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Abstract 
This work proposes to lay the foundations for building an efficient database that is representative of the 
morphology of the third body, with the aim of understanding whether it is possible to predict the local friction 
coefficient from it, using Machine Learning (ML). Five different databases (including morphological properties of 
ejected wear particles and textural properties of on-track third-body) are constructed, and a Random Forest (RF) 
machine learning algorithm is implemented. Results show that an algorithm trained on third body morphological 
features can provide a fairly accurate prediction of the local value of the friction coefficient in a variety of 
tribological situations, with an average error close to 0.14 for measured values ranging between 0.1 and 1.2. 
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1. Introduction 

 
Following the work of Peter Jost in 1966 [1], the scientific community became increasingly interested in the costs 

generated by friction and wear. Numerous theories were developed to address this issue, in particular Maurice 

Godet's third body theory [2], which was later formalized by Yves Berthier [3], taking the form of a tribological 

circuit in which the third body flows into the contact. The tribological history and state of the contact can thus 

be described by observing the interface and interpreting the various third body flows. The accuracy of this 

operation depends on the tribologist's judgement and experience, and is therefore highly subjective by nature. 

This is why the use of image analysis techniques has become widespread in order to study and characterize the 

morphology of wear particles with the aim of linking it to wear mechanisms or experimental conditions (see in 

particular [4]–[9]). Studying the morphology of wear particles gives access to their shape and size and can help 

to understand what type of wear led to their production. In most studies, the particles are collected and observed 

by microscopy (optical and/or electron). The resulting images are then processed and segmented. From the 

resulting binary images, size and shape metrics can be extracted and processed manually or automatically. This 

approach however presents the risk to disrupt the structure of the third body agglomerates, and to disregard its 

spatial patterns on the track. The work proposed here therefore focuses on dry contact, with the wear particles 

remaining on their production substrate and the list of their descriptors being supplemented by texture 
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descriptors characterizing the morphology of the friction track. The idea here is no longer to classify the particles 

into categories corresponding to their production mode, but to predict the local value of the friction coefficient 

measured experimentally. It is indeed well-known that, in many engineering situations, the instantaneous friction 

coefficient can be highly fluctuating and rather unpredictable, contrary to, say a time- or space-averaged friction 

for which more repeatability is expected. For this purpose, this work describes the use of a supervised machine 

learning algorithm that works as follows: a learning system will be 'fed' with labelled observations to enable it to 

create and update its prediction model of the local friction coefficient based on local morphological quantities. 

The use of such algorithms requires the construction of labelled databases, made up of labels and features, and 

the focus of the present work is therefore mostly put on the design and construction of the most relevant 

morphological database for friction prediction.  

As mentioned above, a model combines a labelled database and an algorithm. An important tribological 

literature exists on the choice of the best ML algorithm in a given framework ([10], [11]), sometimes with limited 

guarantee that its performances can be transposed to a different framework. In view of the work carried out on 

the subject, the choice of algorithm does not seem to be the most discriminating factor in view of the 

performance measured ([12], [13]), and the quality of the training database plays an (at least) equally important 

role in the construction of the model [12].  Furthermore, no state-of-the-art protocol exists yet for the 

constitution of a morphological database for tribological purposes, and we do not have any a priori knowledge 

on what its content should be in order to maximize prediction abilities [13]. Thus, the aim of the work presented 

here is to focus on the appropriate choice and construction of the database for the considered problem. 

Regarding the choice of the algorithm, Deep Learning is primarily a prediction tool, and its informative power is 

still limited (although gaining popularity for tribological applications [14]). A classical Machine Learning (ML) 

algorithm has therefore been chosen among the numerous existing ML algorithms in order to gain knowledge 

on the system at stake, before resorting to more powerful solutions in future studies. Detailed reasons are given 

in section 3. 

The major contributions of this work are solid proofs that (i) a direct quantitative link between third body 

morphology and instantaneous friction can be established for prediction purposes, and that (ii) Machine Learning 

algorithms are appropriate tools for such a task. The manuscript has the following structure: Section 2 presents 

the acquisition and processing of experimental data; Section 3 then describes the construction and evaluation of 

the databases; In section 4, we discuss the generalization of these databases; Section 5 concludes the work. 
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2. Experimental methodology: data acquisition and processing 
 
2.1. Experimental set up  
 

To produce experimental data, a pin-on-disc tribometer, presented on Figure 1, is used. It consists of a rotating a 

low-carbon alloy steel disk and a pin, both made of 35CrNiMo16 steel, fixed to an arm that allows 2 degrees of 

freedom, namely the translation tangential to the movement (along y) and the vertical translation (along z). A 

vertical dead load is applied on the pin, and the system is equipped with a force sensor to measure the tangential 

force, and thus determine the coefficient of friction and an eddy-current sensor serving as a lap counter. A 

transparent casing allows to monitor and control the gaseous environment of the experiment. Initial surfaces are 

extracted using a Zygo Zegage PRO non-contact optical profiler. Prior to analyses and sliding tests, the as-received 

samples surfaces are cleaned by ultrasound and chemically in an ethyl-acetate bath for 5 min. This cleaning 

eliminates residual pollution due to specimen handling and machining. Then rinsing is done in an ethanol bath 

for 5 min. The surface roughness of the initial state is Sa = 0.207 µm. 

 

Figure 1: Pin on disk tribometer  

A total of 14 tests are performed, as presented in Table 1, where several experimental parameters are varied: 

thickness of the disk, track radius, sliding distance, and gaseous environment (ambient air or argon), in order to 

product a panel of third bodies of varied morphology. The axial load (10 N) and the sliding velocity (6.26 mm/s) 

are kept constants for all tests, and a new pin is employed in each experiment. Temperature and relative humidity 

are measured at the beginning of each test. Tests are assigned the designations of DnPm, where n is the disc 

number and m is the pin number. These tests can be grouped into four categories. The first category (D10P20 to 

D10P23) corresponds to a set of long-distance tests in free atmosphere or Argon (Alpha gas 1 quality), performed 
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on a disk of 10 mm of thickness. The second one (D11P24 to D11P27) corresponds to a set of short distance tests 

performed on a 10 mm disk in free atmosphere. The third one (D12P28 to D12P31) corresponds to tests 

performed on a 15 mm-thick disk, at various sliding distances in Argon and free atmosphere. The change in disc 

thickness necessitates modifying the height of the arm holding the pin by adding a shim to the tribometer. 

Modifying the thickness of the disk may induce slight changes in the dynamic response of the tribosystem [15], 

[16] thus possibly the friction. The last one (D17P42 and D151P43) corresponds to a set of additional tests 

performed in a free atmosphere on 10 and 15 mm thick disks.  

 

Test 
DnPm 

Thickness of 
the disk (mm) 

Radius 
(mm) 

Angular 
Speed 
(RPM) 

Distance 
(m) 

T (◦C) RH (%) Atm. 

D10P20 10 27 2.22 12 19.4 <1%  Argon 

D10P21 10 33 1.82 18 19.3 <1% Argon 

D10P22 10 39 1.53 12 20.3 43 Free 

D10P23 10 45 1.33 18 22.8 42 Free 

D11P24 10 27 2.22 1 20 37 Free 

D11P25 10 33 1.82 2 20 37 Free 

D11P26 10 39 1.53 3 20 37 Free 

D11P27 10 45 1.33 6 21 37 Free 

D12P28 15 27 2.22 7.46 20 <1% Argon 

D12P29 15 33 1.82 18 18.7 <1% Argon 

D12P30 15 39 1.53 6 18.2 38 Free 

D12P31 15 45 1.33 18 18.2 38 Free 

D17P42 10 45 1.33 25 18.9 29.9 Free 

D151P43 15 45 1.33 25 20 31.4 Free 

 
Table 1: Experimental conditions for tribological testing. (Where T is temperature, RH is relative humidity and Atm is 

atmosphere)    
 

The aim of this work is to highlight the existence of correlations between friction and morphology of the third 

body, and to evaluate to what extent the value of the friction coefficient can be predicted from these 

morphological characteristics. It is therefore necessary to extract morphological data at several locations of each 

disc after tribological testing. To that extend, Scanning Electron microscopy (SEM) imaging is employed. As 

described in tribological literature [2], [17], the flows of material in a sliding system can be described using the 

tribological circuit. The first bodies, in contact, are in relative motion; the third body is formed at the sliding 

interface. The source flow, Qs, represents the detachment of the material from the first body to become the third 

body; the internal flow Qi describes the movement of the material along the interface; the ejection flow Qe is the 

material ejected from the interface; the recirculation flow Qr is the ejected material that has been reintroduced 

into the interface; and the wear flow Qw is the material that has been permanently removed from the sliding 
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system. During this study, the morphology of the third body contributed to those different flows is studied, in 

order to establish what links, exist between the local state of the interface and the measured friction coefficient. 

It is possible to highlight the consequences of the flows Qi and Qw thanks to third body morphology observations 

by taking SEM images at selected locations every 15° on the sliding track. For each position, it is necessary to 

focus on three areas: The track center (corresponding to Qi), and both sides of the track (corresponding to Qw). 

Figure 2 illustrates these regions of interest (ROI), on the disk. Table 2 provides the SEM images acquisition 

conditions. 

 

 

Figure 2: Localization of Region Of Interest (ROI) on disk. (SD = Sliding Direction). 
 

 

SEM Parameters Value 

Detector Everhart-Thornley (secondary electrons detection) 
Dwell time (µs) 30 
Resolution (px) 1024 x 884 

Working distance (mm) 10 
High voltage (kV) 20 

Spot size 5 (i.e. beam current = 1.2nA) 
 

Table 2 : SEM image acquisition conditions.  
 

2.2 Tribological results 

Figure 3 Provides a general view of the tribological results. In Figure 3a, the raw friction signal of the test D10P22 

is provided for the whole test duration (about 30 minutes). This test is performed under ambient air on a total 

distance of about 12 m. The friction signal exhibits a large variability in time and appears considerably noisy. 
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However, periodic patterns are revealed by zooming in on just a few laps (Figure 3b), corresponding to successive 

passages on the same areas of the disc.  Hence, friction data can be represented using a color scale map format 

(figure 3c), as a function of track angular position on the disc (horizontal x-axis) and number of sliding laps (vertical 

y-axis). Some very clear patterns do appear in this friction map. For example, a steady increase of the friction is 

observed in time, in every location of the disc, during the first ~25 laps, until a relative stabilization. During some 

time periods friction drops consistently everywhere on the disc during a couple of laps (around laps 10, 28, and 

42, as highlighted by horizontal dotted lines). Such events are certainly related to temporary modifications of the 

pin surface/interface, since they happen concomitantly everywhere on the disc. Meanwhile, vertical patterns 

(around angles of 80° and 220° for example, as highlighted by vertical dotted lines) correspond to consistent 

friction drops every time the pin passes certain locations on the disc: these patterns are therefore related to some 

local properties of the disc at these locations. 

 

Figure 3: Tribological results; a. Raw friction signal for the test D10P22; b. Zoomed view on a few lap-periods of the same 
signal; c. Friction map in space (angular position) and time (number of laps), with dotted lines enhancing horizontal and 
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vertical patterns; d. Evolution of average coefficient of friction per lap, for the 10 tests performed in air; e. Evolution of 
average coefficient of friction per lap, for the 4 tests performed in argon 

 

In order to provide an overview of the results of the 14 tests, Figures 3d and 3e show the evolution of the average 

friction coefficient per lap (i.e. per full rotation of the disc around its axis) as a function of the number of laps, in 

the case of the 14 tests (Table 1). Tests are plotted separately depending on their gaseous atmosphere, and a 

difference is made between short (less than 10 m of sliding) and long tests. For tests performed in ambient air 

(Figure 3d), a common trend can be observed, despite a certain variability between tests. In all cases, the initial 

averaged friction is low (between 0.1 and 0.3), and then rises steeply during the first 20-30 laps and more slowly 

until lap ~40. For the majority of long tests, it reaches a value close to 0.8, and then gently decreases to stabilize 

at around 0.65 after ~60 laps. The only exception is test D10P23, which does not reach the peak and 0.8 and 

instead directly converges towards an average value of 0.65. This value therefore seems to be a long-term stable 

value for the steel/steel contact, but it is important to keep in mind that this is an average value per lap, and that 

it hides local variations on each location of each disc. The cause of these variations, however, remains elusive, 

although some elements of understanding are provided in the remainder of the present work. 

The four tests performed in argon (Figure 3e) are more difficult to interpret, because they provide quantitatively 

dissimilar results (albeit common trends). For the very first laps of these tests, average friction values as different 

as 0.1 and 0.6 are measured among the different tests. As the number of laps increases, one can observe a general 

increase of the friction coefficient for all cases, in a rather consistent manner: tests starting at a low friction end 

up lower than tests starting at a high friction. This increase is much more irregular than for the tests performed 

in air, with sudden drops and rapid recoveries of the average friction, typically during one or two laps. After about 

60 laps, the drops    are disappearing, and the tests reach what could be called stationary states, but with friction 

values as different as 0.6 and 1.1. 

Whatever the case for which such a steady state is reached, a typical increase of about 0.5 before the first and 

the last lap is observed. 

 

2.3 Third body features 

Figure 3 highlights that the measured friction in all these steel-steel contact vary greatly, both in space and time. 

Since the materials of the bodies into contact are identical, these differences must be linked to the state of the 
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contact interface, and most primarily to the properties of the third body layer, i.e., the layer of matter separating 

the sliding surfaces. Many experimental and numerical studies [18]–[20] indeed showed that the flow regime and 

the rheology of this layer are one of the major factors controlling friction. This layer can be introduced on purpose 

but is most often a spontaneous by-product of the damaging of the contacting surfaces, as in the present study. 

Figure 4a provides for example a general view of a selected location on the track of the test D11P26, ran in 

ambient air, and stopped after 3 meters of sliding. As shown in Figures 4b, the central part of the track is 200-300 

µm-wide and is covered by a limited but noticeable amount of (roughly micrometric) third body particles. Figure 

4c shows that this is also the case on the ejection zones on both sides of the track. Generally, we observe a 

relatively granular third body, even powdery in the ejection zones and crushed in the central region. Figure 4d 

shows the friction map for this test, which indicates that the coefficient of friction has already started to evolve 

since the first lap, in concomitance with the appearance of the early third body layer observed in Figures 4a-c. 

The Figure 4e provides the friction signal for the last lap of the test, with instantaneous friction coefficients 

measured between 0.2 and 0.6. At the selected location shown in SEM views, the last recorded friction coefficient 

is close to 0.5. As confirmed by the friction map, this is a location of slightly higher friction than in the 90-180° 

region for example. 
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Figure 4: Local observations and measurements for a short test in air: D11P26. a. General view of the track after 10 laps at 
the angular position 30°; b. View of the centre of the track; c. View of the ejection zone (interior); d. Friction map with black 

dots indicating SEM observations (including a., b., c.); e. Friction signal during the last lap, with blue dots indicating SEM 
observation points extracted to the general database; f. Zoom on the friction averaging window (31 points with sampling 

frequency of 1000Hz ) around angular position 30° 
 

Figure 5a shows the final state of a selected location on the track of the test D12P31, which was running in 

ambient air until a final sliding distance of 18 meters. Detailed view of the track centre (internal flow) and of the 

track side (wear flow) are provided respectively in Figures 5b and 5c. These figures show that the track is now 

much wider (~1 mm) and covered with a much larger amount of powdery third body, both in the contact zone 

and in the ejection zone. This third body seems mildly cohesive and forms some apparently loose agglomerates. 

Following the nomenclature developed in [21], this may qualify as a granular accommodation regime. As shown 

in the friction map (Figure 5d), some initial heterogeneities of the disc (initial low friction regions at angular 

position 60° and 110°) seem to have been levelled after about 35 laps. A friction drop occurred on the whole 

track during laps 42-43 (probably because of a change in the pin surface, e.g., detachment of a large third body 

agglomerate, see [22] , but previous friction was quickly recovered. This is confirmed by the friction signal during 

the last lap (Figure 5e), which indicates a steady friction level close to 0.8 on the whole track, and a local value 
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close to 0.85 (Fig 5f) in the area depicted in Figure 5a-c. Comparing with Figure 4, it seems that, under ambient 

air, an increase in the quantity of third body correlates with an increase in friction, and also in friction stability. 

 

 

Figure 5: Local observations and measurements for a long test in air: D12P31. a. General view of the track after 60 laps at 
the angular position 345°; b. View of the centre of the track; c. View of the ejection zone (interior); d. Friction map with black 

dots indicating SEM observations (including a., b., c.); e. Friction signal during the last lap, with blue dots indicating SEM 
observation points extracted to the general database; f. Zoom on the friction averaging window around angular position 

345° 
 

 

Figure 6 is dedicated to test D12P29, performed in argon until a sliding distance of 18 meters, and depicts very 

different phenomena. As shown in Figure 6a-c, the sliding track is about 1.5 mm-wide, and is covered by a large 

amount of large (10-100 µm) third body agglomerates, which can also be observed in smaller quantity in the 

ejection zone. This third body therefore appears as cohesive, brittle-looking fragments that settle on the track 

and are cut into smaller flakes without spreading out very much laterally. The friction map provided in Figure 6d 

is characteristic of those obtained for each argon test of the present study and appears very different from those 

of ambient air tests. In contrast with the steady and general friction increase depicted in Figure 5d, this map is 

characterized by a general background of rather low friction (typically lower than 0.5) with very sudden events 
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during which friction increases above 1. During the first 25 laps, these events are rather rare and short-lived, but 

the get more and more frequent between 25 and 50 laps and ubiquitous after 50 laps. A very informative feature 

is the presence of stair-like patterns for some of these events (see e.g., in the 180° region around lap 30). A 

plausible hypothesis would be to relate these friction jumps to the trapping of large agglomerates of third body, 

such as the one depicted in Figure 6c. The stair-like patterns would therefore correspond to the pin capturing the 

agglomerate for a few centimetres of sliding, then releasing it behind and recapturing it at a later lap. This 

hypothesis is also consistent with the progressive build-up of a large collection of such agglomerates on the track, 

and with the fact that the period of generalized large friction (end of the test) is concomitant with the observation 

of a large amount of third body (Figure 6a). This type of flow regime was reproduced numerically [23], [24], and 

indeed led to larger friction coefficients than in the granular case. During the last lap (Figure 6f), the recorded 

friction is generally comprised between 0.9 and 1.1, although it can be locally as low as 0.6. At the location 

selected for the observations of Figure 6a-c, it is close to 1.1. 

 

 

Figure 6: Local observations and measurements for a long test in argon: D12P29. a. General view of the track after 85 laps at 
the angular position 15°; b. View of the centre of the track; c. View of the ejection zone (exterior); d. Friction map with black 

dots indicating SEM observations (including a., b., c.); e. Friction signal during the last lap, with blue dots indicating SEM 
observation points extracted to the general database; f. Zoom on the friction averaging window around angular position 15° 
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2.4 Data extraction 

Figures 4, 5, and 6 indicate that, despite (i) the limited number of test variables and (ii) the first body material is 

the same for all tests, the measured friction coefficient and the observed third body morphology at the end of 

each test do vary a lot. We may therefore wonder whether a strong quantitative link may be established between 

these two classes of observations. The main question would be: “Is the value of the instantaneous friction 

coefficient coded in the aspect of the friction track described in the previous section?”. Establishing such a link is 

a typical task for machine learning, as we elaborate later, but it requires to first extract relevant quantitative data 

from the raw experimental results. To that end, regions of interest (ROI) are sampled every θ=15° on the wear 

track (figure 2) of each of the 14 experimental tests, giving a total of 336 ROI. For each ROI three images are 

taken: one of the center of the track and two of its sides (Figure 2). These two categories of images, highlighting 

different third body morphology, have to undergo different processing techniques in order to extract features, 

also called descriptors.  

Because of their complexity and of the large concentration of third body at those locations, the track centre 

images are treated as textures for which co-occurrence matrices must be calculated. From these matrices it is 

then possible to evaluate various descriptors such as homogeneity, contrast, (informational) entropy, energy, 

ASM, correlation and dissimilarity. As detailed in [25], these quantities can be related in a statistical way to such 

morphological properties as the complexity or the heterogeneity of the third body layer aspect. These descriptors 

reflect the morphology of third body due to the internal flow (Qi). 

In contract, the wear flow (Qw) is described by the morphology of the ejected particles in the two lateral regions 

of each ROI, where the particles are more scarce and easier to characterize individually. To achieve this, the 

images of track sides must be segmented to access this information. The diversity of third body particles 

presented in the previous section prevents the use of so-called "classical" segmentation methods (i.e., based on 

thresholding or edge detection [22], [26], [27]. To overcome this, we developed a semi-automatic segmentation 

program based on machine learning, whose operation is described in detail in a previous work [25]. In this 

program, each pixel of the image to be processed is defined by a set of grey level values, evaluated based on 

geometric reconstruction and texture characteristics. This set of values is processed by a neural network that has 

been trained to classify pixels as "part of a particle" and "not part of a particle". Once the images have been 

segmented, 21 descriptors can be measured, divided into three categories: number of particles, size (including 
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perimeter, area, convex area.) and shape (including circularity, roundness, Minkowski metrics [28], elongation, 

aspect ratio, solidity, extend and equivalent diameter). At the end of this image analysis processing phase, 7 

texture descriptors and 21 particle descriptors are available for each ROI (center, interior and exterior). In several 

cases, explained later in section 3.2, these descriptors could be reduced to statistical descriptors like average and 

standard deviation. 

Finally, each ROI is associated with a friction coefficient value. This is done by extracting this value from the friction 

measurements during the last lap of each test (e.g., Figures 4e, 5e, 6e), every 15° on the track. To account for the 

fact that the ROI have a certain spatial extension, a local averaging of the raw friction signal is performed over 

the corresponding time window (e.g., Figures 4f, 5f, 6f).  

A histogram of the friction coefficients extracted at the 336 ROI is provided in Figure 7. It shows that the measured 

value covers the whole range of typical values for dry friction (i.e., from ~0.1 to ~1.3), with a larger concentration 

of values in the range 0.6-0.8. This figure also shows that tests in argon generally lead to larger friction coefficients 

(especially long ones, which constitute all the cases for which friction is larger than 1), while the tests in ambient 

air are generally less frictional (especially short ones, which constitute all the cases for which friction is lower 

than 0.3). 

 

 

Figure 7: Histogram of the local friction measurements in the database, colour-coded by test environment and duration. The 

threshold between short and long tests is put at 10 meters of sliding. 
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An important point to notice is that, in this work, the morphology of the pin is completely disregarded. Indeed, 

the pin surface morphology cannot be directly associated with a given location on the track and with a given 

value of the friction coefficient. Despite its important role in the tribosystem, the pin therefore cannot bring any 

relevant information in the present context. 

 

3. Machine Learning 
3.1. Machine learning algorithm 

Among the numerous existing ML algorithms, random forest (RF) was chosen in the present study, essentially for 

three reasons: 

1. With an equivalent model, it has a more reasonable computation time than comparable algorithm, like 

Multi-Layer Perceptron (MLP) or Support Vector Machine (SVM). Thanks to the parallelization of the 

computations [29], [30]. This feature, although not negligible for large models, is not essential here. 

2. Because of its nature as an ensemble method, the random forest makes it possible to work with small 

databases with a large dimension, i.e., a small number of samples but a large number of features [30], [31]. 

3. Finally, this algorithm could evaluate the influence of features during the learning and prediction 

processes [32]. 

Before presenting the Random Forest (RF) algorithm used in this study it is necessary to introduce the concept of 

a decision tree. A decision tree initially consists of a root node containing all the observations in the learning 

database. Classically, this node will divide into 2 children nodes using a separation rule chosen according to the 

task allocated to the tree. Examples of rules and how they work are described in [29], [30], [33]. This division is 

then repeated until the leaves are obtained, which are the lowest levels of the tree. The depth (i.e. number) of 

these levels can be parameterized using the model’s hyperparameters.  

Alternatively, we can say that the algorithm separates the training set into two subsets using a single feature k 

and a threshold tk. It searches for the pair (k, tk) that minimises the mean square error (MSE) weighted by the 

size of the subsets. The process is applied recursively to the subsets and stops when the maximum depth is 

reached (max_depth hyperparameter) or when there are no more features reducing the square error [30], [32].  

Gerard Biau [32] proposes a simple definition of this concept: “decision trees are tools for recursively slicing space 

with local decision-making”. Empirically, it has been observed that a different decision rule could have been 

chosen at each stage of tree construction. To compensate for this phenomenon, it is possible to build a collection 
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of trees called a forest, thus overcoming the instability of the predictions of a single tree. Another virtue of this 

method is that it reduces the complexity of the problem, as each tree in the forest will be required to process less 

data [32]. This sampling will also make it possible to set aside data not used to build the trees, which will be used 

for variable selection.  

To use a machine learning algorithm, the user must adjust the hyperparameters. Thus, as demonstrated by [31], 

[34], the significant hyperparameters of a random forest are: 

- n-estimators: Number of trees in the forest. 

- max-depth: Maximum tree depth. If None, nodes are developed until all leaves are pure, or until all leaves 

contain less than min-samples-split samples. 

- min-samples-split: The minimum number of samples required to split an internal node. 

- max-features: The number of features to be considered when search for the best division. 

When it comes to adjusting (also known as tuning) hyperparameters, several steps should be followed. The first 

is to determine which hyperparameters have the greatest influence. This can be done empirically, by varying the 

parameters in turn[31], [34]. Sensitivity analysis methods such as Morris' method [35], genetic algorithms (GA) 

or Tagushi's experimental design [36], [37] can also be used to select the parameters to be adjusted. Once the 

relevant hyperparameters have been selected, two tools developed in the scikit-learn Python librairy can be used: 

RandomizedSearchCV and GridSearchCV. Starting with GridSearchCV, the user creates a grid of parameters to 

test, then defines a blank model to train. The GridsearchCV method then tests all available hyperparameter 

combinations and proposes the best performing one. This method is particularly suited to cases where the 

number of parameters to be tested is small. If the search space is large, it is preferable to use 

RandomizedSearchCV [30]. Instead of trying all possible combinations, it evaluates a user-defined number of 

cases. At each iteration, the method selects a random value for each hyperparameter until a satisfactory 

convergence is achieved. 

Due to its low computational cost and widespread use in the domain, Python has been chosen as the 

programming language. The scikit learn python library [38] is chosen to implement the Machine Learning 

algorithm. The program is developed as a python notebook and follows a number of 5 steps. The figure 8 presents 

a schematic workflow to illustrate its operation.  At the end of the process the trained forest is saved in a binary 

file to be able to reuse it later. 
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Figure 8: Workflow of machine learning processing 

 

Several metrics exist to measure the predictive ability of an algorithm. The most classical is the coefficient of 

determination R2 but it is not the most adapted to multivariate regression problems because it is very sensitive 

to extreme values [30]. This is why the average error on the predictions is calculated, named ErrMean and defined 

as: 

𝐸𝑟𝑟𝑀𝑒𝑎𝑛 =
|𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|

𝑛𝑏𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠
 

The average error is very dependent on the way the training and test sets are split. To remove the randomness 

linked to this operation, the cutting procedure can be reproduced several times and average the performances 

obtained. This is called Crossed Validation, and the performance is evaluated by calculating the root mean square 

error called CVscore. The CVscore is computed for ten successive cuttings, that allows to avoid overfitting.  The 

results for each database are computed on the whole test sets. This type of validation allows us to be statistically 

representative. 

 

3.2. Candidate databases 

The next step is the construction of a database (DB) to be fed into a ML algorithm. Regarding friction prediction 

from morphological data, this approach was initiated by [22] and is seldom used in tribology. To be as exhaustive 

as possible, four databases are therefore built, as summarized in Table 2. They are representative of several 

approaches and are built from the first eight tests (D10P20 to D10P27) presented in the Table 1. The 

nomenclature of each database gives an information relative to its content: the keyword “part” is related to 
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individual particle descriptors, “partStat” is related to the statistical first moments of the particle descriptors (and 

thus to the wear flow) and finally “text” refers to the texture descriptors (and thus to the internal flow).  

 

 

Designation  Number of 
samples 

Number of 
features/sample 

Content 

DBpart 7354 21 Descriptors of each particle at each angular 
position. Local study of the wear flow (Qe). 

DBpartStat 192 84 First statistical moments of the particle 
descriptors at each angular position + number 
of particles. Global study of the wear flow (Qe). 

DBtext 192 7 Texture descriptors at each angular position. 
Study of internal flow (Qi). 
 

DBtextPartStat 192 91 Texture descriptors + First statistical moments 
of the particle descriptors at each angular 
position + number of particles. Study of the 
internal flow (Qi) with consideration of the wear 
flow (Qe). 

 

Table 2: Description of the databases (DB) built from the morphological characteristics of third bodies, from tribological tests 
D10P20 to D11P27: a sample corresponds either to one location θ (DBpartStat, DBtext, DBtextPartStat) or one particle 

(Dbpart). 

 

 

3.3. Database selection 

The hyperparameters fitting and training process is implemented for each of the databases detailed in Table 2, 

resulting in 4 binary files containing the four forests sized and trained. When establishing these performances, 

we did not face any case of suspected overfitting, so the metrics proposed in Table 3 are established on the test 

sets. 

 

 DBpart DBpartStat DBtext DBtextPartStat 

ErrMean 0.1644 0.1540 0.1318 0.1363 

CVscore 0.2068±0.017 0.2243±0.08 0.2101±0.102 0.1978±0.05 
 

Table 3: Performances metrics of RF evaluated on test sets (tribological tests D10P20 to D11P27) 
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Not all databases are equal in terms of predictive power, and a joint study of performance metrics is required in 

order to choose the database containing the most relevant information. The DBpart database is first evaluated 

given its ”historical” status. Indeed, in the literature, it is from the morphological characteristics of the particles 

that it is possible to trace back the test conditions or the wear mechanisms [4], [6], [39]. The database DBpart, 

containing only individual particles, the average error seems at first sight to be of the same order as the others, 

but plotting the predicted value of the COF against the measured value reveals important deviations (Figure 9a). 

 

 

Figure 9: Comparison of the measured and predicted friction value from the test sets of the databases DBpart - DBtext - 
DBpartStat - DBtextPartStat. Bold dotted lines correspond to measure = prediction, grey areas correspond to a prediction 

error lower than 0.2. 

 

The model most often predicts a value close to 0.7, the base being composed of 4 tests in running-in (presenting 

little particle ejection) and 4 tests in established regime with a significant increase in the number of particles up 

to 100 attributed to the same friction coefficient. It appears that the friction coefficient associated with the 

presence of a particle is assimilated to the asymptotic value of friction observed on Figure 3. This observation is 

consistent with our lack of knowledge about the moment of creation and ejection of the particles. As a 

consequence, it seems incongruous to attribute the friction value measured during the last lap of the test to a 

particle ejected at an unknown time of the test. That is in good agreement with previous findings [22], [39] . 

Disregarding individual particles and focusing on the whole wear flow, it is envisaged in a second time to average 

the values and to count the particles on their ejection site. It is in this perspective that the database DBpartStat 
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is built, because it contains the first statistical moments of the morphological descriptors of the particles in each 

site of measurement, as well as the number of particles at each angular position (Table 2). The results are much 

more satisfactory. The plot of predicted values versus measured values (Figure 9b) shows that, even though 

predictions are slightly inaccurate, the model leads to a greater variety of predicted values. The value of the 

average error is lower than for the database DBpart but does not find its source in the same mechanisms. Indeed, 

since the ejected particles are mainly present in the steady state and are assimilated to an asymptotic coefficient 

of friction, the absence of particle is not a lack of information but the indication that the wear flow is negligible. 

This suggests that there is information, albeit incomplete, about the friction coefficient in the overall wear flow. 

In the first two cases presented, the CVscore is greater than 0.20 which is considered a high deviation for a friction 

coefficient measured in the range [0.1, 1.3]. Some information is therefore still missing for accurate prediction. 

This is why, in a third time, the focus is made on the internal flow and thus at the database DBtext which contains 

the texture descriptors related to the center of the wear track. In the case of DBtext, the quality of the prediction 

improves. The study of the associated graph (Figure 9c) shows predicted values closer to the measured ones, 

apart from a few outliers. The information related to the friction coefficient seems to be partly written in the 

morphology of the third body in the center of the track. The next logical step is to assess if it is possible to obtain 

even more information by combining the data related to the wear flow and those related to the internal flow. 

This is the purpose of the database DBtextPartStat, which contains both data on particles and textures.  

The quality of the prediction for DBtextPartStat (Figure 9d) is similar to the one obtained for DBtext. This last 

database presents similar performances to DBtext, it is a little better with regard to ErrMean. A better way to 

compare these predictions is the CVscore, this metric is a good indicator of statistical stability. Moreover, the 

uncertainty is also lower, and the number of outliers is more limited. The database DBtextPartStat is therefore 

statistically more representative and allows to make more stable predictions. Thus, DBtextPartStat configuration 

is kept for the rest of the study. 

 

3.4. Generalization test of the trained model 

At the end of the performance evaluation, only DBtextPartStat is retained, along with the random forest trained 

on this basis. As this method has shown satisfactory results in training and testing, the question of generalization 
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arises. The data from the four trials tribological tests D12P28 to D12P31 are then used as a blind test, to evaluate 

the generalization capabilities of the trained model. 

The particularity of these data is that they were produced using a 15mm thick disk, possibly slightly modifying 

the dynamic response of the tribosystem. The idea is to assess whether the model correctly generalizes on new 

data produced on a new disk with a slightly different geometry (which adds an extra difficulty). Analysis of the 

friction maps for two illustrative tests from the training and generalization databases presented in Figure 10 

shows a relatively similar general trend for the 10 mmm and 15 mm thick disks, as observed in friction maps 

(Figure 10a-b), but higher friction coefficient values (by ~23%) for the 15mm disc (D12P31). The lap-by-lap history 

of contact shows more differences, with test D10P23 showing a period in the middle of life when friction drops 

sharply, as well as a noticeable space variability during the few last laps. An event clearly occurred between 40° 

and 120°. Test D12P31 has two areas of the disc with low friction coefficient, especially at the beginning of the 

test. Later in the test the friction becomes more uniform, despite a few local events leading to slight decreases in 

friction. These events may be attributable to a piece of the third body coming loose (from the pin or the disc) and 

being crushed on the track.  
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Figure 10: Generalization test for the model built on the DBtextPartStat database: a. Friction map for a typical test from the 
database used to train the model (test D10P23); b. Friction map for a typical test from the database used to blind-test the 

model (test D12P31); c. Friction histories for both tests; d. Comparison of measured and predicted friction values for tests on 
15 mm-thick discs (D12P28 to D12P31) after training on 10 mm-thick discs (D10P20 to D11P27). Bold dotted line corresponds 

to measure = prediction, grey area corresponds to a prediction error lower than 0.2. 

 

The generalization test leads to the following metrics: ErrMean = 0.2143; CVscore = 0.1937 ± 0.1306. In fact, 

Figure 10d shows very fragmented values around the straight-line Measured Values = Predicted Values. The 

average prediction error of 0.2143 is much larger than during the test phase of the initial DBtextPartStat database, 

and in terms of the CVscore the prediction is not stable. Very few significant differences in term of prediction 

were expected given the small variation in thickness, but it turned out that this modification of the mechanical 

system makes it difficult for the algorithm to predict the friction coefficient. This significant difference needs to 

be taken into account when creating the database, which needs to be upgraded to make it more versatile. 
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4. Database improvement and discussion 
As previously explained, the model trained on data from 10mm-thick discs does not allow generalization to data 

produced from a different mechanical system (15mm-thick disc). This certainly indicates that the model did not 

meet a sufficient variety of situations during training. To overcome this problem, a new database is built from the 

data produced on the first 12 tests (D10P20 to D12P31) involving 10mm and 15mm disks, and the value tables 

are concatenated and randomly shuffled. The new database thus obtained is named DBmix and includes 288 

samples characterized by 91 features and labelled by their corresponding friction coefficient. This database is 

divided into a training set (80%) and a test set (20%), then the RF is optimized using the tools presented in Section 

3.1. Table 4 shows the optimal hyperparameters of the RF. 

 

Hyperparameter Value 

n-estimators 1200 

n-samples-split 2 

n-samples-leaf 1 

max-features ’auto’ 

max-depth None 

Bootstrap True 
 

Table 4: Optimized hyperparameters for DBmix treatment 

 

The tuned forest is trained and saved, its performance on the test set is as follows: 

• ErrMean = 0.1382 

• CVscore = 0.1806 ± 0.0476 

The ErrMean and CVscore for the latter are similar or even better than for DBtextPartstat presented in Table 3.  

The comparison between the measured and predicted values for the training and test sets is provided in Figure 

11a (respectively the black and blue round dots). The predictions are generally satisfactory, with a majority of 

points located near the measure = prediction diagonal, despite a few outliers. The high measured values (when 

> 0.8) however seem to be systematically under-predicted. This feature could already be observed in the previous 

database DBtextPartStat and is true both for the training and the test sets. It is therefore not the result of 

overfitting, but more likely an inherent limitation of the RF or of the database. In Figure 11b, the predictions made 

for tests in air are relatively satisfactory, whereas tests in argon are the source of larger prediction errors. During 

long tests under argon, the COF value often tends to be underestimated, whereas for short tests corresponding 

to smaller COF values (of the order of 0.4) the predictions are usually overestimated (see for example the first 
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column of Figure 12). Since these errors are mainly due to Argon tests, this suggests that some information is lost 

or distorted when the third body descriptors are extracted. One possible explanation for this phenomenon is the 

orientation of the particles. When the third body produced under Argon is observed, the particles may be 

oriented vertically. A particle present in the form of a flake in 3D appears in the image (in 2D) as a more or less 

long filament, so descriptors such as area will be minimized in favor of others such as elongation, thereby 

introducing an error in the characterization of the morphology of the third body.  

   

 

Figure 11: Comparison of measured and predicted COF values from DBmix. a. Predictions for the training set, the test set, 
and the additional set; b. Predictions for the test set only, with colors indicating environment and test duration. Bold dotted 

lines correspond to measure = prediction, grey areas correspond to a prediction error lower than 0.2. 

 

These results are more satisfactory than those presented in Figures 10d but required to use the data initially 

conserved to test the generalization of the model. The ability to generalize will therefore be tested on the 

additional tests realized on two untested 10 mm- and 15 mm-thick discs (D17P42 and D151P43 respectively), in 

ambient air and for a sliding distance of 25m (Table 1). The characteristics of the third body produced during 

these tests are then evaluated by the model trained on DBmix and give the following results: 

• ErrMean = 0.1438 

• CVscore = 0.0882 ± 0.0371 

The Figure 11a shows that the measured friction values are all within the interval 0.4 – 0.8, which is not very wide 

when compared to the typical prediction error. This can be explained by the nature of the tests, which are two 

steady-state tests under free atmosphere. This leads to a bulky cloud of points (red squares), despite the fact that 
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the prediction error is only slightly larger than for the test set (0.1438 instead of 0.1382). In addition, the low 

value of the CVscore indicates a good stability of this prediction error. Overall, these results are very encouraging, 

and demonstrate a clear ability of the trained model to provide acceptable predictions on the friction coefficient 

between two bodies unseen by the training set. 

The creation of DBmix has therefore improved the model’s ability to generalize. However, the prediction error 

remains higher than the error evaluated on the test set, which can be explained by the variability of the 

experimental results. Indeed, as shown in Figure 3, the tests show a common trend but a very distinct history. 

This history can be kept in memory in the third body, through a more or less important ejection flow or a more 

or less smoothed internal flow. These are all events that can render the input data noisier and thus introduce 

error into the prediction. 

Figure 12 depicts the last lap of several selected experiments, along with measured and predicted (either during 

training, testing, or additional generalization) by the algorithm. As it stands, the trained algorithm is able to 

predict the coefficient of friction with an average error of ~0.14, despite the large range and the significant 

variability in the coefficient of friction. This result is quite remarkable on its own, given the complexity and 

apparent unpredictability of local friction values as depicted in Figures 4, 5, and 6. It confirms that the friction 

coefficient of a given interface at a given location is strongly related to the local properties of the third body [23], 

[24], and that a part of the information regarding friction is coded in its morphological aspect. In addition, this 

predictive ability proves to be generalisable, with the same quality, on new experimental data (carried out under 

air, Figure 11 and 12). The prediction for the Argon tests seems more complicated (Figure 12), as the friction is 

highly variable for morphologically similar types of third body. These tests were kept in the databases for two 

reasons: they noised the data, thereby limiting overfitting, and they represent the first step in enriching the 

database with new experimental conditions and new third body morphologies. As mentioned above, the 

orientation of particles produced in Argon tends to distort predictions, so it may be worth looking for one or more 

descriptors to account for this effect. It should be noted that increasing the database with just two tests 

noticeably improved its performance, which can only incite to enrich it with more data produced under similar 

conditions. 
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Figure 12: Last friction lap for six selected tests, comparing measured and predicted (either during training or during test) 
local friction values at the sampling points every 15° 

 

5. Conclusion 

 
In this study, twelve tribological tests were performed on steal-steal pin-on-disc tribopairs, varying three 

operating parameters: atmosphere, duration, and disk thickness. These tests were supplemented by systematic 

SEM image acquisition, which allowed to directly associate an instantaneous friction coefficient and a third body 

morphology. Based on the collected experimental data, five different databases were built focusing on various 

morphological components, in order to gain knowledge on the best way to collect such morphological data. For 

this purpose, Machine Learning algorithms was trained to predict instantaneous friction from these databases. 

Results demonstrated that the content of of data base can influence the prediction of friction: The best 

predictions were obtained while combining information relative to (i) statistics of the morphology of the particles 

ejected from the track and (ii) textural properties of the third body layer lying on the wear track. These predictions 

achieved a surprisingly high level of accuracy (average error of ~0.14 on the friction coefficient, while the 
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measured values ranged from ~0.1 to ~1.2), and it is likely that this accuracy could be greatly improved by 

increasing the size of the database and exploring the performances of other classes of ML algorithms. 

Another promising research avenue would be to focus on the explicability of the trained model, in order to gain 

knowledge about the process it uses to make its predictions. This can only provide relevant tribological knowledge 

about the structural, mechanical, physical, and chemical phenomena which control instantaneous friction. Also, 

despite the random forest's ability to work on databases with a large number of features, it would first be 

interesting to reduce this number in order to make the model more explainable. This work on reducing the 

number of features and the search for model explicability will be the subject of a future study. Notwithstanding 

the likely improvements that may be obtained in the future thanks to these refinements, this work provides a 

solid and quantitative proof that a direct link exists between third body morphology and instantaneous friction. 

It must encourage the tribological community to keep exploring this link in order to improve our understanding 

and prediction of dry friction in three-body contacts. 
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