard deviation
on historical data. It checks that the new average is included
in [old− σ; old+ σ].

Percentiles are also commonly used to evaluate both
VMs [19] and PM workloads [21] to account for exceptional
situations—i.e., the ones likely to provoke SLA violations.
The percentile classifier computes a given percentile on the
new data and checks the following bounds: [percentile(old)×
0.8; percentile(old)× 1.2].

The p-value classifier uses a common statistical test. We use
a null-hypothesis significance test to compute the probability
of obtaining the test result and reject it if it is below 5%.

Finally, our introduced quiescent classifier leverages a ma-
chine learning approach, using a Long Short-Term Memory
(LSTM) model, known for its performance in predicting com-
puting resource usage [20], [37]. As described in Algorithm 1,
this classifier trains a model MLSTM on [i−n; i−1] historical
windows (with n ∈ N, n ≥ 1) and then forecast the behavior
observed during the last completed window i. To do so, the
trained model MLSTM is used to predict values on two series.
The first one is on metrics set from the historical data, to
evaluate the baseline model accuracy. The second one is on
metrics extracted from window i. Then, the average error of
both predictions is computed using Root-Mean-Square Error
(RMSE). If the difference between the two predictions is
significant, the PM is considered as UNSTABLE. As RMSE
is expressed on the same scale as the unit being predicted,
we consider the difference to be significant if it exceeds a
percentage of the PM configuration. For example, a 256-cores
PM with 1% threshold would tolerate a maximum difference
of 2.56 cores between both projection average errors. In our
experiments, the 1% threshold was sufficient on large PMs.

Algorithm 1 Quiescent state detection algorithm
Input Historical dataset, last window
Output Quiescent state

1: MLSTM ← Generate model from historical dataset
2: forecasted← predict(MLSTM , historical set)
3: predicted← predict(MLSTM , last window)
4: δ ← |RMSE(forecasted)−RMSE(predicted)|
5: if δ > threshold then
6: return UNSTABLE
7: end if
8: return QUIESCENT

LSTM training phase can be tuned by so-called hyper-
parameters. We intentionally considered ”low” values to re-
duce the ability of the resulting model to anticipate previously
unseen behaviors. It also reduces the training phase to a few
seconds, making it practical for live usage. One should be
reminded that we do not use LSTM to predict future behaviors
but to detect the occurrence of unforeseen behaviors. More
specifically, we reduce the ability of LSTM to predict new
behaviors by setting a few hidden layers (less than 10) and a
low number of considered time steps.
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TABLE I
COMPARISON OF QUIESCENT LABELS RETURNED BY CLASSIFIERS

Case 1 2 3 4
Ground truth QUIESCENT UNSTABLE UNSTABLE QUIESCENT
Average UNSTABLE UNSTABLE UNSTABLE QUIESCENT
Percentile QUIESCENT QUIESCENT QUIESCENT UNSTABLE
p-value UNSTABLE UNSTABLE UNSTABLE UNSTABLE
LSTM QUIESCENT UNSTABLE UNSTABLE QUIESCENT

TABLE II
QUANTITATIVE EVALUATION OF QUIESCENT STATE CLASSIFIERS

Classifier Accuracy Precision Recall F-score
Average 0.68 0.8 0.52 0.63
Percentile 0.57 0.55 0.87 0.67
P-value 0.52 1.0 0.06 0.12
LSTM 0.88 0.93 0.84 0.88

We assess the LSTM classifier by comparing it to the
other classification techniques: average, percentile and p-value
based. Table I summarizes the labels returned by each classifier
when evaluating the red window of Figure 3. One can observe
that the average classifier often proves inadequate in labeling
a state of quiescence when the history exhibits an ascending
or descending trend, as evidenced in the first case, due to its
previous average value being biased. Similarly, the percentile
classifier tends to exhibit bias based on the number of values
that significantly deviate from the history within the latest
window. The conventional bounds commonly employed for
p-value hypothesis testing appear unsuitable in our specific
context. However, employing a LSTM based approach appears
to succeed in accurately detecting both unstable states.

To further assess these quiescent state classifiers, we con-
sider the state-of-the-art metrics adopted for the evaluation of
classifiers [40]. We labeled a sequence of windows covering
the CPU traces of a IaaS platform, from which are issued the
previous four examples, and compared this ground truth to the
labels returned by the four classifiers mentioned earlier. By
counting the number of true positives (TP ), false positives
(FP ), true negatives (TN ), and false negatives (FN ), we
assessed the following indicators:

• Precision: TP/(TP + FP )
• Recall: TP/(TP + FN)
• Accuracy: (TP + TN)/(TP + FP + FN + TN)

In addition, the F-score, defined as the harmonic mean of
the precision and the recall, can be used to get a perfor-
mance score. As reported in Table II, LSTM outperforms
other classifiers with a F-score of 0.88. In the following
sections, we therefore adopt it as the quiescent state detector
of SCROOGEVM.

g) Estimating the available vCPU & vRAM resources:
Two VMs requiring the same amount of resources may have
different workload patterns, due to the diversity of services
hosted by cloud infrastructures. When adopting a cluster-wide
static oversubscription, a pessimistic approach tends to be
adopted, leading to lower gains by potentially lowering the
resource utilization of PMs. Therefore, instead of assuming
the number of vCPUs and the available vRAMs are statically
defined, based on the number of physical resources and

the associated oversubscription ratio, our approach aims to
continuously adjust the number of virtual resources to be
offered by estimating their actual value depending on the PM
quiescent state.

N-SIGMA method introduced in [9] may be seen as partially
dynamic. In N-SIGMA, a fixed value of N is employed in
the computation of peak resource usage using the formula
cpu+N×σ, where cpu and σ. However, it should be noted that
the standard deviation, which is utilized in this computation,
is influenced to some extent by the quiescent state of the PM.
Nevertheless, relying solely on the standard deviation as a
proxy for resource stability is inadequate, as high amplitude
values should be regarded as stable if the observed pattern
is consistently reproduced over time. On a quiescent PM, the
amplitude previously seen is likely to be reproduced, making a
more optimistic peak prediction possible. We, therefore, intro-
duce a quiescent-aware computation of N . At its maximum,
it should handle worst-case scenarios observed in the Borg
context, where there is a relatively high VM churn (N = 5).
Conversely, the minimum value of N is chosen to detect
quiescent states while minimizing mispredictions. Through
empirical deduction, a value of N = 2 is determined. At
each time slice, the PM’s quiescent state is assessed, and
the streak of the PM is adjusted accordingly, being either
increased or decreased, based on predetermined values. This
dynamic adjustment of N allows SCROOGEVM for adaptive
peak prediction based on the current state of the PM.

On a quiescent PM, the ratio is deliberately decreased using
a low value, taking advantage of long-running VMs to improve
resource utilization. The rest of this article used a 0.1 step.

On an unstable PM, the ratio is increased asymmetrically.
However, it is important to consider that the associated stan-
dard deviation is likely to have increased in such cases.
Additionally, the set of VMs on a given PM is unlikely to
have been entirely refreshed since the previous observations. In
practical terms, a decreasing value of 0.2 was found sufficient
in our tests to mitigate the occurrence of most mispredictions.

Resources availability estimated by SCROOGEVM is, then,
mapped to PM-scale oversubscription ratios, ˙̇CPUPM and

˙̇RAMPM , with the following formula:

˙̇CPUPM =
provisioned(vCPUs) + ⌊available(cores)⌋∑

cores(PM)
(3)

˙̇RAMPM =
provisioned(vRAM) + ⌊available(RAM)⌋∑

RAM(PM)
(4)

where provisioned(vRES) captures the amount of currently
provisioned virtual resources and ⌊available(RES)⌋ the iden-
tified unused resources.2

Dynamic oversubscription can leverage existing cloud plat-
forms and monitoring infrastructure to be easily implemented.
We assume that proposing a new VM orchestrator is out of
the scope of this article, and we rather focus our contribution
on the evaluation of PM-scale oversubscription ratios, which
can eventually be leveraged by any legacy or new scheduler.
Beyond state-of-the-art scheduling policies, we believe that

2RES and vRES refers indifferently to CPU/RAM and vCPU/vRAM,
respectively.
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our greedy oversubscription approach paves the way for the
design of new policies that privileges the PM with the highest
oversubscription ratio and/or the ones with the longest qui-
escent state, hence offering a more natural consolidation of
cloud resources.

B. Implementation of SCROOGEVM
Our contribution, SCROOGEVM, involves a lightweight

resource probe deployed on each PM. Metrics of interest are
retrieved from three main sources: the virtualization platform
(using libvirt in our case), ProcFS, and performance
counters. Files of interest include /proc/schedstat and
/proc/[pid]/stat, which expose scheduler latency and
page fault metrics, respectively. Page faults are not extracted
from the associated performance counter, as the combination
of both major and minor faults does not permit to recognize
an overload situation. Monitoring of ProcFS metrics requires
retrieving the VM PIDs, which is done via cgroupfs. For a
given VM, reported values are the sum of its PIDs values.

Probe data is then exposed and processed by a
PROMETHEUS monitoring solution [44] and updated peri-
odically. Aggregation, storage, and analysis steps can be
performed on a dedicated node to address scalability issues
in production environments. The current implementation of
SCROOGEVM reports on the estimated PM resources as a file,
periodically updated, which can be parsed by any third-party
orchestration solution.

Figure 4 illustrates the integration of SCROOGEVM in a
IaaS platform, like OPENSTACK, to guide the deployment of
new VMs towards the least oversubscribed PMs and preserve
the performance of hosted services. This integration leverages
SCROOGEVM to maintain an up-to-date oversubscription ratio
per PM, hence offering a more dynamic indicator to select the
most suitable PM that can satisfy a given VM deployment
request. In this configuration, the resource oversubscription
ratios (incl. vCPU and vRAM) are independently adjusted if
a PM is in a quiescent state, which leads to a more careful
and realistic estimation of resources availability that can be
reported to the control plane. The quiescent state of each
PM is periodically assessed at the end of time windows
(of a configurable duration). That is, SCROOGEVM uses the
trained LSTM model to predict the vCPU and vRAM usages
and compare them against recent history as described in
Algorithm 1.

IV. EMPIRICAL ANALYSIS

Cloud simulators, such as [9] and [13], lack of valu-
able metrics for implementing greedy oversubscription. We,
therefore, consider a more empirical protocol to study the
impact of a set of parameters on dynamic oversubscription
computation. Our protocol is built upon the IaaS workload
characteristics of Microsoft Azure [19] to consider a realistic
cloud infrastructure.

A. Experimental Settings & Evaluation Protocol

We evaluated various ratios of oversubscription with differ-
ent workload intensities by gradually increasing the number

Worker nodes

PM

Control plane

ScroogeVM

PM
Check PMx quiescence

Adjust vCPU & vRAM 
oversubscriptions

of PMx

vCPU & vRAM 
oversubscription

per PM

List all PMs fitting 
(vCPU, vRAM)d request

>

PM1

VMa VMb

VMc

Incoming VMd 
request(vCPU, vRAM)

IaaS scheduler

Order PMx per lowest 
oversubscriptionDeploy VMd

Train quiescence predictor

LSTM

Fig. 4. Overview of the integration of SCROOGEVM in a IaaS platform to
guide the deployment of new VMs

of VMs, while monitoring different metrics. In our experi-
ments, CPU resources did not enable any specific optimization
mechanisms. Memory resources implemented a ballooning
mechanism that periodically reduces VM configurations to
their observed max peak memory usage for a few seconds
before restoring it. In our experiments, this principle was
sufficient to reduce VM RSS without any noticeable impact
on their performance.

a) Input workload: We developed a realistic workload
generator to inject a VM workload according to the IaaS
statistics reported in the Microsoft Azure dataset [19]. The
scripts obtained from this generator configure a representative
workload of a PM hosting a set of production-scale VMs. With
this method, VMs are deployed on a dedicated PM, allowing
us to monitor the metrics of interest for SCROOGEVM. Our
generator adapts VMs size distribution to a specific PM con-
figuration by providing a list of required VMs and workload
scripts.

The workload intensity of each VM is generated from the
CPU utilization characteristics of the Microsoft Azure dataset.
To avoid unrealistic steady load caused by usual benchmarks,
we periodically reload them with different parameters. Bench-
mark parameters used are computed based on a targeted
CPU intensity. This CPU intensity changed through time by
randomly selecting values from a Gaussian distribution around
the targeted CPU intensity. While we cannot ensure that a
selected benchmark parameter value will exactly reach the
targeted CPU intensity, we roughly ensure that the order of
magnitude is reached based on empirical analysis.

According to Azure, 30% of long-lasting VMs can be
estimated as having a diurnal usage pattern, we also take it
into account using the same proportion by reproducing usage
patterns through time. The effective duration of an ”hour”,
called in our context slice, and a ”day”, called a scope, can
be modified to simplify the experiments. Specified arrival rate
and VMs lifetime characteristics are reproduced in our scripts
based on these settings.

b) Applications under study: Our benchmark workload
relies on heterogeneous applications to emulate the diversity
of situations covered in a cloud infrastructure. Concretely,
we deploy applications from the DeathStarBench as a
representative microservices architectures [24], TPC-C for
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Fig. 5. Scheduler latency impact on VM performance (log-scale axes)

databases workloads, a WordPress application, batch using
CPU-intensive workloads, and idle VM. When applicable,
workload generation uses related benchmarking tools, which
can be executed remotely or locally.

c) Metrics of interest: In addition to the system metrics,
we also monitored the performances obtained from applica-
tions hosted by the different VMs for validation purposes.
Figure 5 depicts the evolution of hosted application perfor-
mance through their 90th percentile response times. A first set
of VM hosted a PostgreSQL database stressed under a TPC-
C benchmark. A second set considers a DeathStarBench
application SocialNetwork deployed with the ”read home
timeline” benchmark. Response times of all the VM hosted on
a PM are aggregated in the graph. From the PM point of view,
scheduler metrics were retrieved and a ratio was computed
based on the scheduler latency and processes runtime. Due to
heterogeneous benchmarks, performance degradations do not
follow the same pattern, but one may observe that the lower the
scheduler latency, the better application performance. We also
considered metrics, such as tail latency, requests throughput,
and errors with similar observations. We, therefore, consider
the scheduler latency as a relevant metric to assess VMs
application performance from the host perspective in a black-
box environment, like a IaaS platform. Impact on batch
performance was not particularly investigated as we expected
it to be similarly affected by an overall platform performance
degradation.

d) Hardware settings.: In our experiments, we used the
PM described in Table III.

TABLE III
HARDWARE CONFIGURATION OF IAAS PM

Processor AMD EPYC 7662 64-cores ×2
Total threads 2× 64 cores× 2 hyperthreads = 256
Memory 1 TB
Operating System Linux Redhat 8.6
Virtualization Platform QEMU & KVM 7.1

Figure 6 summarizes the profile of an experiment executed
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Fig. 6. Overview of a profile of our collected metrics

from our workload generator. An Azure-like workload was
incrementally injected while maintaining the VMs distribution
and activity percentage. As a consequence, the number of
VMs increases, while resource usage (such as CPU and
memory) reaches their PM configuration limits. The balloon-
ing mechanism previously described allowed SCROOGEVM
to oversubscribe memory up to 3:1 and CPU up to 7:1.
The workload was intentionally generated with unrealistic
oversubscription ratios to investigate precursor indicators of
an overloaded system.

B. Impact of the Sampling Period

The sampling period impacts the metrics volume and its
associated processing capacity. As memory is exposed as a
quantity, it is not subject to the smoothing effect. The main
risk may be to miss potential peaks by only considering the
last reported amount of memory, which is unlikely due to
the RSS being generally linear. A more sudden change may
be caused by a ballooning reduction window, with different
effects depending on its conservative strategy level: if the
reduction is exaggerated, a given VM on a PM may report an
underestimated RSS. In our experiments, the sampling period
did not have any significant impact on its oversubscription
ratio.

CPU utilization is typically reported as a percentage of the
PM CPU time to the corresponding elapsed time. Therefore,
a higher window length tends to smooth out extreme values
and avoid overreaction. A longer window duration, therefore,
leads to an increase in the estimated available quantities, as
well as the associated oversubscription ratio. In the rest of this
article, we used a 5s aggregation window.

C. Impact on the VM Performances

In the context of a IaaS, performances from the perspective
of the cloud provider can only be evaluated as a black box, as
no access to VM workload performance indicators is granted.
To do so, we used the resource overload signals introduced
in Section III-A. Technically, system-wide scheduler latency
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Fig. 7. CPU performance comparison for 2 workloads (log-scale Y axis)

is exposed by the Linux kernel. When the operating system is
under-loaded, tasks assigned to the cores do not significantly
affect the latency. We also consider runtime statistics to
compute the average scheduling latency overhead. This is a
more comprehensive metric to quantify an overload. One may
potentially assess an overload severity considering latency
evolution. Figure 7 compares the latency on two different
workload intensities. Both workloads start from a ˙̇CPU =
1:1 oversubscription baseline composed of VMs distributed
in terms of size and workload intensity, according to the
Microsoft Azure dataset. The heavy one was progressively
increased every two virtual days using 8-cores VMs with CPU-
intensive tasks simulating aperiodic batch activities using up
to all provisioned resources. The light workload was increased
at the same frequency, with the same VM size. However,
two-thirds were idle, and one-third were implemented with
various workloads (including databases, micro-services, static
websites, and batches) consuming less than the provisioned re-
sources. Despite having the same VMs distribution, the latency
distribution from the ˙̇CPU = 2:1 oversubscription is degraded
on the heavy workload, compared to the light one. This can
be deducted from a higher average value (in nanoseconds),
but also from a larger dispersion. The light workload had no
performance degradation, due to CPU-slicing competition at
this oversubscription ratio. It did not exceed a 10% scheduler
latency degradation until reaching ˙̇CPU = 3.5:1 (not visible in
the graph). In our experiments, this threshold was unnoticeable
from the VMs perspective.

When it comes to memory, page faults evolve differently
in an oversubscribed scenario. In our context, VMs RSS was
periodically reduced, based on their usage profiling. Retrieved
pages were not allocated to specific workloads, allowing any
other VM process to use them, or allowing the probe to
increase the amount of unused resources. As previously, we
considered light and heavy memory workloads in Figure 8.
Starting from ˙̇RAM = 1:1 (according to Microsoft Azure
distribution), we incremented the heavy workload with 2 VMs
of 16 GB every two virtual days, which simulated aperi-
odic memory-intensive activities consuming all their allocated
memory. Moreover, no ballooning was enabled, leading to a
never-decreasing linear behavior in RSS. The lighter workload
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Fig. 8. Memory performance comparison for 2 workloads (log-scale Y axis)

used an Azure-like VMs distribution that did not overload CPU
resources and ballooning was enabled. Major page faults are
retrieved from all active VMs using their PIDs file systems.
The sum of major page faults of all VMs is reported for
different oversubscription ratios. For the heavy workload, this
ratio could not be increased more than ˙̇RAM = 1.6:1, due to
an Out Of Memory (OOM) situation. On average, less than one
major page fault occurs during our aggregation window (5 s) in
an under-loaded situation. This average increases slightly in an
overloaded PM, as outliers increase by an order of magnitude,
with some reaching thousands of major page faults. Since
there was no significant resource overload signal on the last
oversubscription ratio, the extreme values must be considered
when studying memory oversubscription. ˙̇RAM = 1.4:1 was
the last healthy memory oversubscription ratio for the heavy
workload, while the most representative workload was able to
reach a ratio of ˙̇RAM = 2.4:1.

The performance feedback at the scale of a PM can be
integrated by the cluster when the oversubscription ratio is
periodically incremented. For example, the IaaS infrastructure
can decide to balance performances across PM and, therefore,
uses this feedback to prioritize the increase of oversubscription
ratios for PM that are the least impacted by performance
variations. Alternatively, when combined with application-
level performance metrics, the performance feedback can also
be used to tune Service-Level Objective (SLO) to make sure
that SLA are not violated by the increase of oversubscription
ratios.

V. VALIDATION

We evaluated the greedy oversubscription strategy imple-
mented by SCROOGEVM with other dynamic oversubscription
estimation mechanisms.

The first method called doa, implements the Dynamic Over-
subscription ratio Adjustment (DOA) mechanism described
in [51]. DOA increases available resources by a fixed ratio
of 5% of PM configuration until a 95% max resource usage is
reached. Once this threshold is reached, the available resources
are reduced to 50% of the PM configuration. The second
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method nsigma refers to N-SIGMA, configured with N = 5
as recommended in [9]. The third method is Borg-default like
(borg), which mimics a static oversubscription mechanism
where deployed VMs are estimated to let 10% of their
resources unused. This percentage, corresponding to a 1.1:1
oversubscription, is based on the empirical study from [9]. The
fourth method, RC-like (rclike), calculates the used resources
by summing up the percentiles of hosted VMs. Specifically, the
99th percentile is employed based on the analysis presented
in [9].

Given that the aforementioned oversubscription strategies
primarily focus on the CPU resource, we conduct a compar-
ative evaluation of SCROOGEVM against these strategies by
considering CPU traces derived from different IaaS workload
traces.

For any given CPU usage trace, strategies are compared
based on their predictions. At the end of each iteration, the
discrepancy (denoted as δ) between the predicted resource
usage at the beginning of the iteration and the actual usage
observed during the period is computed. A positive δ reflects
a conservative approach lowering the available resources. We
label such a situation as a misprediction and we aim at mini-
mizing mispredictions to improve the accuracy of the strategy.
On the other hand, a negative δ reflects the overestimation of
available resources, thus imposing performance penalties to
hosted VM. This situation is referred to as a violation. Our
objective is to avoid such violations. In addition to the two
prediction accuracy metrics, we also consider a third metric
that focuses on the evolution of predictions. Specifically, we
focus on the ”reductions” in resources estimated as free over
time. The objective is to keep these reductions to a minimum
to ensure stability when deploying new VMs.

Figure 9 depicts the performances of each strategy on a
IaaS workload reflecting a decreasing trend in the number of
allocated resources (by reducing the number of provisioned
VMs). The accumulated misprediction is used to emphasize
underused CPU resources (expressed as cores) over a specific
duration. Although oversubscription strategies may exhibit
similar estimations at a specific iteration, the cumulative im-
pact of even small variations can have significant consequences
over time. Unsurprisingly, borg static oversubscription of 1.1
is one of the most pessimistic mechanisms. On the other hand,
nsigma and rclike methods demonstrate similar predictions.
It is noteworthy that the SCROOGEVM approach consistently
exhibits the lowest misprediction.

Table IV reports on the detailed cumulated metrics for
each strategy. Mispredictions, violations, and reductions are
expressed as ratios of PM configuration (cf. Table III).

The high violation rate of DOA results from the heuristics
that increase available resources as long as the usage threshold
is not met. Resulting numbers are therefore unrealistic if the
scheduler did not fully allocate the resources previously seen
as available, which is highly dependent on VMs arrival rate.
Therefore, the resources seen as available may be underes-
timated, leading to high violations. It can be observed that
SCROOGEVM achieves the lowest misprediction ratio with-
out any violations, while also maintaining similar reduction
phases compared to the other strategies. The oversubscription
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Fig. 9. Cumulated mispredictions (cores) under decreasing CPU workload

TABLE IV
COMPARISON OF OVERSUBSCRIPTION STRATEGIES (DECREASING CPU)

Strategy mispredictions violations reductions
borg 6.8 0.0 0.2
doa 18.4 4.1 0.0
nsigma 5.0 0.0 0.3
rclike 5.0 0.1 0.2
scroogevm 4.2 0.0 0.3

ratios calculated from the SCROOGEVM approach result in a
misprediction gain of 0.8 compared to the nsigma strategy.
This translates to a gain of 204 cores, concerning the PM
settings, while maintaining realistic ratio values.

The behavior of oversubscription mechanisms can vary
when applied to an IaaS workload that exhibits an increasing
trend. This is primarily due to the lack of historical data avail-
able for newly deployed VMs. Consequently, strategies based
on VM metrics tend to be more conservative, as evidenced by
borg and rclike in Figure 10. In contrast, strategies based on
PM metrics—nsigma and scroogevm—demonstrate lower
mispredictions.

Under an increasing trend, the performance of different
strategies is compared in Table IV. The presence of long-
running VMs contributes to higher oversubscription ratios.
This is primarily due to the asymmetry between the calculation
of used resources and available resources. Used resources
are typically estimated from actual usage, while available
resources are proposed based on the requested amount (e.g.,
at a 1:1 ratio) for newly provisioned resources. Consequently,
the higher number of long-running deployed resources leads
to increased oversubscription ratios because their impact is
relatively lower compared to non-deployed resources. When
comparing the mispredictions ratios, results highlight the ef-
fectiveness of the SCROOGEVM approach, which achieves a
gain of 512 cores (twice the PM settings) compared to the
nsigma strategy, without any violations.

Overall, one can observe that the solution implemented
by SCROOGEVM outperforms the state of the art of over-
subscription strategies by delivering a greedy mechanism
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Fig. 10. Cumulated mispredictions (cores) under increasing CPU workload

TABLE V
COMPARISON OF OVERSUBSCRIPTION STRATEGIES (INCREASING CPU)

Strategy mispredictions violations reductions
borg 15.7 0.0 0.0
doa 23.2 22.4 0.3
nsigma 5.7 0.0 0.2
rclike 13.3 0.0 0.0
scroogevm 3.7 0.0 0.2

that accurately estimates the amount of available CPU re-
sources that can be recycled and further provisioned, by a
cloud infrastructure. By leveraging quiescent state detection,
SCROOGEVM only increases PM oversubscription ratio when
available resources are expected to not be required in the future
for its set of VMs.

We believe that the long-term gains can be significant. When
considering N-SIGMA as the baseline maximizing the number
of allocated VMs and minimizing the number of unused cores,
one can observe that SCROOGEVM succeeds in deploying an
average of 3 additional VMs per server, and in reducing the
number of unused cores by 16%. Under favorable conditions
(increasing trend), SCROOGEVM even improves the state-of-
the-art by up to 7 additional VMs per server, with a reduction
of 35% of unused cores, without SLA violation. In contrast
to N-Sigma, our overhead primarily arises from the LSTM
model training, taking approximately 1 second in our tests on
a server without a discrete GPU unit. This level of overhead
suggests practical viability for production contexts.

VI. CONCLUSION

In this article, we propose a novel approach, named
SCROOGEVM,3 to implement a greedy resource oversub-
scription strategy at the scale of individual PMs. Instead of
configuring a static and cluster-wide ratio, we propose to
dynamically estimate the optimal oversubscription ratio per
PM, while maintaining performance goals. This approach,
decoupled from the resource optimization of a given IaaS

3https://github.com/jacquetpi/scroogevm

platform, allows SCROOGEVM to be generic and deployed
with most cloud schedulers operating a IaaS. We evaluated
SCROOGEVM with an IaaS workload from Microsoft Azure
and reported on potential gains exceeding state-of-the-art
strategies.

Short-term perspectives on this work include the consider-
ation of more diverse datasets to recommend to public and
private cloud operators parameters according to their work-
loads. Exploring various performance objectives aligned with
the diverse premium VM policies offered by Cloud providers
is a potential future direction. We also aim to improve over-
subscription assessment with complementary VMs profiling
operation. The inclusion of SCROOGEVM in a cloud stack,
like OPENSTACK, is also of particular interest to demonstrate
the benefits of greedy oversubscription for a cloud orchestrator.
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