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Abstract

The combined effects of the cellular environment on proteins led to the defini-

tion of a fifth level of protein structural organization termed quinary structure.

To explore the implication of potential quinary structure for globular proteins,

we studied the dynamics and conformations of Escherichia coli (E. coli)

peptidyl-prolyl cis/trans isomerase B (PpiB) in E. coli cells. PpiB plays a major

role in maturation and regulation of folded proteins by catalyzing the cis/trans

isomerization of the proline imidic peptide bond. We applied electron para-

magnetic resonance (EPR) techniques, utilizing both Gadolinium (Gd(III)) and

nitroxide spin labels. In addition to using standard spin labeling approaches

with genetically engineered cysteines, we incorporated an unnatural amino

acid to achieve Gd(III)-nitroxide orthogonal labeling. We probed PpiB's

residue-specific dynamics by X-band continuous wave EPR at ambient temper-

atures and its structure by double electron–electron resonance (DEER) on fro-

zen samples. PpiB was delivered to E. coli cells by electroporation. We report a

significant decrease in the dynamics induced by the cellular environment for

two chosen labeling positions. These changes could not be reproduced by add-

ing crowding agents and cell extracts. Concomitantly, we report a broadening

of the distance distribution in E. coli, determined by Gd(III)–Gd(III) DEER

measurements, as compared with solution and human HeLa cells. This sug-

gests an increase in the number of PpiB conformations present in E. coli cells,
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possibly due to interactions with other cell components, which also contributes

to the reduction in mobility and suggests the presence of a quinary structure.

KEYWORD S

DEER, in-cell EPR, PpiB, quinary structure, site-directed spin labeling, unnatural
amino acid

1 | INTRODUCTION

In the field of structural biology, it is currently accepted
that the intracellular environment, rich with ions, metab-
olites, and macromolecules, can affect the stability, fold-
ing, and function of proteins via macromolecular
crowding and different types of interactions with cellular
components (Cohen & Pielak, 2017; Ellis, 2001; Freedberg
& Selenko, 2014; Guin & Gruebele, 2019; Plitzko
et al., 2017; Rivas & Minton, 2018; Zhou et al., 2008). The
combined effects of the cellular environment on individ-
ual proteins led to the definition of a fifth level of protein
structural organization termed quinary structure (Cohen
& Pielak, 2017; Guin & Gruebele, 2019; Rivas & Minton,
2018), which appears to have coevolved with protein
surface properties to ensure optimal functionality
(McConkey, 1982). Extensive theoretical (McGuffee &
Elcock, 2010; Rivas & Minton, 2016, 2018; Yu et al., 2016)
and experimental efforts have been directed toward
understanding and elucidating quinary structure effects
for different proteins (see recent reviews (Cheung &
Gasic, 2018; Cohen & Pielak, 2017; Guin & Gruebele,
2019; Qin & Zhou, 2017; Rivas & Minton, 2018). To under-
stand the combined effects of the cellular milieu on pro-
tein structure, dynamics, stability, and interactions, in-cell
measurements are often combined with in vitro measure-
ments under controlled artificial conditions. Nonetheless,
the number of in-cell studies is still low owing to the mul-
tiple challenges the biophysical techniques experience
when applied to cells (Plitzko et al., 2017). Accordingly,
cell lysates are often used as surrogate models, yet they
often fail to replicate the cellular effects (Dalaloyan
et al., 2019; Rivas & Minton, 2018).

To date, most in-cell structural and dynamic studies
of proteins employ nuclear magnetic resonance (NMR)
(Luchinat & Banci, 2017, 2022; Theillet, 2022), and to a
lesser extent, fluorescence spectroscopy (Gruebele &
Pielak, 2021; König et al., 2021). Such studies reported on
protein folding and stability in cells (Danielsson
et al., 2015; Dhar et al., 2011; Ebbinghaus et al., 2010;
Gnutt et al., 2019; Guo et al., 2012; Guzman et al., 2014;
Monteitha & Pielak, 2014; Schlesinger et al., 2011;
Sukenik et al., 2017), structural changes of disordered
proteins (Dedmon et al., 2002; Phillip et al., 2012; Theillet
et al., 2016), protein association, and the stabilization of

oligomeric assemblies (König et al., 2015; Kwapiszewska
et al., 2019; Margineanu et al., 2016). More recently, an
in-cell NMR study reported that loop conformational
dynamics in a globular protein can be modified through
weak interactions (Wang, Song, et al., 2023). The addition
of other biophysical methods that can provide structural
and dynamic information on proteins in cells is essential
for gathering the volume of experimental results required
for understanding and establishing the quinary structure
concept.

Significant progress in developing suitable spin labels
and labeling approaches in the last decade has turned
electron paramagnetic resonance (EPR) spectroscopy into
an attractive method for in-cell exploration of protein
structure and dynamics (Bonucci et al., 2020; Galazzo
et al., 2022; Giannoulis et al., 2021; Goldfarb, 2022;
Hänsel et al., 2014; Igarashi et al., 2010; Jassoy et al.,
2017; Martorana et al., 2014; Shenberger et al., 2023;
Wang, Fang, et al., 2012). Herein, we applied continuous-
wave (CW) EPR and double-electron electron resonance
(DEER) methods to explore a potential manifestation of
quinary structure on a well-structured globular protein,
Escherichia coli (E. coli) peptidyl-prolyl cis/trans isomer-
ase B (PpiB) in its native milieu, E. coli cells (Edwards
et al., 1997). PpiB is an important chaperone that plays a
key role in the maturation and regulation of folded pro-
teins. PpiB regulates protein folding by catalyzing the cis/
trans isomerization of the proline imidic peptide bond,
which often affects the activity and structure of many
folded proteins in the cell (Klein et al., 2020). PpiB has
been extensively studied in the past by NMR under
in vitro conditions (Abdelkader et al., 2021; Cao
et al., 2014; Guignard et al., 2002; Jia et al., 2009; Orton
et al., 2021; Ozawa et al., 2004; Ozawa, Dixon, &
Otting, 2005; Ozawa, Headlam, et al., 2005; Qianzhu
et al., 2020; Su et al., 2011; Takeda et al., 2011;
Welegedara et al., 2018; Wu et al., 2007) and recently it
has been used as a model protein for developing in-cell
DEER approaches (Yang, Pan, et al., 2020). In these stud-
ies, the labeled PpiB was delivered into HeLa human
cells, which is not its native environment.

The majority of in-cell EPR structural studies of pro-
teins and nucleic acids have been followed by DEER dis-
tance measurements using nitroxide (Azarkh et al., 2013;
Azarkh, Okle, Eyring, et al., 2011; Azarkh, Okle, Singh,

2 of 16 BEN-ISHAY ET AL.

 1469896x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pro.4903 by C

ochrane France, W
iley O

nline L
ibrary on [19/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



et al., 2011; Cattani et al., 2017; Collauto et al., 2020;
Igarashi et al., 2010; Joseph et al., 2015, 2019;
Karthikeyan et al., 2018; Krsti�c et al., 2011; Singewald
et al., 2019), Gadolinium (Gd(III)) (Azarkh et al., 2019;
Dalaloyan et al., 2019; Galazzo et al., 2022; Martorana
et al., 2014; Qi et al., 2014; Yang et al., 2017, 2018), and
trityl (Fleck et al., 2020; Jassoy et al., 2017; Yang, Pan,
et al., 2020) spin label pairs. Owing to the sensitivity of
nitroxide spin labels to cellular reduction (Azarkh, Okle,
Eyring, et al., 2011; Krsti�c et al., 2011; Wang, Zhang,
et al., 2023), efforts have been made to design and synthe-
size nitroxide spin labels that are reduction resistant
(Bleicken et al., 2019; Collauto et al., 2020; Jagtap
et al., 2015; Karthikeyan et al., 2018) concurrently to the
development of delivery methods that rely on a minimal
time for cell recovery for E. coli (Pierro et al., 2022;
Torricella et al., 2021). Moreover, endeavors to achieve
in-cell cytosolic labeling are under development (Jana
et al., 2023; Kugele et al., 2021; Schmidt et al., 2014;
Widder et al., 2020). Although Gd(III) and trityl spin
labels are preferred over nitroxide spin labels, owing to
their higher in-cell stability, they lack the ability to pro-
vide information about the spin label dynamics, which is
readily obtained with nitroxides. In principle, orthogonal
nitroxide-Gd(III) labeling of a protein can provide in a

single sample both structural and dynamic information
(Garbuio et al., 2013).

In this work, we employed several labeling
approaches to explore the residue-specific reorientational
dynamics as well as structural characteristics of PbiB in
E. coli cells as compared with solution. This includes
nitroxide-Gd(III) orthogonally labeled PpiB generated via
the introduction of an unnatural amino acid (UAA) resi-
due conjugated to a Gd(III) label (Abdelkader et al., 2015;
Garbuio et al., 2013) and a genetically encoded cysteine
residue attached to a shielded nitroxide label termed
M-TETPO (Karthikeyan et al., 2018) (Figure 1).
M-TETPO has been shown to be less prone to cellular
reduction compared with the standard nitroxide spin
labels (Karthikeyan et al., 2018; Wang, Zhang,
et al., 2023). In addition, singly and doubly nitroxide-
labeled PpiB variants, as well as a doubly labeled Gd(III)
one, were used for control and comparison purposes. The
selected labeling sites in each variant were situated on a
loop and a helix, both solvent-exposed, to explore differ-
ent structural elements. We found that PbiB undergoes a
considerable reduction in the residue-specific mobility in
the cell for both labeling positions, as compared with
solution conditions. Furthermore, the E. coli in-cell
Gd(III)–Gd(III) distance distribution was broader than in

FIGURE 1 Peptidyl-prolyl

cis/trans isomerase B (PpiB)

crystal structure and spin labels

used in this study. (a) Crystal

structure of PpiB (PDB:2NUL)

(Edwards et al., 1997), showing

the chosen labeling sites of

PpiB(K25C/E153C) and

PpiB(K25C/V155O, where O

stands for pyrro-L-lysine [Pyl])

variants, along with the expected

distances from the

corresponding Cα carbons,

obtained from PyMOL software.

(b) Genetically engineered

cysteine (cyan), with conjugated

spin label R, and the

incorporated Pyl (dark green)

with its sidechain coupled to the

Gadolinium (Gd(III)) label.

(c) The spin label agents used in

this work for conjugation via a

cysteine residue.
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solution and in HeLa cells samples. This indicates the
presence of a larger number of PpiB's conformations in
E. coli probably due to specific or nonspecific interactions
with cellular partners, which subsequently, contribute to
the restriction of the protein dynamics and suggest the
existence of PpiB's quinary structure.

2 | RESULTS

2.1 | The labeled samples

Following earlier work (Yang, Pan, et al., 2020), we
decided to investigate the double-cysteine PpiB variant
K25C/E153C, where K25C is located on a helix and
E153C on a loop motifs (Figure 1). These sites were
labeled with pairs of BrPSPy-DO3A-Gd(III) (DO3A-Gd
(III)) (Yang et al., 2018), M-TETPO (Karthikeyan
et al., 2018), and 3-maleimido-proxyl (3-MSL) spin labels
(Figure 1) and these are referred to as PpiB(K25C/
E153C)-DO3A-Gd(III), PpiB(K25C/E153C)-M-TETPO
and PpiB(K25C/E153C)-3-MSL, respectively. To imple-
ment the orthogonal Gd(III)-nitroxide labeling approach
and to facilitate the comparison with the above men-
tioned samples, we generated an additional PpiB variant,
replacing V155 on the loop with the alkene-containing
lysine-based pyrrolysine (Pyl, O) UAA, referred to as
PpiB(K25C/V155O). The UAA residue was then tethered
to a Gd(III) spin label (Figure 1b) via “click” chemistry
utilizing the Cu(I)-catalyzed alkene/azide cycloaddition
reaction (Figure 1) (Milles et al., 2012). The produced var-
iants were characterized by differential scanning fluorim-
etry (nano-DSF) and mass spectrometry Time-of-Flight
Electrospray Ionization mass spectrometry (TOF-IES)
(Figures S1 and S2). Subsequently, two nitroxide-Gd
(III) samples were prepared: One labeled with
M-TETPO, which is suitable for in-cell measurements
(Karthikeyan et al., 2018), referred to as PpiB(K25C/
V155O)-Azido-Gd(III)/M-TETPO, and the other with S-
(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl
methanesulfonothioate (MTSL), termed PpiB(K25C/
V155O)-Azido-Gd(III)/MTSL, which was used as a refer-
ence. In addition, we prepared a sample of PpiB(K25C/
V155O)-M-TETPO, labeled only with M-TETPO to explore
specifically the nitroxide dynamics of the cysteine posi-
tioned on a helix at position 25.

2.2 | CW EPR and DEER on solution
samples

We began characterizing the PpiB variants in solution
and measured room temperature X-band CW EPR to

examine the local dynamics at the two nitroxide labeling
sites. The spectrum of PpiB(K25C/E153C)-M-TETPO
(Figure 2) is typical of a fast rotational diffusion for both
labeling sites. This was further confirmed by the spec-
trum of PpiB(K25C/V155O)-M-TETPO, having a spin
label only at position 25 (Figure 2). Surprisingly,
PpiB(K25C/V155O)-Azido-Gd(III)/M-TETPO exhibited
an EPR spectrum which is a superposition of M-TETPO
undergoing fast and slow motion, with a dominant popu-
lation of the latter (Figure S3). The same behavior was
observed for PpiB(K25C/V155O)-Azido-Gd(III)/MTSL.
We do not know the reason for the change in the nitrox-
ide mobility; however, we speculate that it originated
from the presence of a Cu(II)-His6 tag complex in
the nitroxide's vicinity, formed during the click
chemistry reaction (more details in the Supplementary
Information).

Next, we performed W-band Gd(III)-nitroxide DEER
distance measurements on orthogonally labeled PpiB
(K25C/V155O). The distance distribution serves as a signa-
ture of the protein conformation and can be compared with
earlier reports (Yang, Pan, et al., 2020). The DEER traces
and the corresponding distance distributions of
PpiB(K25C/V155O)-Azido-Gd(III)/M-TETPO reveal a rela-
tively narrow distance distribution despite the relatively
long Gd(III) tether (Figure 1). The maximum distance dis-
tribution, at 4.5 nm, is in good agreement with earlier
Gd(III)-Gd(III) DEER reports (Yang, Pan, et al., 2020). The
modulation depth of 12% confirms the high labeling effi-
ciency of M-TETPO based on earlier measurements
acquired on our spectrometer (Jash et al., 2022). The
PpiB(K25C/V155O)-Azido-Gd(III)/MTSL showed a slightly

FIGURE 2 Room temperature X-band continuous-wave

electron paramagnetic resonance (EPR) spectra of M-TETPO

doubly labeled peptidyl-prolyl cis/trans isomerase B (PpiB) (K25C/

E153C) (cyan) versus M-TETPO singly labeled PpiB(K25C/V155O)

(dark green) along with the corresponding crystal structure of PpiB

(PDB:2NUL) (Edwards et al., 1997) with the M-TETPO rotamers at

the selected labeling sites obtained with MtsslSuite online available

software (Hagelueken et al., 2013).
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shifted distance distribution, with a maximum at 4.7 nm,
which we attribute to the different linkers of the two nitrox-
ide labels, and a modulation depth (9.6%) slightly lower
than with M-TETPO. As control experiments, PpiB(K25C/
E153C)-M-TETPO and PpiB(K25C/E153C)-DO3A-Gd(III)
were measured as well (Figure 3). As expected, both spin-
labeled variants exhibit a similar distance distribution cen-
tered at 4.5 nm. These results show that although the nitr-
oxide's motional freedom was affected by the Gd(III)
labeling, the obtained distance distributions remained as
expected and proved that the PpiB structural elements
probes by these labeling sites were not disturbed. This sup-
ports our suggestion of the His6 tag involvement in the
restriction of the nitroxides' motion.

2.3 | In-cell EPR and DEER

So far, most in-cell EPR studies have been carried out on
proteins delivered by electroporation (EP) into mamma-
lian cells (Dalaloyan et al., 2019; Jassoy et al., 2017;
Martorana et al., 2014; Theillet et al., 2016; Yang
et al., 2017, 2018, 2019; Yang, Chen, et al., 2020; Yang,
Pan, et al., 2020) or injected into Xenopus laevis oocytes
(Azarkh et al., 2019; Azarkh, Okle, Singh, et al., 2011;
Cattani et al., 2017; Igarashi et al., 2010). As PpiB is an
E. coli protein, we aspired to conduct the EPR measure-
ments in its physiological milieu. Recently, it has been

shown that maleimido proxyl doubly labeled NarJ was
delivered into E. coli cells by EP and subsequent X-band
CW EPR measurements of various variants were success-
fully carried out (Pierro et al., 2022). Following this work,
we further optimized the EP protocol for spin-labeled
PpiB incorporation into E. coli cells, using confocal fluo-
rescence microscopy of fluorescent-labeled Atto-488
PpiB(K25C/E153C), as described previously (Martorana
et al., 2014) (Figure 4 and Figures S4 and S5). Notably,
the combination of freshly prepared competent cells and
the addition of 2 mM ATP dramatically increased the
protein delivery yields. Using this protocol, the time
between the application of the EP pulse and the begin-
ning of the recording of the CW-EPR spectrum or freez-
ing the sample for DEER measurements was 20 min. Cell
viability assay indicated approximately a 30% loss of liv-
ing cells (Figure S6), similar to earlier reports (Pierro
et al., 2022; Torricella et al., 2021).

To eliminate the possibility of the external associa-
tion of the labeled protein with the outer cell mem-
brane, we prepared a control sample where the protein
was delivered without the EP pulse. The control sample
showed only weak fluorescence intensity arising mostly
from the autofluorescence of the cells themselves
(Figure S5) and had no EPR signal. These results con-
firmed the presence of the labeled protein inside the
cells, while all the external PpiB was removed by the
extensive washings.

FIGURE 3 Solution W-band double electron–electron resonance (DEER) traces of peptidyl-prolyl cis/trans isomerase B (PpiB) variants

labeled with different spin labels pairs, as depicted in (a). (a) Primary DEER data with the background correction function. (b) The DEER

traces after background correction with the fit. (c) The corresponding distance distributions. The shaded areas above and below the main

distance distribution line represent ±2 standard deviations of the distributions calculated using the validation option in the DeerAnalysis

software (Jeschke et al., 2006). The y axes of PpiB(K25C/E153C)-DO3A-Gadolinium (Gd(III)) in (a) and (b) were threefold multiplied for

comparison purposes and all traces were shifted upstream for clarity. MTSL, S-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl

methanesulfonothioate.
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The X-band CW EPR of PpiB(K25C/E153C)-M-
TETPO in E. coli cells had a line shape significantly dif-
ferent from the solution spectra. It changed from a line
shape characteristic of high mobility to a practically rigid
limit spectrum (Figure 5) showing that in the cell, the
motions of both nitroxides, at positions 25 (helix) and
153 (loop), were restricted. This was further confirmed by
the spectrum of singly labeled PpiB(K25C/V155O)-M-
TETPO delivered into the cells, revealing again a transi-
tion of the highly mobile spin label at position 25 to an
immobile state (Figure 5).

To track the in-cell stability of the nitroxide labels, we
recorded the CW EPR spectra of PpiB (K25C/V155O)-M-
TETPO and PpiB(K25C/V155O)-3-MSL as a function of
time (Figure 6). We observed an 80% peak-to-peak signal
loss of the central hyperfine peak for 3-MSL over 60 min,
whereas for M-TETPO, it decreased by only 10% within a
similar time. The reduction of 3-MSL serves as an addi-
tional evidence for the presence of PpiB inside the cells.

In an attempt to resolve the origin of the observed
increase in the rotational correlation time, we examined
the effect of crowding agents on the spectrum of
PpiB(K25C/V153C)-M-TETPO using Ficoll (300 mg/mL),
lysozyme (30 mg/mL), and bovine serum albumin
(200 mg/mL) featuring neutral charge and proteins with
negative and positive charges, respectively (Rivas &
Minton, 2016; Wang, Sarkar, et al., 2012). The CW-EPR
spectra reveal only a minor population of spin labels
experiencing slow motion for all three samples (Figure S7),
with the addition of Ficoll showing the least change. We
note, however, that the crowding in the cell may be signifi-
cantly higher than the mimetic conditions tested.

To explore the effect of potential binding partners on
the nitroxide dynamics, we added PpiB(K25C/V153C)-M-
TETPO (100 μM) to E. coli cell extract (25 mg/mL protein
concentration) and recorded the spectra as a function of
time (Figure S8). Previous studies on PpiB revealed
multiple binding partners in the cell, as expected for a
dominant cytosolic chaperone (Klein et al., 2020; Skagia
et al., 2016) and, therefore, we expected to observe
changes. The spectra did not reveal the same changes
observed in the cell, yet they did exhibit a significant con-
tribution of a slow-motion component. In addition, we
observed a rapid decrease in the EPR signal as a function
of time due to the nitroxide reduction, at a rate much fas-
ter than in the cell, as reported earlier for another protein
(Bleicken et al., 2019; Jagtap et al., 2015; Karthikeyan
et al., 2018; Wang, Zhang, et al., 2023). By normalizing
the spectra to allow for line-shape comparison, we
detected minimal changes in the line shape with time

FIGURE 4 Confocal microscopy images showing the delivery of fluorescently labeled ATTO-488 doubly labeled peptidyl-prolyl cis/trans

isomerase B (PpiB) (K25C/E153C) into Escherichia coli cells. (a) Bright field, (b) confocal fluorescence microscopy (473 nm), and (c) the

alignment of both images.

FIGURE 5 X-band continuous-wave electron paramagnetic

resonance (EPR) spectra of 3-maleimido-proxyl (3-MSL) (brown)

and M-TETPO (green) singly labeled peptidyl-prolyl cis/trans

isomerase B (PpiB) (K25C/V155O) and M-TETPO doubly labeled

PpiB(K25C/E153C) (cyan) in Escherichia coli cells compared with

the spectra in solution (gray lines). The crystal structure of PpiB

(PDB:2NUL) (Edwards et al., 1997) with the rotamers of the spin

labels are shown on the right.
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and the decay rates of the fast and slow motion compo-
nents were similar (Figure S8).

Next, we performed in-cell DEER measurements to
determine whether the change in the dynamics is associ-
ated with a structural change. Our attempts to deliver
PpiB(K25C/V155O)-Azido-Gd(III)/M-TETPO into E. coli
cells, which would allow in-cell probing of both dynamics
and structure on one sample, did not succeed. The deliv-
ery efficiency of PpiB into E. coli by EP is rather low,
�4.2%–7.2%, as estimated from the echo intensity of
PpiB(K25C/E153C)-DO3A-Gd(III), the CW-EPR results,
and earlier reports (Pierro et al., 2022; Torricella
et al., 2021). Therefore, for a sufficient amount of in-cell
protein to be DEER detectable, the PpiB concentration in
the EP buffer should be 0.35 mM or higher, taking into
account that the additions to the EP mixture result in a
two-fold dilution. Unfortunately, PpiB(K25C/V155O)-
Azido-Gd(III)/M-TETPO precipitated at these high con-
centrations. Interestingly, this precipitation was observed
only upon Gd(III)-labeling of PpiB(K25C/V155O). As we
mentioned earlier, we suspect that it is due to the interac-
tion of the His6-tag with the Cu(II), as described in the
Supplementary Information. Therefore, to detect changes
in the conformation of PpiB induced by the cellular envi-
ronment, we delivered PpiB(K25C/E153C)-DO3A-Gd(III)
into E. coli cells and carried out Gd(III)-Gd(III) DEER
measurements.

The echo-detected EPR spectrum of PpiB(K25C/
E153C)-DO3A-Gd(III) in E. coli cells shows a clear
Gd(III) signal superimposed on that of endogenous
Mn(II) naturally present in the cell (Martorana
et al., 2014) (Figure S9B). The corresponding echo decays,
compared with the solution samples, are shown in
Figure S10. A high-quality in-cell DEER trace (Figure 7)

was obtained only when the external protein concentra-
tion in the EP mixture was 350 μM protein (repeats are
shown in Figure S11). For comparison, delivery into
mammalian cells (human cervical cancer [HeLa] cells)
by EP required 250 μM (Martorana et al., 2014; Theillet
et al., 2016; Yang et al., 2018). The maximum of the dis-
tance distribution in E. coli matched that in solution sam-
ples (at 4.5 nm), yet it exhibited a broader distribution
(Figure 7). Interestingly, the same labeled protein in
HeLa cells gave a width similar to the solution samples,
in agreement with earlier reports (Yang, Pan,
et al., 2020). Hence, the broadening of the distance distri-
bution might suggest a different structural behavior spe-
cific to E. coli cells. We also delivered M-TETPO labeled
PpiB into HeLa cells, but after the required 4 h cell recov-
ery time, there was no EPR signal. Accordingly, we could
not compare the dynamic behavior of spin-labeled PpiB
in E. coli and in HeLa cells due to the longer recovery
time required for HeLa cells (Theillet et al., 2016).

3 | DISCUSSION

The comparison of the CW-EPR and DEER results in
solution and in E. coli cells revealed a considerable reduc-
tion of the nitroxide spin label dynamics at both surface-
exposed positions, 25 and 153, located on helix and loop
motifs, respectively. Moreover, we observe a broadening
of the Gd(III)–Gd(III) distance distribution upon delivery
into E. coli cells, which was not observed in HeLa cells.

The detection of a significant restriction in the nitrox-
ide mobility in E. coli cells of both 3-MSL and M-TETPO
at the 25 and 153 positions could, in principle, be attrib-
uted to a simple picture where the tumbling of the

FIGURE 6 X-band continuous-wave electron paramagnetic resonance (EPR) spectra of (a) 3-maleimido-proxyl (3-MSL) and (b) M-

TETPO singly labeled peptidyl-prolyl cis/trans isomerase B (PpiB) (K25C/V155O) in Escherichia coli cells as a function of time. Zero time

corresponds to the insertion time of the sample into the spectrometer, which was approximately 20 min after electroporation (EP). (c) The

peak-to-peak amplitude of the central peak as a function of time (derived from [a, b]). The spectrum's acquisition time was 10 min (grey

region in the Figure) due to the low signal-to-noise ratio, characteristic of the in-cell samples, and therefore, the first spectrum is set to

10 min. The asterisk denotes cavity background signals.
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protein in solution is fast, leading to a fast motion spec-
trum, whereas the viscosity in the E. coli is much higher,
slowing the tumbling rate considerably. However, we
ruled out this explanation since it could not be repro-
duced with artificial crowding agents and recent reports
of fast-motion EPR spectra of proteins with molecular
weights higher than those of PpiB in E. coli (Torricella
et al., 2021). Furthermore, a recent CW-EPR study on the
NarJ chaperone in E. coli reported changes in the spin
label local mobility, depending on the location of the
spin label in the protein. For some NarJ variants, a signif-
icant restriction of the nitroxide's motion was observed,
whereas for others, the difference was subtle (Pierro
et al., 2022). The effect of the cell environment on local
dynamics in proteins has also been recently reported for
the loop dynamics of GB3 in E. coli cells (Wang, Song,
et al., 2023). The observed restriction could not be repro-
duced by the addition of cell extract either, which sug-
gests that it is not only caused by specific interactions
with partners in the spin labels vicinity. The difficulty in
reproducing the protein dynamics behavior in solution
emphasizes the importance of in-cell studies.

Interestingly, the background decay of the DEER trace
of the E. coli sample was stronger than that of the HeLa cell
sample, although the total in-cell concentration in E. coli
was lower, as determined from the echo intensity. This
indicates a higher local concentration of the labeled protein
that could result from the limited available cell volume of
small bacterial cells and their higher protein content. Dif-
ferences were also observed in the DEER distance distribu-
tion, which has the same distance distribution maxima, yet
with a larger width, compared with the HeLa cells and
solution DEER data. While comparing to the HeLa cell

results, we should consider that specific or nonspecific
interactions of PpiB with native cell components forming
the quinary structure may not be present in HeLa cells
since PpiB is not a human protein. Hence, this broadening
may suggest a larger ensemble of conformations of the
Gd(III) label and/or the residue it anchored to (Heubach
et al., 2023), owing to the quinary structure. The broader
range of conformations together with the high local viscos-
ity are, therefore, manifested in the slower exchange rate
between the various conformers which is insufficient for
averaging the nitroxide anisotropic magnetic interactions.
In principle, a rigid limit CW-EPR spectrum could also
arise from a single, well-defined conformation of the spin
label. This, however, would lead to a narrower distance dis-
tribution as opposed to the broader one that we observed.
Moreover, we verified that the broadening of the distance
distribution does not originate from the stronger back-
ground decay, which can lead to a faster decay of the dipo-
lar modulations. Thus, we multiplied the solution data
with the E. coli background decay and did not observe a
broadening in the derived distance distribution.

Our original idea to use one sample with orthogonal
Gd(III)-nitroxide labeling to probe both the dynamics and
structure in the cell did not succeed and we had to pro-
ceed with two samples. We noted that the reduced
M-TETPO in the cell was not a major issue, given the fast
delivery and cell recovery approach used. The main diffi-
culty was in obtaining a sufficiently high concentration of
the orthogonal Gd(III)-nitroxide-labeled PpiB(K25C/
V155O) in the EP buffer, required to achieve the needed
in-cell concentration for DEER. If indeed the problem
originates from the presence of the His6 tag, it can be over-
come by simply removing it. This, however, does not

FIGURE 7 Double electron–electron resonance (DEER) traces of peptidyl-prolyl cis/trans isomerase B (PpiB) (K25C/E153C)-DO3A-

Gadolinium (Gd(III)) in solution (green), in HeLa (red), and in Escherichia coli (blue) cells. (a) Primary DEER experimental data with the

background function (black). (b) DEER traces after background removal with the fit in black. (c) The corresponding distance distributions.

The shaded areas above and below the main distance distribution line represent the ±2 standard deviations of the distributions calculated

using the validation option in the DeerAnalysis software (Jeschke et al., 2006). All traces were shifted upwards to facilitate the comparison.
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abolish the need for high concentrations that can be an
issue for many proteins. Nevertheless, PpiB(K25C/V155O)
variant was very useful for following the behavior of a sin-
gly labeled M-TETPO PpiB in the cell by CW-EPR.

4 | CONCLUSIONS

Here, we explored the structure and dynamics of PpiB in
its native environment, E. coli living cells, combining
CW-EPR and W-band DEER. We observed by X-band
CWEPR a significant decrease in the nitroxide spin label
rotational diffusion rate at two labeling positions, 25 situ-
ated on a helix and 153 on a loop, in the cell, compared
with in solution. Attempts to mimic this effect with sev-
eral crowding agents and E. coli cell lysate failed to repro-
duce the significant change in local mobility,
emphasizing the importance of in-cell measurements. In-
cell DEER measurements carried out on PpiB labeled
with Gd(III) spin labels at positions 153 and 25 revealed
the same maxima of the distance distribution as in solu-
tion and HeLa cells, yet exhibited a broader distribution.
The broadening of the distance distribution suggests an
increase in the number of conformations owing to inter-
actions (specific and/or nonspecific) with cell compo-
nents, suggesting the presence of quinary structure as
well as local crowding. These interactions are also
responsible for the decrease in the exchange rate between
various conformations of the nitroxide labels.

5 | MATERIALS AND METHODS

5.1 | Protein expression and purification

5.1.1 | PpiB(K25C/E153C)

The double-cysteine PpiB mutant was produced, as
described earlier (Yang, Pan, et al., 2020).

5.1.2 | PpiB(K25C/V155O)

To expand the genetic code and produce the UAA-
incorporated PpiB mutants, we followed the available lit-
erature procedures (Liu & Schultz, 2010; Wang, Fang,
et al., 2012). Briefly, the “amber” nonsense codon was
reassigned for UAA incorporation and cloned at chosen
positions to produce the following mutants: PpiB(K25C/
E153O), PpiB(K25C/D154O), PpiB(K25C/V155O, and
PpiB(K25C/A140O). Generating four different mutants
was necessary since incorporation yields strongly depend
on the incorporation position in the protein. Cloning was
performed using the Q5 site-directed mutagenesis Kit

(New England Biolabs), and mutations were verified
using DNA sequencing.

The cloned plasmids were cotransformed into E. coli
BL21 (DE3) competent cells with the system plasmid
pEVOL-Pyl bearing chloramphenicol resistance (Tyagi &
Lemke, 2013). The system plasmid contains the genes
expressing the orthogonal pair of aminoacyl-transfer RNA
(tRNA) synthetase (pyIRS)/amber suppressor tRNA
required for specific and selective incorporation of pyrro-
L-lysine (Pyl, O) (Iris Biotech GMBH). Pyl was nicely incor-
porated into all selected mutants; however, the PpiB
(K25C/V155O) mutant showed high expression levels and
was selected for further use. E. coli BL21 (DE3) cells, har-
boring the system plasmid (pEVOL-Pyl) and the selected
PpiB mutant (pET3a-His6-PpiB(K25C/V155O), were grown
at 37�C and 220 rpm in Luria broth (LB) broth medium
supplemented with 100 mg/mL ampicillin, 34 mg/mL
chloramphenicol, and 0.2% (w/v) arabinose to preinduce
the aminoacyl-tRNA synthetase/amber suppressor tRNA
pair. After OD600 = 0.8 was reached, the cell culture was
cooled, supplemented with 2 mM Pyl (Iris Biotech GMBH),
and transferred to 20�C, 220 rpm for 15 min. Protein
induction was generated by 1 mM IPTG overnight (�16 h).
The cells were harvested by centrifugation (6000�g at 4�C
for 10 min), following lysis using a French press homoge-
nizer (25,000 psi, 3 cycles) after resuspension with 50 mM
Tris–HCl (pH = 7.5) containing 300 mM NaCl, 2 mM
MgCl2, and 10 μg/mL Benzonase (Novagen). Once the cell
debris was removed by centrifugation (16,000�g at 4�C for
1 h), the supernatant was subjected to fractionation via a
Ni-NTA HisTrap FF column (GE Healthcare), followed by
a size-exclusion column using a HiLoad 16/600 Superdex
75 column (GE Healthcare). Verified fractions containing
pure protein were collected and concentrated. The pure
protein was aliquoted, snap-frozen in liquid nitrogen, and
stored at �80�C.

5.2 | Protein labeling

5.2.1 | BrPSPy-DO3A-Gd(III) (DO3A-Gd
(III)) labeling

DO3A-Gd(III) synthesis and labeling was performed as
reported earlier (Yang et al., 2018).

5.2.2 | MTSL, 3-MSL, and M-TETPO
labeling

Commercial spin label, MTSL (Chem Cruz Biothecnolo-
gies, Inc.) and 3-MSL (Sigma) were used. The M-TETPO
spin label was synthesized and conjugated to cysteine res-
idue as described (Karthikeyan et al., 2018).
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The protein was treated with 1 equivalent of
tris(2-carboxyethyl)phosphine (TCEP) at 4�C for 30 min.
Once the reducing agent was removed using a desalting
column, 10-fold (per cysteine residue) of the commercial
nitroxide spin label was added gradually to the protein in
50 mM Tris–HCl (pH = 7.5), and the mixture was incu-
bated at 4�C overnight (�16 h) in the dark. For Gd(III)-
nitroxide labeling of the PpiB(K25C/V155O) mutant,
1 mM dithiothreitol, or 1 equivalent of TCEP was added
during the buffer exchange process after generating the
click reaction and prior to the second nitroxide labeling.

5.2.3 | Azido-mono-amide-DOTA-Gd(III)
(Azido-Gd(III)) labeling

PpiB(K25C/V155O) was first labeled with Gd(III) to
avoid complications arising from nitroxide reduction
under the click chemistry conditions.

Conjugating the Azido-Gd(III) spin label to the Pyl
(O) via click chemistry was performed following a pub-
lished protocol (Abdelkader et al., 2015; Loh
et al., 2013). To 0.05 mM protein in 50 mM sodium
phosphate buffer (pH = 7.5), 150 mM NaCl, 5 mM ami-
noguanidine, 0.5 mM glycerol, 0.3 mM CuSO4, 1.5 mM
2-[4-({bis[(1-tert-butyl1H-1,2,3-triazol-4-yl)methyl]amino}
methyl)-1H-1,2,3-triazol-1-yl]acetic acid (Iris Biotech
GMBH) (Besanceney-Webler et al., 2011), and 5 mM
ascorbic acid were added. A fivefold per labeling site of
the Gd(III) chelate was added to the mixture, following
incubation of 3 h at room temperature under rotation.
The reaction was performed in a home-built N2 flow
chamber to remove oxygen at the reaction vicinity to
reach a higher labeling efficiency. The reaction was ter-
minated by the addition of 2 mM ethylenediaminete-
traacetic acid tetrasodium salt dihydrate and rotating
for 1 h at room temperature. The click reaction reagents
were removed by washing 4 times with 50 mM sodium
phosphate buffer (pH = 7.5). SDS-PAGE analysis, based
on Tricine (Schägger, 2006), was performed to gain the
high-resolution and accurate protein analysis needed
for labeling yield determination (Figure S1C). The
extent of the labeling efficiency was readily detected by
an upstream shift of the purified protein band analyzed
on a Tricine-based SDS-PAGE. Finally, we obtained
�90% labeling efficiency, confirmed by mass spectrome-
try (Figure S2).

5.2.4 | Atto-488 labeling

The fluorophore (Atto-488, Sigma) was added to the pro-
tein mixture at a final concentration of 5 mM after

reducing the protein by adding 1 equivalent of TCEP,
incubating for 30 min at 4�C, and removing the reducing
agent by a desalting column (Bio-Rad Laboratories, Ltd.).
The labeling reaction was incubated for 2 h at 4�C while
rotating.

The labeling process for all variants was always final-
ized with buffer exchange twice using a Micro Bio-Spin
6 Size Exclusion Spin Column (Bio-Rad Laboratories,
Ltd.) to remove the free spin label. The second buffer
exchange was with 20 mM Tris–HCl (pH = 7.5), D2O-
based, for pulse-EPR measurements, unless stated
otherwise.

5.3 | Protein delivery to living cells

5.3.1 | Incorporation into E. coli cells

EP delivery of the labeled protein into E. coli DH5α
cells New England Biolabs (NEB), was performed as
described earlier (Pierro et al., 2022) with minor modifi-
cations. Fresh E. coli DH5α competent cells were gener-
ated before every protein delivery experiment.
Overnight cell culture was diluted to OD600 = 0.01 and
grown at 37�C, 220 rpm, until reaching OD600 = 0.9.
Bacterial growth was terminated by incubating the cell
culture in an ice bath for 1 h. Then, the cells were har-
vested by centrifugation (4000�g, at 4�C, for 10 min)
and washed four times in precooled 10% glycerol buffer
with reducing volumes. The cell pellet was resuspended
using the same buffer, to reach a cell concentration of
�2�1011 cells/mL determined using colony forming
units (CFU) LB–agar analysis.

Prior to the addition of 0.25 or 0.35 mM labeled pro-
tein and 2 mM ATP to freshly prepared E. coli DH5α
competent cells, the labeled protein was buffer exchanged
to low-salt buffer (10 mM Tris–HCl, pH = 7.5). Then, the
mixture was transferred to a 2 mm cuvette (Sigma) and
subjected to an electrical pulse (1.8 kV V/cm, 200 Ω,
25 μF, 1 msec pulse) using a BioRad EP generator. Imme-
diately, a prewarmed SOC medium was added to promote
fast recovery of the cells following a short incubation at
37�C with 220 rpm for 3 min. Subsequently, the cells
were subjected to four wash cycles in PBS buffer, while
the first contained 0.005% Triton.

5.3.2 | Incorporation into HeLa cells

Mammalian cervical cancer cells derived from humans
(HeLa) were cultured and the labeled protein was deliv-
ered by EP following the reported protocol (Martorana
et al., 2014; Theillet et al., 2016).
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5.4 | CFU determination

After generating fresh E. coli DH5α competent cells as
described earlier (see Section 5.3.1.), cells were diluted
8 times by a factor of 10-fold in prewarmed LB medium.
The 106 and 108 dilutions were plated on an LB-agar
plate and incubated at 37�C for overnight growth.
Finally, the number of colonies was numerically evalu-
ated, and the initial CFU number was calculated.

5.5 | Cell viability assay

Fresh E. coli DH5α competent cells were treated as
described earlier (Pierro et al., 2022) (see Section 5.3.1.).
Cells were also mixed with an unlabeled protein in low-
salt buffer (10 mM Tris–HCl, pH = 7.4) or without the
protein as a control. Then, the cells were diluted by
10-fold six times in LB medium and a drop assay was gen-
erated by placing a 3 μL drop of each dilution on a LB-
agar plate. Every sample was triplicate-seeded to prevent
incoherence measurements. At the highest dilution exhi-
biting separated colonies, the number of colonies was
determined and the initial cell number was evaluated.

5.6 | Sample preparation for EPR
measurements

For solution CW EPR, the protein was diluted with a
suitable buffer to obtain a protein concentration equal to
100 μM and transferred to a 0.8 mm ID � 1.00 OD EPR
quartz capillary. For in-cell measurements, after the last
wash cycle, the cells were resuspended with PBS buffer,
transferred to a 0.8 mm ID � 1.00 OD EPR quartz capil-
lary and centrifuged (6000�g at 4�C for 5 min) to pellet
down the cells.

For DEER measurements on solution samples, the
labeled protein stock was diluted using D2O-based
20 mM Tris–HCl (pH = 7.5) to reach a 75–100 μM pro-
tein final concentration. At a low protein stock concen-
tration, the spin-labeled protein was buffer exchanged to
the same buffer using a desalting column. The final mix-
ture was supplemented with glycerol-d8 (7:3, v/v), trans-
ferred to an EPR quartz capillary (0.6 ID � 0.84 OD
mm), flash-frozen in liquid nitrogen, and kept at �80�C.

For DEER measurements on bacterial cell samples,
cells were washed two more times with D2O-based PBS
buffer containing glycerol-d8 (7:3, v/v). Then, the cells
were resuspended and transferred to an EPR quartz capil-
lary (0.6 ID � 0.84 OD mm). Finally, the cells were pel-
leted down by centrifugation (6000�g at 4�C for 15 min),
flash-frozen in liquid nitrogen, and kept at �80�C.

For DEER measurements on human cell samples, we
follow a reported protocol (Yang, Pan, et al., 2020).

5.7 | Estimation of the in-cell spin
concentration

By comparing the Gd(III) echo intensity of the in-cell
E. coli sample to a series of calibrated Gd(III) standard
solutions (GdCl3), we estimated that the bulk spin con-
centration is 15–20 μM. The in-cell concentration is prob-
ably higher, considering that the cells do not occupy the
full volume of the EPR active volume of the capillary.

5.8 | EPR spectroscopic measurements

CW-EPR measurements were carried out on an X-band
Bruker E500 spectrometer (9.4 GHz) at room tempera-
ture with a modulation amplitude of 0.1mT.

Pulse-EPR measurements were carried out at cryo-
genic temperatures on a home-built W-band spectrome-
ter (95 GHz) equipped with an arbitrary waveform
generator (AWG) (Bahrenberg et al., 2017; Goldfarb
et al., 2008; Mentink-Vigier et al., 2013). Selecting the
observe and pump pulse frequencies is crucial for gener-
ating an optimal DEER trace. The echo-detected EPR
spectra, along with the setting for nitroxide-nitroxide,
Gd(III)-nitroxide, and Gd(III)-Gd(III) DEER measure-
ments are presented in Figure S9 and Table S1.

Echo-detected EPR (ED- EPR) spectra were acquired
using the Hahn-Echo pulse sequence (π/2-τ-π-τ-echo)
with a two-step phase cycle (0,π) on the first π/2 pulse
while keeping τ fixed and sweeping the magnetic field.
Echo decays were measured using the same sequence
measuring the echo intensity at the maximum of the
Gd(III) or the nitroxide signal as a function of τ. The
experimental parameters are presented in Table S1

All DEER measurements were performed using the
dead-time free four-pulse DEER sequence (π/2νobs �
τ1 � πνobs � (τ1 + t) � πνpump � (τ2 � t) � πνobs � τ2 �
echo) (Pannier et al., 2000), with a chirp pump pulse gen-
erated by the AWG. The echo intensity was measured as
a function of t at incremented steps of 20 ns ranging from
�200 ns to the set time evolution, T < τ2. Eight-step
phase cycling was used. The experimental parameters are
presented in Table S2.

The time-domain DEER traces were analyzed using a
Tikhonov regularization-based software package, DeerA-
nalysis 2019 (Jeschke et al., 2006). The background fitting
was carried out assuming a homogenous distribution.
The results were validated using the default parameters
including the addition of noise.
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5.9 | Confocal and fluorescence
microscopy

Atto-488 doubly labeled PpiB mutant was delivered into
E. coli DH5α by EP as described above (see section:
“Incorporation into E. coli cells”) and following earlier
reports (Pierro et al., 2022). Once the cells were washed
and diluted (1:100, v/v), they were fixed to a 35 mm glass
bottom dishes using 4% paraformaldehyde (PFA)
(15 min, room temperature). Images were collected using
a bright light, confocal, and fluorescence microscope
(Leica DMI8 microscope with a �100/1.4 oil objective)
equipped with a 473 nm monochromatic laser.
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