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Explicit formula for the Benjamin—Ono
equation with square integrable and real
valued initial data and applications to the
zero dispersion limit

Xi Chen

Abstract

In this paper, we extend Gérard’s formula for the solution of the Ben-
jamin—Ono equation on the line to square integrable and real valued initial
data. Combined with this formula, we also extend the Gérard’s formula for
the zero dispersion limit of the Benjamin—Ono equation on the line to more
singular initial data. In the derivation of the extension of the formula for the
zero dispersion limit, we also find an interesting integral equality, which might
be useful in other contexts.
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1 Introduction

1.1 The Benjamin—Ono equation

The Benjamin—Ono equation is a nonlinear partial integro-differential equation which de-
scribes one-dimensional internal waves in deep water. It was introduced by Benjamin in
[1](see also Davis—Acrivos [3], Ono [10]). On the line, it reads

Ou =0y (|Dlu—u?), (t,z) e RxR,

u(0, ) = ug. (1)

Here u = u(t,z) denotes a real valued function. We refer to the book by Klein and Saut
[11] for a recent survey of this equation. In this paper, we denote by H? (or LY with
p = 2,00) the Sobolev (or Lebesgue) space of real valued functions.

The global well-posedness of (1.1) in H?(R) with s > 0 was proved in [9][14] by a synthesis
of Tao’s gauge transformation [18] and X $b techniques. Recently, R. Killip, T. Laurens
and M. Visan have proved the global well-posedness of (1.1) in H3(R) with —1 < s < 0.
The unconditional uniqueness in H*(R) with s > 3 — 1/33/4 has been recently proved in

[15]-

Theorem 1.1 ([9], [14], [15], [10]). For every up € HE(R) with s > 3 — /33/4, there
exists a unique solution v € C (R, H:(R)) of (1.1) with u(0) = ug. Also, for every T > 0,
the flow map vy € H*(R) — u € C([-T,T],H*(R)) is continuous. Moreover, this flow
map up € H*(R) — v € C([-T,T), H*(R)) can be continuously extended to H*(R) for any

1
s> —3.

Our aim in this paper is to give an explicit formula of the solution u(t) in terms of any
initial data ug in L2(R). Before presenting our main results, we need to introduce the Lax
pair structure for (1.1).

1.2 The Lax pair

In this paper, we denote by LZ(R) the Hardy space corresponding to L?*(R) functions
having a Fourier transform supported in the domain & > 0. Recall that the space L% (R)



identifies to holomorphic functions on the upper-half plane C; := {z € C : Im(z) > 0}
such that

sup/ |f(z + iy)Pdz < 4oo0.
y>0 JR

The Riesz-Szegd projector II is the orthogonal projector from L?(R) onto L%(R). It is
given by

1
_ L[ dy.
2um Jpy— 2
The Toeplitz operator on L? (R) associated to a function b € L>°(R) is defined by
Tof =1(bf). | €LiR).

We notice that for b € LX(R), Ty is a self-adjoint operator on L2 (R). As shown in [2,
Proposition 2.2], we also remark that

Vfe L*R), VzeCy, If(2) (1.2)

T, € £ (L:(R)) if and only if b € L(R). (1.3)
For u € L2(R), the operator L, is defined by
Vf € Dom (L,) = H} := H'(R)N L3 (R), L,f:=Df—T,f with D := %%.
We notice that L, is a semi—bounded selfadjoint operator on L%r (R).
Also, we recall the definition of G in [7],
vf € Dom (G) = {f € LA(R): f e H'(0,00)}, G(&) =i

Here G is the adjoint of the operator of multiplication by x on Li(]R), and we notice that
(Dom (G) , —iG) is maximally dissipative. We also notice that
f(0")

Vf € Dom (G), ]2

= —ArIm(Gf | f) < 4| Gfll 2] f]l 2.
Therefore, we can define

Vf € Dom (G), I.(f):=f(0").

In fact, as observed in [10, Lemma 3.4], the resolvent of G is given by
VieC., VfELI®), (G- z1a)fa)= LW ZIE) (1.4)

and we have

Ve Cy, VFEIZ(R), f(2)= -1, ((G—z1d)"'f). (1.5)

= %n



1.3 The explicit formula

The explicit formula for the solution of (1.1) with the initial data ug € L2(R) N L>°(R) has
been introduced by P. Gérard in [7]. In this paper, we extend the explicit formula of the
solution to (1.1) to the initial data ug € L2(R).

Theorem 1.2. For ug € L3(R), let u € C’(R, L%(R)) be the corresponding solution of
(1.1) in the sense of the continuous extension of the flow map as shown in Theorem 1.1.
Then u(t) = u(t) + Mu(t), with

1 _
Hu(t,2) = 1L ((G — Ly, — 21d)"! Huo) . VzeCy, (1.6)
where
(G — 2tLy, — 21d) ™" : LA(R) — Dom(G) is well-defined for every z € C.

Remark 1.3. In [10], R. Killip, T. Laurens and M. Visan have obtained another explicit
formula for a Hamiltonian system corresponding to (1.1)(see [10, Theorem 6.1] for details).

Also, from this formula, they have recovered the formula (1.6) with the initial data ug €
L2(R) N L*>®(R), which has been firstly obtained in [7].

1.4 Zero dispersion limit

In [8], P. Gérard considered the Benjamin—Ono equation on the line with a small dispersion
e >0,
Oru = Oy (E\D|u — u2) , (t,z) e R xR,

u®(0,2) = up(x). (L.7)

Observe that the L? norm of u°(t) is independent of ¢, equal to the L? norm of ug, so there
exists a subsequence ¢; tending to 0 such that u.,(t) has a weak limit in L?(R), and we
want to show that all these weak limits coincide under certain initial data conditions. If
all these weak limits coincide, we call this weak limit the zero dispersion limit. Combined
with the explicit formula (1.6) for ug € L2(R)NL>®(R), P. Gérard has obtained the explicit
formula for the zero dispersion limit in [3]. In this paper, since we have obtained the
explicit formula (1.6) with ug € L2(R), we can extend the explicit formula for the zero
dispersion limit to more singular initial data.

Theorem 1.4. Let ug € LZ(R)NLS,(R) with limy o0 |u("£r)| = 0. Then for everyt € R, the

corresponding solution uf(t) to (1.7) converges weakly in L*(R) to ZD [ug] (), characterized
by

Ve eR, ZD[ug](t,z) =TZD [up) (t,z) +TZD [ug)] (¢, )



and
1
Vze Cy, IIZD [ug)(t,z) = §I+ ((G + 2T, — 21d) ™" Huo)
T

1 2t
= — / Log <1 + uo(y)> dy,
dimt Jg y—2z

where Log denotes the principal value of the logarithm, and

(1.8)

(G + 2T, — 2Id) ™" : Li(R) — Dom(G) is well-defined for every z € C.

Remark 1.5. We observe that ug € L2(R) with |ug(x)| < C(x)*(k < 1) satisfies the initial
data condition in Theorem 1.4, so we can give the formula of the zero dispersion limit for
every t € R with such an initial datum.

Remark 1.6. In [8], P. Gérard has also obtained the following description of the zero
dispersion limit: Assume that the initial data ug € L2(R)NCH(R) with |ug(x)|+|ub(z)| — 0,
then for every t € R, the set Ki(ug) of critical values of the function

y € R y+ 2tup(y)

is a compact subset of measure 0. For every connected component Q of K (ug)®, there
exists a nonnegative integer ¢ such that, for every x € ), the equation

Y+ 2tup(y) =z

has 20 + 1 simple real solutions

yO(ta x) < yl(tvx) <. < y%(t?x)?
and the zero dispersion limit is given by

20

ZD [ug] (t.2) = 3 (~1)Fug (y(t, 2)) (L.9)

k=0

Formula (1.9) was proved by Miller-Wetzel [12](see also Miller-Xu [15]) in the special case
of a rational Klaus—Shaw initial potential, and by L. Gassot [/][5] in the special case of a
general bell shaped initial potential with periodic boundary conditions.

Remark 1.7. In [S], P. Gérard has obtained (1.8) with the initial data ug € L2(R)NL>®(R).
In the derivation of the second equality in (1.8), P. Gérard first considered the rational
initial data to deduce this equality, and then extend this equality to ug € L2(R) N L (R).
However, this proof is not a direct derivation. In this paper, we provide a direct proof of
the second equality of (1.8), and this direct approach allows us to extend this equality to
up € L2(R) N L2 (R) with limg_eo 28l — .

loc |z



In the direct derivation of the second equality of (1.8), we also find an interesting
integral equality (1.10), which might be useful in other contexts. We summarize this
interesting equality in the following lemma.

Lemma 1.8. For f € L>(R) N L™(R) and n € N>1, we have

/ F)fy2 = y1)- - f Wn = Yn—1) f(=Yn)dy1dy...dy,
Rn

(1.10)

=(n+ 1)/ F)f2 —y1)- f(Wn = Yn—1) f(=yn)dy1dys...dyy.
{V1<j<n,y;>0}

With a slight modification of the proof of Theorem 1.4, we can obtain the following
zero dispersion limit result for ug € L2(R) with |ug(z)| < C{z) in a short time.

Corollary 1.9. Let ug € L%(R) with |up(z)| < C(z). Then for every |t| < o=, the
corresponding solution uf(t) to (1.7) converges weakly in L*(R) to ZD [uo] (), characterized
by
Ve € R, ZD[ug](t,z) =1ZD [ug] (t,z) +TZD [ug)] (¢, )
and 1
VieCy, NZD[uo(t2) = 51 <(G V24T, — 21d) ™ Hu0>
im

1.11)
1 2t (
S <1 N uo<y>> dy.

dimt SR y—z

where Log denotes the principal value of the logarithm, and

(G + 24T, — 2Id) " : L2 (R) — Dom(G) is well-defined for every z € Cy.
Remark 1.10. Even for ug € L%(R), we know that ztf“g ¢ R for all z € C4 and for all
t € R, so Log (1 + 2tUO(z )> is well defined in C. We also notice that

1 2tu0( / /
— [ Log |1 dsd
dimt Jg °8 ( - y— ) T 2ir —z+ 2stu0( ) ,

1
y — z + 2stup(y)

since

€ L(0,1)L2(R) N L (0,1) Ly (R),

we can deduce that 4mt fR Log (1 + 22‘*38”) dy is well defined and holomorphic in C,.. This

tells us the formula for the zero dispersion limit
2t
Lo (1 N uo<y>> dy
R y—z

might be extended to ug € L2(R) for every t € R, but the difficulty lies in solving the
problem of switching the order of a double limit, see also Section 4 for details.

1
11ZD [U[)] (t,Z) = m



1.5 Maximally dissipative operators and the Kato-Rellich
theorem

In this paper, we mainly apply the Kato-Rellich theorem to show that operators remain

maximally dissipative after some perturbations. To present the Kato-Rellich theorem for

maximally dissipative operators, we first need to introduce the following definition of the
dissipative and maximally dissipative operators in Hilbert spaces.

Definition 1.11. Let (D(A), A) be an operator in a Hilbert space F .

1. We say that A is dissipative if for all g € D(A) and all X > 0,
(AL = A)gll = Allgll-

2. We say that A is maximal dissipative if it is dissipative and for all h € F and for all
A > 0, there exists g € D(A) such that (A — A)g = h.

Remark 1.12. In fact, an operator (D(A), A) in a Hilbert space € is dissipative if and
only if for all g € D(A), R(Ag, g) < 0.

Remark 1.13. Let (D(A), A) be a mazimally dissipative operator in a Hilbert space €.
From the definition of maximally dissipative operators, we can deduce that, for all A > 0,
we have

I = A) o < JAO = A) g < L. (1.12)

>| =

Since the Kato-Rellich theorem involves the related notion of the perturbation of op-
erators, we give the following definition of the relative bound of an operator with respect
to another operator (see also the definition in [17]).

Definition 1.14. Let (D(A), A) and (D(B), B) be densely defined linear operators on a
Hilbert space €. Suppose that:

(i) D(A) € D(B);
(ii) For some a and b in R and all ¢ € D(A),

[Bell < allAgl| + blj]-

Then B is said to be A-bounded. The infimum of such a is called the relative bound of B
with respect to A. If the relative bound is 0, we say that B is infinitesimally small with
respect to A.

Then we state the Kato-Rellich theorem for maximally dissipative operators.



Theorem 1.15 (Kato-Rellich theorem). Let (D(A), A) be a mazimally dissipative operator
which is densely defined on a Hilbert space 7€ and assume (D(B), B) to be dissipative and
A-bounded with the relative bound smaller than 1. Then (D(A), A+ B) is also a mazimally
dissipative operator.

We refer to [17, Theorem X.12] for the proof of the Kato-Rellich theorem for self-adjoint
operators. The readers can also see the proof of Corollary 2.2.

1.6 Structure of the paper

In Section 2, for ug € L2(R), we apply the Kato-Rellich theorem 1.15 to show that
(G — 2Ly, — 21d) ™" is well-defined on L% (R) for every z € C4, then we can extend the
explicit formula (1.6) to ug € L2(R) and prove Theorem 1.2.

In Section 3, for ug € L2(R) N L{2,(R) with limg o '“Tff)l = 0, we can still apply the
Kato-Rellich theorem 1.15 to show that (G + 2tT,, — zId) " is well-defined on L% (R) for
every z € C4. Also, we prove Lemma 1.8 and then adapt the equality (1.10) to prove the
second equality of (1.8). Finally, we show that the zero dispersion limit exists and complete
the proof of Theorem 1.4.

In Section 4, we discuss the difficulties in further extensions of the explicit formula (1.6)
and of the formula (1.8) for the zero dispersion limit. We also introduce briefly the results
and the open problem on the zero dispersion limit for the Benjamin—Ono equation on the
torus.

2 Proof of the extension of the explicit formula

In this section, we will show why the formula (1.6) can be extended to the initial data in
L2(R). In fact, P. Gérard proved directly the formula (1.6) for ug € H2(R) in [7], and then
he extended this formula to ug € L2(R) N L=°(R). Let us firstly recall the sketch of proof
of the generalized formula for ug € L2(R) N L°*(R). We consider the following operator

Ay = ~iG + 2itD, with Dom (4) = {f € I3(R) : €"€'f € H'(0,00)}.
In fact, we observe that
A = —iG + 2itD = e % (—i3)e*"”?,
so we can easily deduce that (Dom (A;), A;) is maximally disspative. Then, for uy €

LZ(R) N L*®(R), we know that (L%(R),T,) is a bounded and self-adjoint operator, so
by a classical perturbation theory, we can deduce that A; — 2itT,, = —iG + 2itL,, is

8



also maximally dissipative, and then by approximation, we conclude that (1.6) holds for
ug € L2(R) N L*™®(R).

However, for ug € L?(R), we cannot expect that T,, to remain bounded and dissipa-
tive on L? (R), so we cannot adapt directly the argument in [7] in this case.

Fortunately, we can adapt another approach to verify the formula (1.6) for up € L2(R). In
fact, we observe that for f € Dom (A;), we have

0G4 2tLyy = Af — 20t Ty f = e tP° (—z‘G - 2ite“D2Tqu*“D2> it f.
Then we consider the operator
Gy = —iG — 2ite!P° T, e~
with
Dom (G;) = Dom (G) := {f €eI:(R): fe Hl(o,oo)} .

We recall that (Dom (G), —iG) is maximally dissipative. Now we are going to prove that
Bl = —2itei DT, uoe_“D2 with the domain Dom (G) is dissipative and is infinitesimally
small with respect to G, and then we can apply Theorem 1.15 to show that (Dom (G), G;)
is maximally dissipative, and so is (Dom (A;), —iG + 2itLy,).

Lemma 2.1. Given ug € LZ(R), for any t € R, the operator Bl := —2ite!tD* T, e~ itD?
with the domain Dom (G) is dissipative and is infinitesimally small with respect to G.

Proof. Firstly, we show that (Dom (G) ,BZO) is dissipative. In fact, if we can show that

1

Vf € Dom (G) and V0 < t < oo, tze 1D ¢ L*®(R). (2.1)
Then for all f € Dom (G) and for all 0 < ¢ < oo, we have

<T efitDQf efitD2f>
ug )
=23 (7" [, Type P 1)

&

R <—2z'te“D2Tuoe*“D2 f, g> — 9

- R <e*itD2 . —2itT,, e D f> :
which implies that

Vf € Dom (G) and VO <t < oo, R(B. f, f)=0.



From Remark 1.12, we can deduce that (Dom (G), B ) is dissipative. So the point is to
prove (2.1).

Before proving (2.1), we define a function g € L2 (R) by

§(&) ==1gspe™t

with

Ii(g) =1.

We recall that

1L (f)]? = —4n Im (G | ) < 4x[|G S g2 f]] 2

Then we have

1 D2 1 _itD? 1
et D || < e (f - L))+ It

=11 + Is.

By Young’s convolution inequality, we have the following estimate for Io,

1 ~ 1 1 1
L < [t L (Nglley < CIIEPIGAIZ Iz
For Iy, from the dispersive estimate, we have

L <tz

e (F— L(N)g)|
SCNf =L (gl

<Cf = Le(DgllZs llw (F = L (£)g)22
< CIf = Le(Dgll2: G (f = L (D)2

LOO

Here, z (f — I.(f)g) = G (f — I.(f)g) since we have 1¢sg (f(g) ~ I ( f)§(§)> is continu-
ous at £ = 0.

Then we have

1f = Lo (Dgllz < 1Fllze + 1L (Dlllgll 2
< fllg2 + CIGHIZ N2

10



and

1G(f = Lo () 2 < NGl 2 + L (DGl
<NGflge + CIGHIZNIZ--

From the above estimates for 11 and I, we can deduce that

1 2 1 1 1 1 3
e f| < CUEIGHIZIAZ + CIGH LIS

3 1
+ NGl g2l £l 72

which verifies (2.1).

Then we prove that BZO is infinitesimally small with respect to G. It is equivalent to
show the following argument: Let 0 < ¢t < oo (fixed) and ug € L2(R), for any ¢ > 0, we
have

1Bl fllzz < el Gfllzz + Cel fllz2, Vf € Dom (G). (2.3)

In fact, we can combine (2.2) with the Young’s inequality for products and then we can
deduce (2.3). The proof of Lemma 2.1 is complete. O

With Lemma 2.1, we can now adapt directly Theorem 1.15 to show that (Dom (G) , G;)
is maximally dissipative, and so is (Dom (A;) , —iG + 2itL,, ). For the readers’ convenience,
we reproduce the proof of Theorem 1.15 in the proof of Corollary 2.2.

Corollary 2.2. Letug € L2(R), for anyt € R, (Dom (G),G:) and (Dom (A) , —iG + 2itLy,)
are mazimally dissipative.

Proof. We recall that
—iG + 2itLy, = Ayf — 2itT,, = e 7 Ge*P*
so we only need to show that (Dom (G),G;) is maximally dissipative.

Since (Dom (@), —iG) and (Dom (G), Bl ) are dissipative, we know that (Dom (G),G;) is
dissipative.

Then we only need to show that G; + izId : Dom (G) — L2(R) is bijective for some
z € C,. We write

G +izld = —iG + B +iz1d = (Id+ B (—iG + iz1d) ") (—iG + iz 1d).

11



Since Bzo is infinitesimally small with respect to G, for z € iR and for any € > 0, we
have

V€ LA(R), || Bly(—iG +izIa) 7 f 1 < e |GG + iz Td) T | o 4 Ce (<G iz1a) 7
C.
< (s 575 Ml

The last inequality above comes from (1.12).

Then we choose € = ; and z € iR such that C1/S(z) < 1, and we have
4

1
1B (G +i210) ] o < 51l

Since G is maximally dissipative, we can deduce that G; + izId : Dom (G) — L%(R) is
bijective for some z € iRsg, which provides that (Dom (G),G;) is maximally dissipative,
so is (Dom (A¢) , —iG + 2itL,,). O

By Corollary 2.2, we know that (Dom (A4;),—iG + 2itL,,) is maximally dissipative,
thus for every z € C, the operator (G — 2tLy, — zId)"" is well-defined on L% (R).

Now we are able to present the following proof of Theorem 1.2.

Proof of Theorem 1.2. For ug € L%(R), we can take uj € L2(R) N L*°(R) which tends
to ug in L*(R), then we can easily deduce that ITu§ tends to Iug in L% (R). We denote
the solutions of (1.1) by u"(t) and u(t) corresponding to uj and wug. By the continuity of
the flow map, we can deduce that u"(t) tends to u(t) in L?(R). Then for z € C,, we have

[Tu" (1, ) — Tu(t, 2)| < /0 SO G, ) — alt, E)]dE < C (1) — u(t)] o) — 0.

which implies the pointwise convergence of ITu" (¢, z) to Iu(t, z) for all z € C;.. Moreover,
by Lemma 2.1 and Corollary 2.2, we can easily deduce that

Blw (G —zI1d)™" — Bl (G—zI1d)"" in Z (L2(R)), VzeCy,

U
which implies that

1

(G —2tLyp —21d) " — (G — 2tLy, — 21d)"" in £ (LA (R)), Vze Cs.

Then we recall the following explicit formula of II(u"(¢, 2)),

I(u"(t,2)) = LLr <(G — 2tLyp — zId)f1 Hug) , VzeCi. (2.4)

A%

12



From the previous arguments, we can conclude that the formula (2.4) converges pointwisely
in (C_l,_ to

T(u(t, 2)) = %u ((G — 9tLy, — 21d) " Huo) , VzeC,.

1T

The proof is complete.

3 Proof of the extension of the formula for the
zero dispersion limit

In this section, we will show why the formula (1.8) can be extended to the initial data
ug € LZ(R) N L2 (R) with limg e |“T£T)‘ = 0. Before proving Theorem 1.4, let us first give
an important observation.

We consider the equation (1.7) with ug € L2(R). By an elementary scaling argument,
the solution u® of (1.7) is given by

ut(t,x) = ev®(et, x),
where v° is the solution of the Benjamin—-Ono equation (1.1) with the initial data
- 1
v°(0,z) = —up(x).
€
By applying the explicit formula (1.6) to v, we infer, for every z € C,
€ _ L —ietd? ietd2 -1 —ietd?
Mu®(t, z) = 5 I, | (G+ 2te Tupe zId) e IMug | . (3.1)
i
In fact, we have
<G + 2te_i5taﬂ%Tu0ei5taﬂ% — zId) = <Id + 2te_i5taﬂ%Tqui5tag (G- zId)_1> (G —zId).
We observe that, for any z € C,
as e — 0, 2tt%_i‘€t8gTuOei‘gwﬂZZ (G — zId)~! has a limit in .& (L%F(R))

if and only if
Vf e LA(R), Tu(G—2Id)~'f e L2(R). (3.2)

We recall the formula (1.4),

Ve L2(R), (G—zId)" f(z)= M,

r—z

13



In fact, for any z € Cy, ng € L°(R), so we already have Ty, 1) ¢ L% (R). Then we can

Tr— z

deduce that (3.2) is equivalent to

Vze€Cy, VfeILi(R), Tuof_(')z € LA (R). (3.3)
Since (3.3) holds for all f € L2 (R), from (1.3), we know that (3.3) is equivalent to

up ()

Vz € Cy, € L (R). (3.4)

We can also observe that (3.4) is equivalent to
lup(z)] < Cla)  with  (z) := (1 +22)2. (3.5)

From the previous arguments, we can deduce that (3.5) is a necessary condition for
(G + 2te‘i€ta§Tqui€ta§ - zId) to have a limit in . (Dom (G), L3 (R)) as € — 0. So we

may only expect (1.8) to hold for initial data in L?(R) which satisfies at least the con-
dition (3.5). So far, for ug € L2(R) with |ug(z)| < C(x), we cannot show that the zero
dispersion limit exists and obtain the formula (1.8) for every ¢ € R, but we can still show
that this argument holds for [¢| < 5. Moreover, with ug € LZ(R) N Lj2(R) satisfying

loc
limy oo ‘"(l’é“r)‘ = 0, which is a slightly stronger condition than (3.5), we can deduce that

the zero dispersion limit exists and obtain the formula (1.8) for every ¢t € R.
Now we deal with the proof of Theorem 1.4. To prove Theorem 1.4, first we show that
(Dom(G), —iG — 2itT,,) is maximally dissipative.

Lemma 3.1. For ug € L2(R) N L{Z,(R) with lim, oo M2 = 0, (Dom(G), —iG - 2itT,,)
1s mazximally dissipative.

Proof. Since (Dom(G), —iG) is maximally dissipative, it suffices to prove that, for 0 < ¢ <
oo fixed, —2itT,,, is infinitesimally small with respect to G. It is equivalent to show that,
for any € > 0, we have

1Tuo fll2 < ellGfllz + Cellfllr2, Vi € Dom(G). (3.6)

We follow an approach which we used in the proof of Lemma 2.1. We recall the definition
of g,

9(6) == 1gzpeS,

Since ug satisfies limg_ o0 ‘U(I)SET)‘ = 0, then for any ¢ > 0, there exists R. > 0 such that

|uo()]
]

<e forall |z|> R..
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Also, since ug € Ly (R), there exists M, > 0 such that

loc
woll oo (af<re) < Me.
Then for f € Dom(G), we have
HTuofHLZ(R)
<N Tuo (f = 1+()D) 2wy + 1T (L+(£)9) |2 (m)

S Tuo (f = Lo (H)9) 22wl < re) T 1 Tuo (f = T(£)9) r2(jz)>r) + 1 Tu (1 (£)9) [l L2(m)
SMf = Le(N)9ll 2wy + €l (F = I (DD 2wy + 1 Tue T+()9) lL2R)-

Since 1¢>q (f(f) - I+(f)§(§)) is continuous at £ = 0, we have

lz(f = Le (Nl 2wy = |G(f = Lo (£)9) L2 (r)-

Then we have

1 1
If = I (D9l 2wy < [1fllezw) + 11+ (Dlllgllezwy < 1f 2@y + CIGH Z2 12wy

1G(f = L (H)I 2wy < NG fll2w) + [+ (NGl L2(w)
1 1
SNGf 2wy + CIGF 12y 11 2Ry

and

1 1
ITo (L(N9) i@y < LDl ol 2112y < CUCH gy 1112y

Combined with the Young’s inequality, we can verify (3.6), which implies that —2itT,,, is
infinitesimally small with respect to G. Then from the Kato-Rellich theorem 1.15, we can
deduce that (Dom(G), —iG — 2itT,,) is maximally dissipative, the proof is complete. [

Remark 3.2. Since (Dom(G), —iG — 2itTy,) is a mazimally dissipative operator, we know
that (G + 2T, — zld)_1 is well-defined for every z € C,. By applying (1.5), we can deduce
that

1 -1 _ L I )
L ((G—|—2tTuO 21d) Huo) = oL ((G 21d) (Id+2tTuO (G — 21d) ) Hu0>

= [(Id + 2T, (G — zld)_l) B Huo] (2)

is well-defined and holomorphic in Cy.
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In Theorem 1.4, the point is to prove the existence of the zero dispersion limit and
show the formula (1.8) of this zero dispersion limit. In the following derivation, we first
prove the the second equality of (1.8), and then show the existence of the zero dispersion
limit.

To show the second equality of (1.8), we need the following integral equality, which has
also been introduced in Lemma 1.8.

Lemma 3.3. For f € L>(R) N L®(R) and n € N>y, we have

[ 0 = 90 = 1))l

(3.7)
~n+1) | P £ — 1) F (. — vn) F ().,
{V1<j<n,y; >0}
Proof. For j € N>g and 0 < j <n, we define
A; = {(y1,92,...,yn) € R"| there are j negative elements in (y1,y2,...,yn)}
We claim that, for 1 < j < n, we have
/ S f (2 = y1)-f (yn — yn—1)f (=yn) dindysz...dyn
Ao (3.8)

:/A- F)f(2 —y1) f(Wn — Yn—1) f(—yn)dyrdya...dyy.

We notice that, if we obtain (3.8), since the integral on the null set is always equal to 0,
we have

- f) f(y2 —y1)- - f(Yn — yn—1) f(—yn)dy1dys...dyn
22/ Fy) f(y2 = y1)- - f(yn — yn—1) f (—yn)dyrdys...dyy
=074

=(n+ 1)/A F) f(y2 = y1)-f (o = yn-1) f(=yn)dyrdys...dyn,
0
which implies (3.7). So the point is to prove (3.8).

Now we prove (3.8). For 1 <i,j <n and 0 < k <n, we define

By = {(y1,92,-.-,Yn) € Ax|y; is the j-th smallest element}.

16



For (y1,vy2,..,yYn) € Bo, j, we make the following change of variables:

2 =Yri—Yi 1<L<n—i,
Zn+1—i = —Yi,
20 = Yoti—n—1—Yi, n+2—1<l<n.

We notice that (21, 22, ..., 2n) € Bjnti—i,1, so this linear transformation is from By ; to
Bj n+1-i1, and the absolute value of the determinant of this linear transformation is 1. We
also observe that the inverse of this transformation

Yk = Zk+14n—i — 2nt1—i 1 <k <i—1,
Yi = —Zn+1—i,
Yk = Zk—i — Znt1—is +1 <k <n.

is from Bjp41-i,1 to By, so this transformation is bijective from By, ; to Bj,y1—i1-
Then we have

/B - f(yl)f(yQ - yl)"'f(yn - yn—1)f(—yn)dy1dy2...dyn

= /B f(z1)f(z2 = 21). f (20 — 2n—1) f(—2n)dz1d20...d2,.

Jjm+1—1,1

Combining the above equality, we can deduce that

’ J)f(2 —y1) f(Wn — Yn—1) f(—yn)dyrdya...dy,

=Z/B S f(y2 = y1)-f(yn = Yn—1) f (=yn)dyrdys...dyn
=1

04,3

:Z/ f(zl)f(z2 - Zl)f(»Zn - Zn_1)f(—zn)dz1dzg...dzn
i=1 7 Bin+1-i1

:/A. F(z0)f(z2 — 21)e f(2n — 2n—1) f(—2n)d2z1d23...d 2y,

which implies (3.8). The proof of (3.7) is complete. O

Remark 3.4. We notice that the left hand side of (3.7) represents the value of the convo-
lution of (n + 1)-functions f € L*(R) N L(R) at the point 0, and the right hand side of
(3.7) represents the value of the convolution of these (n + 1)-f restricted in the support of
positive half-line at the point 0. As observed in the proof of Lemma 3.3, (3.7) is derived
from (3.8), and (3.8) is also interesting since it gives the equality between two convolutions
at the point 0 with different supports of these f.

Now we are able to prove the second equality of (1.8).
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(R) with limy,_, o0 |uj’£f)| =0, we have

Lemma 3.5. For ug € L2(R) N L

loc

1 1 2t
VeeCy, ——1I, ((G 4T, — 21d) Huo) L (o (14 220W)Y 4 (59
2im ditt Jp —
where Log denotes the principal value of the logarithm.

Proof. By applying (1.5), for any z € C,, we have

-1
N ((G + 2T, — 21d) Huo) - %u <(G —2Id)”! (Id + 2T, (G — zld)*l) Hu0>

T
— [(Id + 2T, (G — zId)_l) - Huo] (2).
(3.10)

Log <1 =+ 2?:@) dy.
(3.11)

Then we only need to show that

-1
Vz e Cy, [(Id + 21T, (G — zld)*l) Huo] (2) = i
R

Since —2itT,, is infinitesimally small with respect to G, we have

|2¢T (G — zId)_ng(Li) <e||G(G - zId)_lH_g(Li) +C: ||(G - zfd)—lug(ﬂi)

£

< .
=780

The last inequality above comes from (1.12).

Then we choose € = & and z € iR such that Ci/%(z) < 1, and we have
1 1

Thus, we can develop (Id+ 2tT,, (G — zld)_l)_l into the series with such these z. We
have

[(Id + 2T (G — 21d) ™) nuo} (2) = i(—Zt)”_l [(Tuo (G - zId)_1> - Huo] (2).
i (3.12)
We recall the formula (1.2) for ITugy(z),
Tug(2) % /R ;‘Ofyz)dy, (3.13)
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which is the case of n = 1.

When n > 2, we are going to prove

(T @ 2107")" | ) = o~ [ T a3y

with

We now adapt the mathematical induction to deduce (3.14). When n = 2, by applying
(1.2) and (1.4), we have

_ Hug(z) — ug(z)

1 : uo(y) / uo(y)
= 1 — -
2im(x — z) (6>(}g1—>0/Ry—x—z’5dy Ry—zdy

R uo(y)
 2ir 6>15,I350/R —a—id)y—2)"
=1If,(x).

(G- zId)_IHuo] (z)

Thus we have
_ 1
T, (G - ZId) ! HUO] (z) = [Tuoﬂfz] (Z) = 2/ fz(y>Hfz(y)dyv
T Jr

which yields (3.14) with n = 2.
Then we suppose that (3.14) holds for n = k(k > 2). For n = k + 1, we have

1 k 1 1 k—1

[(Tuo (G — 2Id) ) Hug] (2) = [Tuo (G — 2Id) <Tuo (G — 2Id) ) Huo} (2).
We note
N
g(2) = <Tuo (G — 21d) ) Tug | (2),

by the assumption, we have

al:) = i | LT L)y
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Then we have

(G = zId)"" g(z)
_gk(z) — gr(2)

r—z

1 (hm/ uo(y) *T1f.(y)dy ~ L [l Hfz()>

:2i7r(at—z) §>0,6—0 Jp y —x —id fz 2im Jpy—2 fz
1 uo(y) k—2
5— lim T, “11f.(y)d
~ 2in 6>(}6—>0/R (y —x—id)(y — z) I F=(y)dy
=TF I f. ().
Thus we have
k
[(Tuo (G—zld)_1> Huo] (2) = [TUOTJ’? 1Hfz} /fz YTE IS () dy,

which yields (3.14) with n = k + 1. By the induction, we complete the proof of (3.14).

In fact, we can easily observe that f, € L'(R) N L%(R), so f. e L*(R) N L>®(R). Then for
n > 2, by Lemma 3.3, we have

[ 2T iy
= Fyon (£T}721L) (0)

Fo(m) Fo(n2 = M) fo (et — n—2) o (=1 )dmidna....dipn—1

/{V1<j<n—1,nj >0}

1 S . N
= n/ fo(n) fz(n2 —n1)ee fo (M1 — n—2) f2(—=Mn—1)dmdnz...dn, 1
Rnfl

= Fy (1) (0)

- Lo

For t € R fixed, since ug satisfies lim,_, oo
such that

(3.15)

luo(@)| _
||

= 0, then for any € > 0, there exists R. > 0

2[t[|uo ()]

<e forall |z]|> R..
2]

Also, since ug € Lj.(R), there exists M. > 0 such that

2t luol| oo (| < re) < M-
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We fix ¢ = i, and take z € iR>( such that J(z) > 4M 1, and then we have
4

1

20t 1 follp < 5- (3.16)

Thus, for z € iRso with J(z) large enough, combining (3.12), (3.13), (3.14), (3.15) and
(3.16), we can deduce that

1
o ((G 4 24T, — 21d) ™ Hu0>
17T

[e.e]

For - e
4z7rt/z 2tf2( )y'dy

Log(l +2tf.(y))dy

2t
Log(1 + to
R Y-

4@25

=— d

dint W
which implies (3.9) for z € iRso with J(z) large enough. By Remark 1.10 and Remark
3.2, we know that the functions (with respect to z) on both sides of (3.9) are holomorphic
in C4, then from the isolated zeros theorem, we can deduce (3.9) on the whole upper
half-plane C. The proof is complete. O

Remark 3.6. In fact, (3.15) implies that, for every f € L'(R) N L?(R) and for every
n>2,

/f )TF 11 (y) /f" )dy, (3.17)

s0 we have obtained an integral equality (3.17) related to the Toeplitz operator Ty, which is
derived from (3.7).

Combining Lemma 3.1 and Lemma 3.5, we give the following proof of Theorem 1.4.

Proof of Theorem 1.4. We consider the equation (1.7) with ug € L2(R) N LS,
|uo ()]

]

(R) sat-
isfying lim, = 0. By the L? conservation law for (1.7), we know that
VteR, [[u*(t)]L2 = lluol L2 -

Consequently, the family u®(t) has weak limits in L?(R) as ¢ — 0. Our task therefore
consists in proving that there is only one such weak limit w; . Since u® is real valued, so
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is wy, hence w; = IMw; 4+ [Hw; on the real line. In Lemma 3.5, we have already shown the
second equality in (1.8), we are therefore reduced to proving the identity

1
Vze Cy, Tuy(z) = TI+ ((G + 2tT,, — zId)_1 Huo) ) (3.18)
i
since this identity clearly characterises w;.

We then recall the formula (3.1) for TTu®(t, z),
e 1 —ietd2 ietd? 1 eto?
M (t,2) = 5— 1 (G + oteietOR T, oietOR zId) e %2 Iy | . (3.19)

Since 1% is convergent to Id in .Z (L2 (R)) and since (Dom(G), —iG — 2itT,,) is max-
imally dissipative, then for z € C,, the function

gs = (G + 2t~ i€t0: Tuoeistag — zId) - e —iet0; Tug
is strongly convergent to
¢ = (G + 2tT,, — 2Id) " TTug
in L2 (R), and therefore I (¢g5) converges to I (gg) pointwisely in C,.

Also, from the weak convergence of u®(t) to w; in L?(R), we have
Vi€ Co Mif(t)~Marle) = [ o (@(1,€) - G1(6)) de - 0
0

and thus (3.18) follows. The proof is complete.

Remark 3.7. In fact, for ug € LZ(R) with |up(z)| < C(z) and for |t| < 5=, by applying
the method in the proof of Lemma 3.1, we can deduce that —2itT,,, is G-bounded with the
relative bound smaller than 1. Then by the Kato-Rellich theorem 1.15, we can conclude
that (Dom(G), —iG — 2itTy,) is maximally dissipative. With a slight modification of the
proof of Lemma 3.5, we can also show (3.9) for ug € L2(R) with |ug(z)| < C{x) in a short
time range |t| < % Finally, by following the same approach used in the proof of Theorem
1.4, we can deduce Corollary 1.9.

4 Final comments and open problems

Let us briefly give some comments related to the previous sections.
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1. Recently, R. Killip, T. Laurens and M. Vigan have extended continuously the flow
map of (1.1) to up € HZ(R) with —1 < s < 0 [10]. However, so far we have not been able
to extend the explicit formula (1.6) to ugp € HZ(R) with —3 < s < 0. In fact, we cannot
apply directly the perturbation argument used in Section 2 to this case, and we do not
know if (G — 2tLy, — 2Id)”" exists on H$(R) with —3 < s < 0. So far no other suitable
approach has been found to give an explicit formula for the solution of (1.1) in this case.
We remark that we have also the global well-posedness of the Benjamin—Ono equation on
the torus in HZ(T) with —3 < s < 0 [6][10], and the explicit formula for the Benjamin-Ono
equation on the torus has been successfully extended to ug € H:(T) with —% <s<0][7].

2. As explained in Remark 1.10, we know that the expression
2t
Log <1 N uo<y>> dy
Yy—z

makes sense if ug € L2(R). Nevertheless, this does not imply that the zero dispersion limit
exists in this case. For ug € L2(R), let u® be the corresponding solution to (1.7) with the
initial data ug, and we take a sequence uf € L2(R) N L°(R) which converges to ug in
L?(R). In fact, from (1.8) and Remark 1.10, we know that

1 2tugd 1 2t
lim Tim TS, (¢, 2) = lim ,/Log |y 2 g /Log LAY
n—00 e—0 n—oo dimt Jp y—z dirt Jg y—2z

where v, denotes the corresponding solution to (1.7) with the initial data ug.

4qmt R

To show the existence of the zero dispersion limit with the initial data ug € L2(R), we
only need to show that lim._,glim, o ITu5 (¢, 2) exists. A natural idea is to show that
these two limits can be exchanged in order, which would then imply that

: . . 1 2tuo (y)
I3 _ € _ & —
gli% Mus(t, z) = gli% nh—>Holo u; (t,2) = nh_}rrgo shg(l) IMu;, (t, 2) = Tt RLog (1 + i dy.
However, we lack certain uniform conditions for this double limit to prove the order ex-
changeability, so the existence for the zero dispersion limit with the initial data ug € L?(R)
is still unknown even in a short time.
Also, as observed in (3.5), the condition
ug € LA(R) with |ug(x)| < C(x)
is a necessary condition for (G + 2teito: Tuoe*iftag - zId) to have a limit in . (Dom(G), L3 (R))

as € — 0. With this condition we can only deduce the existence of the zero dispersion limit
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in a short time, and the existence of the zero dispersion limit in a long time is still un-
known for the same reason explained in the previous paragraph. A natural idea to solve
this difficulty is to apply the Kato-Rellich theorem to show that

(G + 2T, — 2Id) ™"

exists on L?i— (R) for every z € C,, but the perturbation argument fails in a long time range
since we cannot deduce that the relative bound of —2itT;,, with respect to G is smaller
than 1 for every t € R.

3. The zero dispersion limit for the Benjamin—Ono equation on the torus was studied
by L. Gassot in [1][5]. In [5], the explicit formula for the Benjamin-Ono equation on the
torus established in [7] was used to prove the existence of the zero dispersion limit for every
initial datum in L°°(T). The existence of the zero—dispersion limit for more singular initial
data is still an open problem. As introduced in Remark 1.6, L. Gassot has also obtained
the formula (1.9) in the special case of a general bell shaped initial datum in [1][5].
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