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Polynomial-Time Key-Recovery Attack
on the NIST Specification of PROV
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Sorbonne Université, CNRS, LIP6, 75005 Paris, France
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Abstract. In this paper, we present an efficient attack against PROV, a
recent variant of the popular Unbalanced Oil and Vinegar (UOV) multi-
variate signature scheme, that has been submitted to the ongoing NIST

standardization process for additional post-quantum signature schemes.
A notable feature of PROV is its proof of security, namely, existential
unforgeability under a chosen-message attack (EUF-CMA), assuming the
hardness of solving the system formed by the public-key non-linear equa-
tions. We present a polynomial-time key-recovery attack against the first
specification of PROV (v1.0). To do so, we remark that a small fraction of
the PROV secret-key is leaked during the signature process. Adapting and
extending previous works on basic UOV, we show that the entire secret-
key can be then recovered from such a small fraction in polynomial-time.
This leads to an efficient attack against PROV that we validated in prac-
tice. For all the security parameters suggested by the authors of PROV,
our attack recovers the secret-key in at most 8 seconds. We conclude
the paper by discussing the apparent mismatch between such a practical
attack and the theoretical security claimed by PROV designers. Our attack
is not structural but exploits that the current specification of PROV dif-
fers from the required security model. A simple countermeasure makes
PROV immune against our attack and led the designers to update the
specification of PROV (v1.1).

Keywords: Post-quantum · NIST PQC · Cryptanalysis ·
Key-Recovery

1 Introduction

In 2022, the National Institute of Standards and Technology (NIST) selected
the first post-quantum cryptographic standards after five years of competition.
In particular, three digital signature schemes (DSS) relying either on structured
lattices (Dilithium [16] and Falcon [13]) or hash functions (SPHINCS+ [10])
have been selected for standardization. NIST also decided to start a new stan-
dardization process for additional post-quantum DSS to increase the diversity of
hardness assumptions. From a practical point of view, the new call was especially
targeting schemes with “short signature” and “fast verification” [1].

c� The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Such practical features are typical of multivariate schemes. As such, UOV [11]
appears today as the most appealing candidate such that round-1 candidates of
the new NIST standardization process [1] includes about 8 UOV-based DSS1. A
promising candidate among these UOV-variants is the PRovable Unbalanced Oil
and Vinegar (PROV) that includes a strong security argument with an EUF-CMA
security proof under the hardness assumption of solving PROV public-key mul-
tivariate equations. Until now, no security weakness has been reported against
PROV.

1.1 Organization of the Paper and Main Results

We organize the paper as follows. In Sect. 2, we introduce the necessary nota-
tions, mathematical objects, and the security framework used in PROV. In Sect. 3,
we recall the PROV signature scheme as defined in the NIST-specification v1.0
[6]. Also, we extend the new Kipnis-Shamir attack on UOV of [14] to PROV,
which recovers the secret-key in polynomial-time for small parameters. Section 4
describes our attack: Sects. 4.1 and 4.2 details a polynomial-time key-recovery
attack against PROV specification v1.0 (Theorem 1). To do so, we exploit the fact
that a small fraction of the secret-key is leaked during the signature generation.
Then, we extend to the specific characteristics of PROV results from [2,14] on UOV
demonstrating that the entire secret-key can be then recovered from this small
leakage. The attack has a polynomial-time complexity and is also very efficient
in practice. In Sect. 4.3, we present experimental results and show that the secret
key can be recovered in a few seconds for all security levels (Table 2). Section 4.4
discusses a simple tweak that prevents this attack and reestablishes the validity
of the security model used in [6]. The vulnerability was reported to the designers
of PROV who then updated the specification (v1.1, [7]) with this countermeasure.

2 Preliminaries

2.1 Notations

Let q be a prime or a prime power (for PROV, q = 28). We denote by bold
lowercase (resp. capital) letter any column vector v ∈ Fn

q of size n in Fq or
respectively any matrix M ∈ Fn×m

q of size n × m in Fq. In particular, let 0n

be the zero column vector of size n in Fq, 0n×m be the zero matrix of size
n × m in Fq and 1n be the n-by-n identity matrix in Fq. For a set of vector
b = (b1, . . . ,bm) ∈ (Fn

q )m, we denote by span(b) ⊂ Fn
q the linear span of b.

Also, we express the kernel of a matrix M ∈ Fn×m
q or a linear map f respectively

by Ker(M) and Ker(f). For the complexity analysis, we consider ω the exponent
of matrix multiplication where 2 ≤ ω ≤ 3.

The function Upper takes as input a square matrix A = {ai,j}1≤i,j≤n and
outputs an upper triangular matrix Upper(A) = {bi,j}1≤i,j≤n such that bi,j =
ai,j +aj,i if i < j, bi,j = ai,j if i = j or bi,j = 0 otherwise. We refer by the symbol

1 https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.
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|| either the concatenation of two bit-strings or the horizontal concatenation of
two matrices depending on the context. Let ∅ be the empty set, i.e. the set with
no element.

Let Fq[x1, . . . , xn] be the ring of multivariate polynomials in n variables with
coefficients over Fq. In this work, every quadratic polynomial p ∈ Fq[x1, . . . , xn]
will be homogeneous, i.e. p

�
λ (x1, . . . , xn)

�
= λ2 p(x1, . . . , xn), for all λ ∈ F∗

q .
The polar form p∗ : Fn

q × Fn
q → Fq of a homogeneous quadratic poly-

nomial p ∈ Fq[x1, . . . , xn] is a bi-linear and symmetric function defined as
p∗(x,y) := p(x+y)−p(x)−p(y) for all x, y ∈ Fn

q . Any homogeneous quadratic
polynomial p ∈ Fq[x1, . . . , xn] can be uniquely represented as p(x) = x�Qx,
where Q ∈ Fn×n

q is an upper triangular matrix, and the corresponding polar
form as p∗(x,y) = x�(Q + Q�)y with x, y ∈ Fn

q . A multivariate quadratic
map P : Fn

q → Fm
q is defined by a set of multivariate quadratic polynomials

(p1, . . . , pm) ∈ Fq[x1, . . . , xn]m.

2.2 Security Framework of PROV

Here, we recall the definition of a Weak Preimage-Sampleable Function (WPSF)
used in the security analysis of PROV [6].

Definition 1 (WPSF [6]). A WPSF T consists of four probabilistic polynomial-
time algorithms:

• Gen: this algorithm takes as input a security parameter 1λ and outputs a
function F : X → Y with a trapdoor I;

• F: this algorithm takes as input a value x ∈ X and deterministically outputs
F(x);

• I = (I1, I2): the algorithm I1 takes no input and outputs a value z ∈ Z; the
algorithm I2 takes as input z ∈ Z, y ∈ Y, and outputs x ∈ X such that
F(x) = y, or outputs ⊥ if it failed;

• SampDom: this algorithm takes as input a function F : X → Y and outputs
a value x ∈ X .

The Preimage Sampling (PS) security of a WPSF is defined as:

Definition 2 (PS security [6]). Let T be a WPSF. The advantage of an adver-
sary A against the PS security of T is defined as:

AdvPS
T (A) =

���Pr
�
PSA

0 = 1
�

− Pr
�
PSA

1 = 1
����

where PS0 and PS1 are the security games defined in Fig. 1.
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PSb

(F, I) ← Gen(1λ)

b∗ ← ASampleb(F)

Return b∗

Sample0

zi ← I1()

repeat

yi
$← Y

xi ← I2(zi, yi)

until xi �= ⊥ Return xi

Sample1

xi ← SampDom(F)

Return xi

Fig. 1. PS security games.

3 Description of PROV

PRovable Unbalanced Oil and Vinegar (PROV) is a new signature scheme [6] sub-
mitted to the recent NIST standardization process for additional post-quantum
signature schemes [1]. As several multivariate schemes submitted to this stan-
dardization process, PROV is a variant of the Unbalanced Oil and Vinegar (UOV)
multivariate signature scheme [11].

PROV uses the the recent definition of UOV introduced by W. Beullens in [5]
in combination with an efficient variant of the so-called salt-UOV [15], a provably
secure variant of UOV. In [5], the traditional UOV trapdoor [11] is rephrased as
the vanishing subspace of a multivariate quadratic map.

Definition 3. Let P : Fn
q → Fm

q be a multivariate quadratic map and O ⊂ Fn
q

be a linear subspace. We shall say that O is a vanishing subspace of P if:

∀o ∈ O, P(o) = 0m.

From a high-level point of view, the public-key in PROV is given by the multivari-
ate quadratic map P : Fn

q → Fm
q and the corresponding secret-key is a vanishing

subspace O ⊂ Fn
q of dimension m + δ with δ ≥ 1. The main specificity of PROV

is related to the parameter δ that allows a more efficient reduction than salt-UOV
[15]. From now on, we set v = n − m − δ.

3.1 Key-Generation in PROV

In order to generate a PROV key pair (Definition 3) (P, O) with P : Fn
q → Fm

q

and a vanishing subspace O ⊂ Fn
q of dimension m + δ with δ ≥ 1, [6] suggests

to first generate a random basis of O in systematic form, i.e. namely a basis of
the form:

(O� 1m+δ) ∈ F(m+δ)×n
q , with O ∈ Fv×(m+δ)

q . (1)

Then, the components p1, . . . , pm ∈ Fq[x1, . . . , xn] of P : Fn
q −→ Fm

q are con-
structed as follows:

pi(x) = x�Pix, Pi =

�
P(1)

i P(2)
i

0(m+δ)×v P(3)
i

�
∈ Fn×n

q , ∀i, 1 ≤ i ≤ m, (2)
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with x = (x1, . . . , xn) ∈ Fn
q ,P(1)

i ∈ Fv×v
q be an upper triangular matrix,

P(2)
i ∈ Fv×(m+δ)

q be a matrix and P(3)
i = Upper

�
−O�P(1)

i O − O�P(2)
i

�
∈

F(m+δ)×(m+δ)
q The linear subspace O generated as in (1) is a vanishing subspace

of the map defined by the polynomials (2).

3.2 Signature Verification and Generation

The PROV signature for a message msg ∈ {0, 1}∗ is given by a vector s ∈ Fn
q and

a fixed-length bit string salt ∈ {0, 1}lensalt such that

P(s) = H(msg||salt),

where H : {0, 1}∗ → Fm
q is a hash function2.

The PROV trapdoor is based on the result below, demonstrating that the
knowledge of the vanishing subspace allows one to compute a valid signature by
solving a linear system.

Lemma 1. Let O ∈ Fv×(m+δ)
q , P : Fn

q → Fm
q be represented with matrices

(P1, . . . ,Pm) ∈ (Fn×n
q )m as defined in (2), v̄ =

�
v

0m+δ

�
, ō =

�
O

1m+δ

�
o ∈ Fn

q ,

with v ∈ Fv
q and o ∈ F(m+δ)

q . For all h = (h1, . . . , hm) ∈ Fm
q , it holds that:

P(v̄ + ō) = h ⇐⇒ v�Sio = hi − v�P(1)
i v, ∀ i, 1 ≤ i ≤ m,

with Si = (P(1)
i + P(1)�

i )O + P(2)
i ∈ Fv×(m+δ)

q .

In order to generate a signature of msg ∈ {0, 1}∗, the signer generates a random
pair (v, salt) ∈ Fv

q × {0, 1}lensalt and solves the corresponding linear system of
Lemma 1 with h = H(msg||salt) ∈ Fm

q . If the linear system has no solution,
then the signer samples a new salt ∈ {0, 1}lensalt and solves the new system.
The process is repeated until a solution exists. Finally, he recovers the signature
s = v̄ + ō ∈ Fn

q , with v̄, ō ∈ Fn
q as in Lemma 1. We detail the PROV signature

generation in Algorithm 1.

Remark 1. Note that the vector ō belongs in the secret vanishing subspace O of
the public key.

Given a matrix A ∈ Fm×n
q , and vector b ∈ Fm

q , the algorithm LinSolve
outputs the set of all solutions x ∈ Fn

q of the linear system Ax = b.

2 Precisely, in [6], they generate h as H(4||hpk||msg||salt) where hpk is a hash of the
public key and a secret seed. We omit this detail to simplify the presentation.
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3.3 Security of PROV

An appealing feature of PROV lies in its security proof where existential forgery
under chosen message attacks (EUF-CMA) can be reduced to the problem of invert-
ing the public-key polynomials defined as follows:

Definition 4 (UOV− problem). Let p = (p1, . . . , pm) ∈ Fq[x1, . . . , xn]m be
quadratic polynomials corresponding to a PROV public-key and d = (d1, . . . , dm) ∈
Fm

q . The UOV− problem asks to find a solution to the non-linear system of equa-
tions:

p1 − d1 = 0, . . . , pm − dm = 0.

As discussed in [6], the best approaches known for solving the UOV− problem are
generic techniques for solving non-linear equations and then exponential in the
classical and quantum settings [3,4,8,9].

Algorithm 1: PROV Signing

Data: The secret key O ∈ Fv×(m+δ)
q , the public key (P1, . . . ,Pm) ∈ (Fn×n

q )m and a message
msg ∈ {0, 1}∗.

Result: The signature (s, salt) ∈ Fn
q × {0, 1}lensalt of message msg.

1 v
$← Fv

q

2 S ← ∅
3 while S = ∅ do

4 salt $← {0, 1}lensalt

5 (h1, . . . , hm) ← H(msg||salt)
6 for i from 1 to m do

7 ai ← v�((P(1)
i + P

(1)�
i )O + P

(2)
i )

8 bi = hi − v�P(1)
i v

9 end
10 A := (a�

1|| . . . ||a�
m)�

11 b := (b1|| . . . ||bm)�

12 S ← LinSolve(A, b)
13 end

14 o
$← S

15 s ←
�

v
0m+δ

�
+

�
O

1m+δ

�
o

16 Return (s, salt)

3.4 Kipnis-Shamir Attack When n ≤ 2m and δ ≥ 1

In [12], Kipnis and Shamir introduced a polynomial-time key-recovery attack on
Oil and Vinegar signature scheme (when n = 2m and δ = 0). This attack has
been improved in [14] when n ≤ 2m and δ = 0. Here, we extend this attack to
PROV when n ≤ 2m and δ ≥ 1. First, let recall a special property of the polar
form of a PROV key pair.

Lemma 2 ([14]). Let P : Fn
q → Fm

q be a multivariate quadratic map, O ⊂ Fn
q

be a vanishing subspace of P and P∗ : Fn
q × Fn

q → Fm
q be the polar form of P.

Then, for all (o1,o2) ∈ O2, we have P∗(o1,o2) = P∗(o2,o1) = 0m.
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This characteristic restricts the rank of the matrices representing the polar form
for large dimensional vanishing subspace.

Corollary 1. Let p ∈ Fq[x1, . . . , xn] be a homogeneous polynomial represented
as p(x) = x�Px with P ∈ Fn×n

q and x ∈ Fn
q , O ⊂ Fn

q be a vanishing subspace of
p with dim(O) = m + δ. Then, the rank of the matrix P� = (P + P�) ∈ Fn×n

q is
at most 2n − 2(m + δ).

This proof combines ideas of [14] but is provided for the sake of correctness and
completeness.

Proof. Let B1 ∈ Fn×(m+δ)
q be a basis of O and B̂ ∈ Fn×n

q be a basis of Fn
q such

that B̂ = (B1||B2) with B2 ∈ Fn×v
q . By Lemma 2, we obtain B�

1P
�B1 = 0m+δ.

Therefore, the matrix P� in the basis B̂ has the following form

B̂�P�B̂ =
�
0(m+δ)×(m+δ) C1

C2 C3

�

with C1 ∈ F(m+δ)×v
q , C2 ∈ Fv×(m+δ)

q and C3 ∈ Fv×v
q . Then, the rank of the

matrix B̂�P�B̂ is at most 2n−2(m+δ) because of the block of zero of size m+δ
in the top left. Since the rank of a matrix is invariant by change of basis, this
proves the rank of P� is at most 2n − 2(m + δ). �

In [14], the author exploits this rank defect to recover a basis of the vanishing
subspace by computing the kernel of the matrices P�

i ∈ Fn×n
q representing the

polar form based on the assumption that Ker(P�
i) ⊂ O with high probability for

key pair obtained with PROV key-generation. In the next lemma, we precise the
condition underlying this assumption.

Lemma 3. Let p ∈ Fq[x1, . . . , xn] be a homogeneous polynomial represented
as p(x) = x�Px with P ∈ Fn×n

q , O ⊂ Fn
q be a vanishing subspace of p with

dim(O) = m + δ and p∗ : Fn
q × Fn

q → Fq be the polar form of p. If there exist no
subspace V ⊂ Fn

q with dimension m + δ + r for any 1 ≤ r ≤ n − m − δ where for
all pairs (v1,v2) ∈ V , p∗(v1,v2) = 0 then Ker(P�) ⊂ O where P� = P + P�.

Proof. Let assume Ker(P�) �⊂ O. Therefore, there exists a vector x ∈ Ker(P�)
such that x /∈ O. Since O is a vector space in a finite field and x /∈ O, then we
have span(x) �⊂ O and dim(span(x)) = 1. Consider the vector space V defined by
the closure of span(x) and O under the addition and the scalar multiplication.
The linear subspace V is of dimension m + δ + 1 because x /∈ O. Also, let two
vectors v1 and v2 of V that can be expressed as v1 = o1 + x1 and v2 = o2 + x2

with o1, o2 ∈ O and x1, x2 ∈ span(x). If we evaluate the polar p∗ on v1 and v2,
we obtain

p∗(v1,v2) = o�
1P

�o2 + x�
1P

�o2 + o�
1P

�x2 + x�
1P

�x2.

By Lemma 2, we deduce o�
1P

�o2 = 0. Also, the matrix P� is symmetric, therefore
Ker(P�) = Ker(P��). This implies x�

1P
� = 0�

n and P�x2 = 0n because span(x) ⊂
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Ker(P�). We conclude p∗(v1,v2) = 0 for any vector v1 and v2 of V . This proves
by contradiction that Ker(P�) ⊂ O because V is of dimension strictly larger than
O. �


Now, we extend the polynomial-time key-recovery attack of [14] to PROV where
n ≤ 2m and δ ≥ 1.

Lemma 4 (Kipnis-Shamir attack – Kernel Approach). Let P : Fn
q → Fm

q

be a PROV public-key, O ⊂ Fn
q be the vanishing subspace of P with dim(O) = m+δ

and δ ≥ 1 obtained with PROV key-generation (Subsect. 3.1). Then, there exists
an algorithm that recovers a basis B ∈ Fn×(m+δ)

q of O in time O(mnω) with high
probability when n ≤ 2m.

Proof. Let (P1, . . . ,Pm) ∈ (Fn×n
q )m be the matrices representing the PROV

public-key P. By Corollary 1, we deduce the rank of the matrix Pi + P�
i is

at most 2n − 2(m + δ) for 1 ≤ i ≤ m. Since we clearly have −2m ≤ −n, it
follows that 2n − 2m − 2δ ≤ n − 2δ. Also, we know −2δ ≤ −2, therefore we
obtain 2n − 2m − 2δ ≤ n − 2. This implies the kernel of Pi + P�

i is at least
of dimension 2 because rank(Pi + P�

i ) ≤ n − 2 for 1 ≤ i ≤ m. We assume
the condition of Lemma 3 is satisfied with high probability, therefore we have
Ker(Pi + P�

i ) ⊂ O for 1 ≤ i ≤ m. Since the m kernels of the polar form are at
least of dimension 2 and m + δ ≤ 2m, an adversary recovers a basis of O with
high probability by computing the m random kernels for key pair obtained with
PROV key generation. Finally, computing these kernels takes time O(mnω). This
concludes the proof. �


4 Polynomial-Time Attack Against PROV Specification

4.1 Overview

Our attack relies on the fact that the (vinegar) vector v ∈ Fv
q is leaked and con-

stant in the PROV specification v1.0 [6]. More precisely, the designers described a
probabilistic signature generation, similar to Algorithm 1, only for “ease of expo-
sition”. In practice, they deterministically generate v as H(3||msg) where H is
the hash function SHAKE256. We emphasize that the reference implementation
generates the vinegar vector v ∈ Fv

q similarly.
The vinegar vector (and the corresponding signature) leaks information

about the secret-key, precisely it reveals one vector in the secret linear sub-
space O ⊂ Fn

q . Recently, [2] demonstrated an efficient attack allowing recovery
of the entire secret-key from such a vector. Soon after in [14], it was proposed an
even more efficient polynomial-time key-recovery attack on UOV using elementary
linear algebra. In the next part, we adapt this key-recovery attack on PROV.
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4.2 Description of the Attack

First, we explain why the PROV specification leaks one vector in the secret linear
subspace.

Let (v, s) ∈ Fv
q × Fn

q be a pair of a vinegar vector and a signature3 for the
message msg ∈ {0, 1}∗ and the PROV key pair (P,O) with P : Fn

q → Fm
q and

O ⊂ Fn
q . We recall that s = v̄ + ō where v̄� = (v�||0�

m+δ) ∈ Fn
q and ō ∈ Fn

q . As
discussed above, the pair (v, s) is public. Therefore, any adversary can compute
a vector in the secret linear subspace ō = s − v̄ ∈ O (see Remark 1).

In the following, we focus on the key-recovery attack assuming the knowledge
of one non-zero vector in the linear subspace. Also, we assume that n ≤ 3m (this
statement holds for concrete parameters proposed in the PROV submission, see
Table 1) and that the rank of the matrices P1 + P�

1 , . . . ,Pm + P�
m defined as in

(2) is n. Now, we present an adaption of the attack from [14] to the PROV case
(see Remark 2).

Lemma 5. Let P : Fn
q → Fm

q be a PROV public-key, O ⊂ Fn
q be the vanishing

subspace of P where P are represented with matrices P1, . . . ,Pm ∈ Fn×n
q defined

as in (2). Let o ∈ O \{0} and Jo(z) = (o�(P1 +P�
1)z, . . . ,o�(Pm +P�

m)z) with
z = (z1, . . . , zn) a vector of variables. Then, the subspace Ker(Jo) is a (n − m)-
dimensional subspace with high probability and always satisfies

O ⊂ Ker(Jo).

Proof. Let P∗ : Fn
q × Fn

q → Fm
q be the polar form of P with components

p∗
1, . . . , p

∗
m where p∗

i (y, z) = y�(Pi + P�
i )z for all 1 ≤ i ≤ m. By Lemma 2,

for all x ∈ O.
p∗

i (o,x) = 0,∀1 ≤ i ≤ m.

This implies that the kernel of the linear application p∗
i,o(z) = o�(Pi + P�

i )z
contains O. By hypothesis, all the matrices P1 + P�

1 , . . . ,Pm + P�
m are of rank

n and o �= 0n, therefore p∗
i,o(z) is non-zero. Since the linear map is non-zero, its

kernel is a hyperplane. We have shown that O ⊂ Ker(p∗
i,o), for all 1 ≤ i ≤ m.

Therefore, we obtain:

O ⊂
�

1≤i≤m

Ker(p∗
i,o) = Ker(Jo)

Also, the hyperplanes are non-parallel, because we have O ⊂ Ker(p∗
i,o) for all

1 ≤ i ≤ m. Finally, the hyperplanes (i.e. the vectors o�(P1 + P�
1), . . . ,o�(Pm +

P�
m) ∈ F1×n

q ) are linearly independent with high probability for key pair obtained
with PROV key-generation.4. Therefore, the intersection of the m hyperplanes has
dimension n − m. This concludes the proof. �


3 The salt is irrelevant for the attack, therefore we ignore it.
4 We verify in practice that this statement holds true.
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Remark 2. In [14], the authors consider finite fields of odd characteristics and
exploit the bijective relation p = 2−1p∗ between any quadratic homogeneous
polynomial p ∈ Fq[x1, . . . , xn] and its polar form p∗ : Fn

q × Fn
q → Fq. Therefore,

any homogeneous quadratic polynomial p ∈ Fq[x1, . . . , xn] can be represented
with a symmetric matrix M ∈ Fn×n

q such that p(x) = x�Mx. However, a poly-
nomial p(x) = x�Mx with a symmetric matrix M is either linear or zero in a
finite field of characteristic two (as with PROV). In other words, the bijective rela-
tion does not hold for finite fields of characteristic two (as discussed in [14,17]).
Therefore, we need to slightly adapt the approach from [14] by considering the
polar form of the public-key and not by exploiting a symmetric representation
of the public-key as in [14].

The next step is then essentially similar to [14, Theorem 7], namely we restrict
the public-key polynomials on Ker(Jo) and obtain new polynomial with fewer
variables and the same secret vanishing subspace O. The secret-key can be recov-
ered in polynomial-time from these new polynomials.

Theorem 1. Let P : Fn
q → Fm

q be a PROV public-key, O ⊂ Fn
q be the vanishing

subspace of P with dim(O) = m+δ where δ ≥ 1 and P be represented by matrices
(P1, . . . ,Pm) ∈ (Fn×n

q )m defined as in (2). Then, there exists an adversary A
taking as input

�
(P1, . . . ,Pm),o

�
∈ (Fn×n

q )m × O \ {0} that outputs a basis of
O in polynomial-time with high probability.

The proof is similar to [14] but again provided for the sake of correctness and
completeness.

Proof. Let Jo(z) = (o�(P1 + P�
1)z, . . . ,o�(Pm + P�

m)z) with z = (z1, . . . , zn) a
vector of variables. By Lemma 5, O ⊂ Ker(Jo) for which a basis B ∈ Fn×(n−m)

q

can be computed in O(nω), with 2 ≤ ω ≤ 3 the matrix multiplication exponent.
Then, we restrict the public-key polynomials to Ker(Jo). This yields:

Pi,Ker(Jo) = B�PiB, ∀ i, 1 ≤ i ≤ m.

The restricted public-key PKer(Jo) : F(n−m)
q → Fm

q can be com-
puted in polynomial-time O(mnω) and be represented with matrices
P1,Ker(Jo), . . . ,Pm,Ker(Jo) ∈ F(n−m)×(n−m)

q is a PROV public key with parame-
ters (q, n − m, m, δ) because O ⊂ Ker(Jo). Let Ō ⊂ Fn−m

q be the vanishing
subspace of PKer(Jo) with dim(Ō) = m + δ. With our assumption n ≤ 3m,
we obtain n − m ≤ 2m. The attack described in Lemma 4 recovers a basis
C ∈ F(n−m)×(m+δ)

q of the secret subspace Ō in time O(mnω). Then, for all i
with 1 ≤ i ≤ m, we have

(BC)�PiBC = C�(B�PiB)C = C�Pi,Ker(Jo)C = 0(m+δ)×(m+δ).

Namely, the matrix BC ∈ Fn×(m+δ)
q is a basis of O. Multiplying these matrices

takes time O(nω) and concludes the proof that the secret-key can be recovered
in O(mnω). �
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Remark 3. Our attack recovers the secret-key in polynomial-time with only one
signature. However, an adversary can directly recover the secret-key with mul-
tiple signatures because we can view the PROV signature generation as an oracle
of vectors in O. Precisely, an adversary would recover uniformly distributed vec-
tors in O for signature requests on uniformly distributed messages (because the
linear systems will be uniformly distributed, see Remark 1 of [6]). Therefore,
an equivalent secret-key (i.e. m + δ linearly independent vectors of O) can be
recovered in a small amount of signature requests.

4.3 Experimental Results

In this part, we show that our attack is not only efficient from a theoretical point
of view but also very practical. To do so, we implemented the attack (Theorem 1)
in Sagemath5 [18] (taking as reference the code used in [14]) with the parameters
of PROV suggested in [6] (Table 1). The non-zero vector of the vanishing subspace
of the public key is generated with an oracle since such vector is leaked in PROV
specification (Subsect. 4.2).

Table 1. Parameter sets of the PROV signature scheme.

Variant λ q n m δ v

PROV-I 128 256 136 46 8 82

PROV-III 192 256 200 70 8 122

PROV-V 256 256 264 96 8 160

We estimate the performance of the implementation on a single thread of a
laptop with an Intel CPU i7-1365U at 5.2 GHz and with 32 GB of RAM. In
Table 2, we report the experimental results obtained. To summarize, we recover
the secret-key of PROV in a few seconds for every security level.

Table 2. Key-recovery attack of PROV.

Variant PROV-I PROV-III PROV-V

Time 1.78.s 4.72.s 7.93s

4.4 Countermeasure

Before presenting the countermeasure, we briefly recall the security model used
PROV. One idea of the proof is to model the PROV signature scheme as a weak
preimage-sampleable function (WPSF) (Definition 1), denoted TPROV, such as:
5 Our implementation is available at https://github.com/River-Moreira-Ferreira/

prov-attack.
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• The algorithm (pk, sk) ← Gen is the PROV key-generation;
• The algorithm F evaluates the PROV public-key;
• The algorithm SampDom uniformly generates a value in Fn

q ;
• The pair of algorithms I = (I1, I2) are defined as follows:

• The algorithm I1 outputs a uniformly distributed vector v ∈ Fv
q ;

• The algorithm I2 takes as input (pk, sk,v,y) with v ∈ Fv
q and y ∈ Fm

q ,
performs one iteration of the while loop in the signature generation (see
Algorithm 1) for the given vector v and outputs a PROV signature s ∈ Fn

q

for h = y or ⊥ if the iteration failed.

One can remark that the model assumes, in particular, that the vinegar vector
should be uniform and kept secret to the adversary in PS security of TPROV (see
Definition 2). Precisely, in the PS0 game, the adversary has access to the oracle
Sample0 (both described in Fig. 1). The oracle Sample0 keeps secret the value
zi ← I1 used for I2 from the adversary A. Also, the algorithm I1 uniformly
generates the vector zi ∈ Fv

q for TPROV.
The specification of PROV v.1.0 differs from this model as the vinegar vector,

which corresponds to a value zi ∈ Fv
q , is leaked during signature generation and

constant.
The countermeasure appears evident when knowing this flaw in the security

model: the vinegar vector should be uniformly generated and kept secret. This
tweak will prevent an adversary from recovering easily a vector in the secret
linear subspace with the previous strategy and makes PROV immune against our
polynomial-time key-recovery attack.

For example, we can suggest generating the vector v as H(3||ssk||msg) where
ssk is the secret seed uniformly generated during the key-generation (this was the
strategy followed by others UOV candidates to the ongoing NIST standardization
process). We will obtain a deterministic signature generation, as desired in the
PROV specification.

Finally, we have reported this vulnerability to the designers of PROV and they
updated the specification (v1.1, [7]) with such countermeasure.

Acknowledgement. We thank Pierre Pébereau, who helped us with some technical
details of his attack and implementation [14]. Before publishing this work, we informed
the authors of PROV that confirmed the flaw and released quickly a new specification
(v.1.1). We would like to thank them for the constructive discussions. The second
author would like to thank Google which partially supported this work thanks to a
gift dedicated to post-quantum research. Also, we acknowledge the financial support of
the French Ministère des Armées - Agence de l’innovation de défense on this research.
Finally, the authors thanks the financial support on this research by QuanTEdu-France
project (ANR-22-CMAS-0001) as part of France 2030.



234 R. Moreira Ferreira and L. Perret

References

1. NIST. Call for Additional Digital Signature Schemes for the Post-Quantum Cryp-
tography Standardization Process
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