
HAL Id: hal-04466417
https://hal.science/hal-04466417v1

Preprint submitted on 19 Feb 2024 (v1), last revised 29 Jul 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomial-Time Key-Recovery Attack on the NIST
Specification of PROV

Ludovic Perret, River Moreira Ferreira

To cite this version:
Ludovic Perret, River Moreira Ferreira. Polynomial-Time Key-Recovery Attack on the NIST Specifi-
cation of PROV. 2024. �hal-04466417v1�

https://hal.science/hal-04466417v1
https://hal.archives-ouvertes.fr

Polynomial-Time Key-Recovery Attack on the NIST

Specification of PROV

River Moreira Ferreira, Ludovic Perret

Sorbonne Université, CNRS, LIP6, F-75005, Paris, France

Abstract. In this paper, we present an efficient attack against PROV, a recent variant of
the popular Unbalanced Oil and Vinegar (UOV) multivariate signature scheme, that has
been submitted to the ongoing NIST standardization process for additional post-quantum
signature schemes. A notable feature of PROV is its proof of security, namely, existential
unforgeability under a chosen-message attack (EUF-CMA), assuming the hardness of solving
the system formed by the public-key non-linear equations. We present a polynomial-time
key-recovery attack against the first specification of PROV (v1.0). To do so, we remark that
a small fraction of the PROV secret-key is leaked during the signature process. Adapting
and extending previous works on basic UOV, we show that the entire secret-key can be then
recovered from such a small fraction in polynomial-time. This leads to an efficient attack
against PROV that we validated in practice. For all the security parameters suggested in by
the authors of PROV, our attack recovers the secret-key in at most 8 seconds. We conclude
the paper by discussing the apparent mismatch between such a practical attack and the
theoretical security claimed by PROV designers. Our attack is not structural but exploits
that the current specification of PROV differs from the required security model. A simple
countermeasure makes PROV immune against the attack presented here and led the designers
to update the specification of PROV (v1.1).

1 Introduction

In 2022, the National Institute of Standards and Technology (NIST) selected the first post-quantum
cryptographic standards after five years of competition. In particular, three digital signature
schemes (DSS) relying either on structured lattices (Dilithium [14] and Falcon [11]) or hash
functions (SPHINCS+ [8]) have been selected for standardization. NIST also decided to start a new
standardization process for additional post-quantum DSS to increase the diversity of hardness as-
sumptions. From a practical point of view, the new call was especially targeting schemes with
“short signature” and “fast verification” [1].

Such practical features are typical of multivariate schemes. As such, UOV [9] appears today as the
most appealing candidate such that round-1 candidates of the new NIST standardization process [1]
includes about 8 UOV-based DSS1. A promising candidate among these UOV-variants is the PRovable
Unbalanced Oil and Vinegar (PROV) that includes a strong security argument with an EUF-CMA

security proof under the hardness assumption of solving PROV public-key multivariate equations.
Until now, no security weakness has been reported against PROV.

1.1 Organization of the Paper and Main Results

We organize the paper as follows. In Section 2, we introduce the necessary notations, mathematical
objects, and the security framework used in PROV. In Section 3, we recall the PROV signature scheme
as defined in the NIST-specification v1.0 [5]. Section 4 describes our attack: Section 4.1 details a
polynomial-time key-recovery attack against PROV specification v1.0 (Theorem 1). To do so, we
exploit the fact that a small fraction of the secret-key is leaked during the signature generation.
Then, we extend to the specific characteristics PROV a result from [12] on UOV demonstrating that

1 https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

the entire secret-key can be then recovered from this small leakage. The attack has a polynomial-
time complexity and is also very efficient in practice. In Section 4.3, we present experimental results
and show that the secret key can be recovered in a few seconds for all security levels (Table 2).
Section 4.4 discusses a simple tweak allowing to avoid the attack and reestablish the validity of the
security model used in [5]. We emphasize that the PROV designers has updated their specification
(v1.1) with our countermeasure.

Acknowledgement

We thank Pierre Pébereau, who helped us with some technical details of his attack and implemen-
tation [12]. Before publishing this work, we informed the authors of PROV that confirmed the flaw
and released quickly a new specification (v.1.1). We would like to thank them for the constructive
discussions. The second author would like to thank Google which partially supported this work
thanks to a gift dedicated to post-quantum research. Finally, we acknowledge the financial support
of the French Ministère des Armées - Agence de l’innovation de défense on this research.

2 Preliminaries

2.1 Notations

Let q be a prime or a prime power (for PROV, q = 28). We denote by bold lowercase (resp. capital)
letter any column vector v ∈ Fn

q of size n in Fq or respectively any matrix M ∈ Fn×m
q of size

n × m in Fq. In particular, let 0n be the zero column vector of size n in Fq, 0n×m be the zero
matrix of size n × m in Fq and 1n be the n-by-n identity matrix in Fq. For a set of vector
b = (b1, . . . ,bm) ∈ (Fn

q)
m, we denote by span(b) the linear span of b. Also, we express the kernel

of a matrix M ∈ Fn×m
q or a linear map f respectively by Ker(M) and Ker(f).

The function Upper takes as input a square matrix A = {ai,j}1≤i,j≤n and outputs an upper
triangular matrix Upper(A) = {bi,j}1≤i,j≤n such that bi,j = ai,j + aj,i if i < j, bi,j = ai,j if i = j
or bi,j = 0 otherwise. We refer by the symbol || either the concatenation of two bit-strings or the
horizontal concatenation of two matrices (depending on the context). Let ∅ be the empty set, i.e.
the set with no element. We denote by poly(n) a positive polynomial in the variable n (used to
simplify complexity analysis).

Let Fq[x1, . . . , xn] be the ring of multivariate polynomials in n variables with coefficients over
Fq. In this work, every quadratic polynomial p ∈ Fq[x1, . . . , xn] will be homogeneous, i.e.
p
(
λ (x1, . . . , xn)

)
= λ2 p(x1, . . . , xn), for all λ ∈ Fq. The polar form p∗ : Fn

q × Fn
q → Fq of a

homogeneous quadratic polynomial p ∈ Fq[x1, . . . , xn] is a bi-linear and symmetric function de-
fined as p∗(x,y) := p(x,y)−p(x)−p(y) for all x, y ∈ Fn

q . Any homogeneous quadratic polynomial
p ∈ Fq[x1, . . . , xn] can be uniquely represented as p(x) = x⊺Qx, where Q ∈ Fn×n

q is an upper
triangular matrix, and the corresponding polar form as p∗(x,y) = x⊺(Q+Q⊺)y with x, y ∈ Fn

q . A
multivariate quadratic map P : Fn

q → Fm
q is defined by a set of multivariate quadratic polynomials

P = (p1, . . . , pm) ∈ Fq[x1, . . . , xn]
m.

2.2 Security framework of PROV

Here, we recall the definition of a Weak Preimage-Sampleable Function (WPSF) used in the security
analysis of PROV [5].

Definition 1 (WPSF [5]). A WPSF T consists of four probabilistic polynomial-time algorithms:

• Gen: this algorithm takes as input a security parameter 1λ and outputs a function F : X → Y
with a trapdoor I;
• F: this algorithm takes as input a value x ∈ X and deterministically outputs F(x);
• I = (I1, I2): the algorithm I1 takes no input and outputs a value z ∈ Z; the algorithm I2 takes
as input z ∈ Z, y ∈ Y, and outputs x ∈ X such that F(x) = y, or outputs ⊥ if it failed;

2

• SampDom: this algorithm takes as input a function F : X → Y and outputs a value x ∈ X .

The Preimage Sampling (PS) security of a WPSF is defined as:

Definition 2 (PS security [5]). Let T be a WPSF. The advantage of an adversary A against
the PS security of T is defined as:

AdvPS
T (A) =

∣∣∣Pr [PSA0 = 1
]
− Pr

[
PSA1 = 1

]∣∣∣
where PS0 and PS1 are the security games defined in Figure 1.

PSb

(F, I)← Gen(1λ)

b∗ ← ASampleb(F)

Return b∗

Sample0

zi ← I1()

repeat

yi
$← Y

xi ← I2(zi, yi)

until xi ̸= ⊥ Return xi

Sample1

xi ← SampDom(F)

Return xi

Fig. 1: PS security games.

3 Description of PROV

PRovable Unbalanced Oil and Vinegar (PROV) is a new signature scheme [5] submitted to the
recent NIST standardization process for additional post-quantum signature schemes [1]. As several
multivariate schemes submitted to this standardization process, PROV is a variant of the Unbalanced
Oil and Vinegar (UOV) multivariate signature scheme [10].

PROV uses the the recent definition of UOV introduced by W. Beullens in [4] in combination with
an efficient variant of the so-called salt-UOV [13], a provably secure variant of UOV.

In [4], the traditional UOV trapdoor [10] is rephrased as the vanishing subspace of a multivariate
quadratic map.

Definition 3. Let P : Fn
q → Fm

q be a multivariate quadratic map and O ⊂ Fn
q be a linear subspace.

We shall say that O is a vanishing subspace of P if :

∀o ∈ O, P(o) = 0m.

From a high-level point of view, the public-key in PROV is given by the multivariate quadratic map
P : Fn

q → Fm
q and the corresponding secret-key is a vanishing subspace O ⊂ Fn

q of dimension m+δ
with δ > 0. The main specificity of PROV is related to the parameter δ that allows a more efficient
reduction than salt-UOV [13]. From now on, we set v = n−m− δ.

3.1 Key-Generation in PROV

In order to generate a PROV key pair (Definition 3) (P,O) with P : Fn
q → Fm

q and a vanishing
subspace O ⊂ Fn

q of dimension m+δ with δ > 0, they proceed as follows in [5]. They first generate
a random basis of O in systematic form, i.e. namely a basis of the form :

(O⊺ 1m+δ) ∈ F(m+δ)×n
q , with O ∈ Fv×(m+δ)

q . (1)

Then, the components p1, . . . , pm ∈ Fq[x1, . . . , xn] of P : Fn
q −→ Fm

q are constructed as follows :

pi(x) = x⊺Pix, Pi =

(
P

(1)
i P

(2)
i

0(m+δ)×v P
(3)
i

)
∈ Fn×n

q , ∀i, 1 ≤ i ≤ m, (2)

3

with x = (x1, . . . , xn) ∈ Fn
q ,P

(1)
i ∈ Fv×v

q be an upper triangular matrix, P
(2)
i ∈ Fv×(m+δ)

q be a

matrix and P
(3)
i = Upper

(
−O⊺P

(1)
i O−O⊺P

(2)
i

)
∈ F(m+δ)×(m+δ)

q .

As proved in [5], the linear subspace O generated as in (1) is a vanishing subspace of the map
defined by the polynomials (2).

3.2 Signature Verification and Generation

The PROV signature for a message msg ∈ {0, 1}∗ is given by a vector s ∈ Fn
q and a fixed-length bit

string salt ∈ {0, 1}lensalt such that

P(s) = H(msg||salt),

where H : {0, 1}∗ → Fm
q is a hash function2.

The PROV trapdoor is based on the result below, demonstrating that the knowledge of the vanishing
subspace allows one to compute a valid signature by solving a linear system.

Lemma 1. Let O ∈ Fv×(m+δ)
q , P : Fn

q → Fm
q be represented with matrices (P1, . . . ,Pm) ∈

(Fn×n
q)m as defined in (2), v̄ =

(
v

0m+δ

)
, ō =

(
O

1m+δ

)
o ∈ Fn

q , with v ∈ Fv
q and o ∈ F(m+δ)

q . For

all h = (h1, . . . , hm) ∈ Fm
q , it holds that :

P(v̄ + ō) = h ⇐⇒ v⊺Sio = hi − v⊺P
(1)
i v, ∀ i, 1 ≤ i ≤ m,

with Si = (P
(1)
i +P

(1)⊺
i)O+P

(2)
i ∈ Fv×(m+δ)

q .

In order to generate a signature of msg ∈ {0, 1}∗, the signer generates a random pair (v, salt) ∈
Fv
q×{0, 1}lensalt and solves the corresponding linear system of Lemma 1 with h = H(msg||salt) ∈ Fm

q .

If the linear system has no solution, then the signer samples a new salt ∈ {0, 1}lensalt and solves
the new system. The process is repeated until a solution exists. Finally, he recovers the signature
s = v̄ + ō. We detail the PROV signature generation in Algorithm 1.

Remark 1. Note that the vector ō belongs in the secret vanishing subspace O of the public key.

Given a matrix A ∈ Fm×n
q , and vector b ∈ Fm

q , the algorithm LinSolve outputs the set of all
solutions x ∈ Fn

q of the linear system Ax = b.

3.3 Security of PROV

An appealing feature of PROV lies in its security proof where existential forgery under chosen
message attacks (EUF-CMA) can be reduced to the problem of inverting the public-key polynomials
defined as follows:

Definition 4 (UOV− problem). Let p = (p1, . . . , pm) ∈ Fq[x1, . . . , xn]
m be quadratic polynomials

corresponding to a PROV public-key and d = (d1, . . . , dm) ∈ Fm
q . The UOV− problem asks to find a

solution to the non-linear system of equations :

p1 − d1 = 0, . . . , pm − dm = 0.

As discussed in [5], the best approaches known for solving the UOV− problem are generic tech-
niques for solving non-linear equations and then exponential in the classical and quantum settings
[2,3,7,6].

2 Precisely, in [5], they generate h as H(4||hpk||msg||salt) where hpk is a hash of the public key and a
secret seed. We omit this detail to simplify the presentation.

4

Algorithm 1: PROV Signing

Data: The secret key O ∈ Fv×(m+δ)
q , the public key (P1, . . . ,Pm) ∈ (Fn×n

q)m and a message
msg ∈ {0, 1}∗.

Result: The signature (s, salt) ∈ Fn
q × {0, 1}lensalt of message msg.

1 v
$← Fv

q

2 S ← ∅
3 while S = ∅ do
4 salt

$← {0, 1}lensalt

5 (h1, . . . , hm)← H(msg||salt)
6 for i from 1 to m do

7 ai ← v⊺((P
(1)
i +P

(1)⊺
i)O+P

(2)
i)

8 bi = hi − v⊺P
(1)
i v

9 end
10 A := (a⊺

1|| . . . ||a⊺
m)⊺

11 b := (b1|| . . . ||bm)⊺

12 S ← LinSolve(A, b)

13 end

14 o
$← S

15 s←
(

v
0m+δ

)
+

(
O

1m+δ

)
o

16 Return (s, salt)

4 Polynomial-Time Attack against PROV Specification

4.1 Overview

Our attack relies on the fact that the (vinegar) vector v ∈ Fv
q is leaked and constant in the PROV

specification v1.0 [5]. More precisely, the designers described a probabilistic signature generation,
similar to Algorithm 1, only for “ease of exposition”. In practice, they deterministically gener-
ate v as H(3||msg) where H is the hash function SHAKE256. We emphasize that the reference
implementation generates the vinegar vector v ∈ Fv

q similarly.

The vinegar vector (and the corresponding signature) leaks information about the secret-key,
precisely it reveals one vector in the secret linear subspace O ⊂ Fn

q . Recently, P. Pébereau [12] has
introduced a polynomial-time key-recovery attack on UOV that uses only one vector in the secret
linear subspace. In the next part, we adapt this key-recovery attack on PROV.

4.2 Description of the Attack

First, we explain why the PROV specification leaks one vector in the secret linear subspace.
Let (v, s) ∈ Fv

q × Fn
q be a pair of a vinegar vector and a signature3 for the message msg ∈ {0, 1}∗

and the PROV key pair (P,O) with P : Fn
q → Fm

q and O ⊂ Fn
q . We recall than s = v̄ + ō where

v̄⊺ = (v⊺||0⊺
m+δ) ∈ Fn

q and ō ∈ Fn
q . As discussed above, the pair (v, s) is public. Therefore, any

adversary can compute a vector in the secret linear subspace ō = s− v̄ ∈ O (see Remark 1).

In the following, we focus on the key-recovery attack assuming the knowledge of one non-zero
vector in the linear subspace. Also, we assume that n ≤ 3m (this statement holds for concrete
parameters proposed in the PROV submission, see Table 1) and that the rank of the matrices
(P1+P⊺

1 , . . . ,Pm+P⊺
m) defined as in (2) is n. The attack from [12] uses a special property of the

polar form of a PROV key pair.

Lemma 2 ([12]). Let P : Fn
q → Fm

q be a multivariate quadratic map, O ⊂ Fn
q be a vanishing

subspace of P and P∗ : Fn
q × Fn

q → Fm
q be the polar form of P. Then, for all (x,y) ∈ O2, we have

P∗(x,y) = P∗(y,x) = 0m.

3 The salt is irrelevant for the attack, therefore we ignore it.

5

Now, we present an adaption of the attack from [12] to the PROV case (see Remark 2).

Lemma 3. Let P : Fn
q → Fm

q be a PROV public-key, O ⊂ Fn
q be the vanishing subspace of P where

P are represented with matrices (P1, . . . ,Pm) ∈ (Fn×n
q)m defined as in (2). Let o ∈ O \ {0} and

Jo(z) = (o⊺(P1 + P⊺
1)z, . . . ,o

⊺(Pm + P⊺
m)z) with z = (z1, . . . , zn) a vector of variables. Then,

Ker(Jo) is an (n−m)-dimensional subspace such that

O ⊂ Ker(Jo).

Proof. Let P∗ : Fn
q×Fn

q → Fm
q be the polar form of P with components p∗1, . . . , p

∗
m where p∗i (y, z) =

y⊺(Pi +P⊺
i)z for all 1 ≤ i ≤ m. By Lemma 2, for all x ∈ O.

p∗i (o,x) = 0,∀1 ≤ i ≤ m.

This implies that the kernel of the linear application p∗i,o(z) = o⊺(Pi + P⊺
i)z contains O. By

hypothesis, all the matrices (P1 +P⊺
1 , . . . ,Pm +P⊺

m) are of rank n and o ̸= 0n, therefore p∗i,o(z)
is non-zero. Since the linear map is non-zero, its kernel is a hyperplane. We have shown that
O ⊂ Ker(p∗i,o), for all 1 ≤ i ≤ m. Therefore, we obtain :

O ⊂
⋂

1≤i≤m

Ker(p∗i,o) = Ker(Jo)

Also, the hyperplanes are non-parallel, because we have O ⊂ Ker(p∗i,o) for all 1 ≤ i ≤ m. Therefore,
the intersection of the m hyperplanes has dimension n−m. This concludes the proof.

Remark 2. In [12], the authors consider finite fields of odd characteristics and exploit the bijective
relation p = 2−1p∗ between any quadratic homogeneous polynomial p ∈ Fq[x1, . . . , xn] and its polar
form p∗ : Fn

q × Fn
q → Fq. Therefore, any homogeneous quadratic polynomial p ∈ Fq[x1, . . . , xn]

can be represented with a symmetric matrix M ∈ Fn×n
q such that p(x) = x⊺Mx. However, a

polynomial p(x) = x⊺Mx with a symmetric matrix M is either linear or zero in a finite field of
characteristic two (as with PROV). In other words, the bijective relation does not hold for finite fields
of characteristic two (as discussed in [12,15]). Therefore, we need to slightly adapt the approach
from [12] by considering the polar form of the public-key and not by exploiting a symmetric
representation of the public-key as in [12].

The next step is then essentially similar to [12, Theorem 7], namely we restrict the public-key poly-
nomials on Ker(Jo) and obtain new polynomial with fewer variables and the same secret vanishing
subspace O. The secret-key can be recovered in polynomial-time from these new polynomials.

Theorem 1. Let P : Fn
q → Fm

q be a PROV public-key, O ⊂ Fn
q be the vanishing subspace of P with

dim(O) = m+δ where δ > 0 and P be represented by matrices (P1, . . . ,Pm) ∈ (Fn×n
q)m defined as

in (2). Then, there exists an adversary A taking as input
(
(P1, . . . ,Pm),o

)
∈ (Fn×n

q)m ×O \ {0}
that outputs a basis of O in polynomial-time.

The proof is similar to [12] but provided for the sake of correctness and completeness.

Proof. Let Jo(z) = (o⊺(P1+P⊺
1)z, . . . ,o

⊺(Pm+P⊺
m)z) with z = (z1, . . . , zn) a vector of variables.

By Lemma 3, O ⊂ Ker(Jo) for which a basis B ∈ Fn×(n−m)
q can be computed in O(nω), with

2 ≤ ω ≤ 3 the matrix multiplication exponent. Then, we restrict the public-key polynomials to
Ker(Jo). This yields :

Pi,Ker(Jo) = B⊺PiB, ∀ i, 1 ≤ i ≤ m.

The restricted public-key PKer(Jo) : F
(n−m)
q → Fm

q can be computed in polynomial-time O(mnω)

and be represented with matrices P1,Ker(Jo), . . . ,Pm,Ker(Jo) ∈ F(n−m)×(n−m)
q is a PROV public key

with parameters (q, n−m,m, δ) because O ⊂ Ker(Jo). Let Ō ⊂ Fn−m
q be the vanishing subspace

of PKer(Jo) with dim(Ō) = m+δ. With our assumption n ≤ 3m, we obtain n−m−2m−2δ ≤ 0. As
explained in the specification of PROV [5], the so-called Kipnis-Shamir attack on PROV for parameters

6

(q, n,m, δ) has complexity poly(n) qn−2m−2δ. This attack recovers a basis C ∈ F(n−m)×(m+δ)
q of

the secret subspace Ō in time poly(n). Then, for all i with 1 ≤ i ≤ m, we have

(BC)⊺PiBC = C⊺(B⊺PiB)C = C⊺Pi,Ker(Jo)C = 0(m+δ)×(m+δ).

Namely, the matrix BC ∈ Fn×(m+δ)
q is a basis of O. Multiplying these matrices takes time O(nω)

and concludes the proof that the secret-key can be recovered in O(m poly(n)).

4.3 Experimental results

In this part, we show that our attack is not only efficient from a theoretical point of view but
also very practical. To do so, we implemented the attack (Theorem 1) in Sagemath4 ([16] taking
as reference the code used in [12]) with the parameters of PROV suggested in [5] (Table 1). The
non-zero vector of the vanishing subspace of the public key is generated with an oracle since such
vector is leaked in PROV specification (Sub-Section 4.2).

Variant λ q n m δ v

PROV-I 128 256 136 46 8 82

PROV-III 192 256 200 70 8 122

PROV-V 256 256 264 96 8 160

Table 1: Parameter sets of the PROV signature scheme.

As discussed in [12], the Kipnis-Shamir attack is replaced by the “kernel approach” (see [12] for
details). We estimate the performance of the implementation on a single thread of a laptop with
an Intel CPU i7-1365U at 5.2GHz and with 32GB of RAM. In Table 2, we report the experimental
results obtained. To summarize, we recover the secret-key of PROV in a few seconds for every
security level.

Variant PROV-I PROV-III PROV-V

Time 1.78.s 4.72.s 7.93s

Table 2: Key-recovery attack of PROV.

4.4 Countermeasure

Before presenting the countermeasure, we briefly recall the security model used PROV. One idea of
the proof is to model the PROV signature scheme as a weak preimage-sampleable function (WPSF)
(Definition 1), denoted TPROV, such as :

• The algorithm (pk, sk)← Gen is the PROV key generation;
• The algorithm F evaluates the PROV public-key;
• The algorithm SampDom uniformly generates a value in Fn

q ;
• The pair of algorithms I = (I1, I2) are defined as follows:

• The algorithm I1 outputs a uniformly distributed vector v ∈ Fv
q ;

• The algorithm I2 takes as input (pk, sk,v,y) with v ∈ Fv
q and y ∈ Fm

q , performs one
iteration of the while loop in the signature generation (see Algorithm 1) for the given
vector v and outputs a PROV signature s ∈ Fn

q for h = y or ⊥ if the iteration failed.

One can remark that the model assumes, in particular, that the vinegar vector should be uniform
and kept secret to the adversary in PS security of TPROV (see Definition 2). Precisely, in the PS0
game, the adversary has access to the oracle Sample0 (both described in Figure 1). The oracle

4 Our implementation is available at https://github.com/River-Moreira-Ferreira/prov-attack

7

https://github.com/River-Moreira-Ferreira/prov-attack

Sample0 keeps secret the value zi ← I1 used for I2 from the adversary A. Also, the algorithm I1

uniformly generates the vector zi ∈ Fv
q for TPROV.

The specification of PROV v.1.0 differs from this model as the vinegar vector, which corresponds
to a value zi ∈ Fv

q , is leaked during signature generation and constant.

The countermeasure appears evident when knowing this flaw in the security model: the vinegar
vector should be uniformly generated and kept secret. This tweak will prevent an adversary from
recovering easily a vector in the secret linear subspace with the previous strategy and makes PROV
immune against our polynomial-time key-recovery attack.

For example, we can suggest generating the vector v as H(3||ssk||msg) where ssk is the secret
seed uniformly generated during the key generation (this was the strategy followed by others UOV
candidates to the ongoing NIST standardization process). We will obtain a deterministic signature
generation, as desired in the PROV specification.

Finally, we have reported this vulnerability to the designer of PROV and they updated the specifi-
cation (v1.1) with such countermeasure.

References

1. NIST. Call for Additional Digital Signature Schemes for the Post-Quantum Cryptography Standard-
ization Process.

2. Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Hybrid approach for solving multivariate
systems over finite fields. J. Math. Cryptol., 3(3):177–197, 2009.

3. Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Solving polynomial systems over finite fields:
improved analysis of the hybrid approach. In Joris van der Hoeven and Mark van Hoeij, editors,
International Symposium on Symbolic and Algebraic Computation, ISSAC’12, Grenoble, France - July
22 - 25, 2012, pages 67–74. ACM, 2012.

4. Ward Beullens. Improved cryptanalysis of UOV and Rainbow. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 348–373. Springer,
Heidelberg, October 2021.

5. Benoit Cogliati, Jean-Charles Faugère, Pierre-Alain Fouque, Louis Goubin, Robin Larrieu, Gilles
Macario-Rat, Brice Minaud, and Jacques Patarin. PROV: Provable unbalanced Oil and Vinegar speci-
fication v1.0 – 06/01/2023.

6. Andre Esser, Javier A. Verbel, Floyd Zweydinger, and Emanuele Bellini. ttcryptographicestimators: a
software library for cryptographic hardness estimation. IACR Cryptol. ePrint Arch., page 589, 2023.

7. Jean-Charles Faugère, Kelsey Horan, Delaram Kahrobaei, Marc Kaplan, Elham Kashefi, and Ludovic
Perret. Fast quantum algorithm for solving multivariate quadratic equations. Cryptology ePrint
Archive, Paper 2017/1236, 2017. https://eprint.iacr.org/2017/1236.

8. Andreas Hülsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-
Lukas Gazdag, Panos Kampanakis, Stefan Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel,
Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumasson,
Bas Westerbaan, and Ward Beullens. SPHINCS+. Technical report, National Institute of Standards
and Technology, 2022. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

9. Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and Vinegar signature schemes. In
Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 206–222. Springer, Heidelberg,
May 1999.

10. Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar signature schemes.
In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT ’99, International Conference on
the Theory and Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999,
Proceeding, volume 1592 of Lecture Notes in Computer Science, pages 206–222. Springer, 1999.

11. Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON. Technical
report, National Institute of Standards and Technology, 2022. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022.

12. Pierre Pébereau. One vector to rule them all: Key recovery from one vector in uov schemes. Cryptology
ePrint Archive, Paper 2023/1131, 2023. https://eprint.iacr.org/2023/1131.

8

https://eprint.iacr.org/2017/1236
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2023/1131

13. Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. On provable security of UOV and HFE sig-
nature schemes against chosen-message attack. In Bo-Yin Yang, editor, Post-Quantum Cryptography
- 4th International Workshop, PQCrypto 2011, Taipei, Taiwan, November 29 - December 2, 2011.
Proceedings, volume 7071 of Lecture Notes in Computer Science, pages 68–82. Springer, 2011.

14. Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé, and Jintai Ding. CRYSTALS-
KYBER. Technical report, National Institute of Standards and Technology, 2022. available at
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022.

15. Jean-Pierre Serre. A Course in Arithmetic, volume 7 of Graduate Texts in Mathematics. Springer,
New York, NY, 1973.

16. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.5), 2022.
https://www.sagemath.org.

9

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

	Polynomial-Time Key-Recovery Attack on the NIST Specification of PROV
	Introduction
	Organization of the Paper and Main Results

	Preliminaries
	Notations
	Security framework of PROV

	Description of PROV
	Key-Generation in PROV
	Signature Verification and Generation
	Security of PROV

	Polynomial-Time Attack against PROV Specification
	Overview
	Description of the Attack
	Experimental results
	Countermeasure

	References

