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EXPLICIT CLASSES OF PERMUTATION AND COMPLETE
PERMUTATION POLYNOMIALS OVER FINITE FIELDS

BELHOUT BOUSALMI, ABDELMEJID BAYAD, AND ABDALLAH DERBAL

ABSTRACT. Let g be a power of prime number p, such that
g = 1(mod3).
We investigate the following two families of polynomials
X?'(X2(q—1)/3 +5X(q—1)/13 462+ 1), XT'(X2(q—1)/3 +X(q—1)/i3 +7)

where § and v belong to finite field F,. From these families, we find
new classes of permutation polynomials (PP) and complete permutation
polynomials (CPP) to the finite field F,.

1. Introduction and preliminaries

Let p be a prime number and let F, be a finite field with ¢ elements,
where ¢ is a power of p. We set ¢ = p™ for some positive integer n. A
polynomial f € F,[X] is called a permutation polynomial (PP) of Fy if its
associated polynomial mapping f : © — f(z) from F, to itself is a bijection.
A polynomial f € [F,[X] is called a complete permutation polynomial (CPP)
if both polynomial mapping z — f(z) and x — x + f(z) are permutation
polynomials of Fj,.

The study of permutation polynomials started in 1863 with Hermite [5]
for prime fields F,, and later by Dickson (1897) [2] for a general finite fields
Fy. There are two main reasons for the study (PP) and (CPP) of finite
fields. First, (PP) over finite fields F; become of remarkable interest in the
construction of cryptographic systems for the secure transmission of data,
coding theory and combinatorial design theory. See [7, 8, 9]. The second
main motivation comes from the study of permutation groups [17].

The articles of Lidl and Mullen [10, 11] listed some open problems of
interest and one of them is to find new classes of permutation polynomials
of F,. In fact there are only a few classes of (PP) and (CPP) that are
known. In general, it is not easy to construct (PP) and (CPP) of finite fields.
For example, there is no known deterministic polynomial time algorithm to
test whether a given polynomial is a permutation polynomial, though a
probabilistic polynomial time solution has just been obtained by Von zur
Gathen [4]. There are only three major known classes of (PP). The first
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class consists of Chebyshev-Dickson (PP). The Dickson polynomials of the
first kind are given by

[k/2] ( -

k A A
Dy(X,a) = Z — j > (—a)X*=% where a € F,,.
j=0

These polynomials are (PP) of F, if and only if (k,¢*> — 1) = 1 and form a
group under composition and have applications in public key cryptosystems.
See [12, Theorem 7.16].

The second class consists of permutational linearized polynomials of the
n

form L(z) = Z a;z? is a (PP) of F, if and only if 0 is the unique root of L

i=0
in F,. This class also forms a group, that so-called Betti-Mathieu group. It
is isomorphic to the group GL,(F,) of nonsingular matrices, where ¢ = p".

See [12, p.362-390] and [15, Prop. 2.6, p.37].

The third class consists of (PP) of the form er(Xq%dl), where d is a
divisor of ¢ — 1, wihich is introduced by Dickson and Rogers [3]. This class
forms a group G(d, q) under composition and this group is isomorphic to
a generalized wreath product G(d,q) ~ G x H, where G = Z/%Z and
H = 54 (see [17, p.157-159] ).

In general, it is very difficult to construct (PP). See [1, 4, 6, 8, 10, 11].
The following equivalent statements provide ideas which used to prove that
a given polynomial is a (PP).

Theorem 1. ([6, Theorem 1.1, p.83]) For f € F,[X], the following state-
ments are equivalent.

1. fisa PP of Fy,.

2. For each y € Fy, the equation f(x) = y has at least one solution
z €I,

3. For each y € Fy, the equation f(x) = y has at most one solution
z € Fy.

4. For all a € Fy,

Z ng”q/”(“f(z)) = 0, where p = charF, and ¢, = 2y,
z€l,
5. (Hermite’s criterion)
s 0if 0<s<q—2
> sor -

acFy —1if s=q—1.

6. The polynomial (f(X) — f(Y))/(X —=Y) € Fy[X, Y] has no roots
(z, y) € Fg with x # y.
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Note that for the third class of (PP) of the form er(Xq%dl), we quote
from [6, Theorem 2.2, p.85] and references therein the following simple cri-
teria.

Theorem 2. Let d and r be positive integers with d | ¢ — 1. Let f(X) =
-1
X"h(X"T), where h € F,[X]. Then, f is a (PP) of F, if and only if
(1) ged(r, ') =1 and
(2) th(X)% permutes fiq.

Theorem 2 is equivalent to the criterion for polynomial given by Wan-Lidl
[17]. Let us recall this criteiron. Let d | ¢ — 1 and g be a fixed primitive
root of Fy. Let w = ¢l@=1/d be a primitive d-th root of unity in F,. Define
a multiplicative character ¢ with values in Z/dZ sush that for all a € F7,

Y(a) = Indy(a) (mod d),

where Indy(a) is the residue class b mod (g — 1) such that a = ¢°. It is clear
that 1) satisfies
ala=D/d _  b(a)

With this definition, we have the following criterion.
Criterion of Wan and Lidl. Let g be a primitive element of Fy and w =
g4/ pe g primitive d-th root of unity in Fy. Then the polynomial h(X) =
X7 f(Xx@=D/d) js a permutation polynomial of Fq if and only if the following
conditions are satisfied

(a) (r, %) =1,

(b) f(wh) # 0, for all 0 <i < d,

() ¥ (%) £ r(j — i) (mod d), for all 0 < i < j < d.

This result unifies and generalizes several classes of permutation poly-
nomials. But the difficulty lies with explicit definition to the polynomial
h that satisfies the conditions of the previous criterion, this is due to the
difficulty of the determination of a primitive element of F,, especially for
the big values of ¢, and by other side the choice of the polynomial f which
satisfies both conditions (b) and (c).

Due to the importance of polynomials of the form X7 f(X(@=1/4) in this

paper we find and study two new classes of permutation polynomials of the
2(g=1) 2(g=1)

forms: X"(X 5 +0XT +62+1), and X"(X 5 + X5 +7) of F,,
and we extract from the second form two classes of complete permutation
polynomials of IF.

2. Main results

In this paper we prove the following results.
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Theorem 3. Let Fy be a finite field containing g elements, such that ¢ =1
(mod 3), and r be a positive integer, where (r,q — 1) = 1. We have the
following results

1. For every § cubic root of unity in F, such that (36 + 1)% =11in
Fy, the polynomial
r 2(‘1*1) g—1 2
fX)=X"(X"3 +6X 3 +06°+1)
is a permutation polynomial of .
q—1
2. For any v € F\{1, -2} such that (%) P =1in F,, the polyno-

mial
2(¢—1) q

FX)=X"(X"5 +X5 +79)
is a permutation polynomial of F.

Theorem 4. Let Fy be a finite field of characteristic p containing q elements,
and r be a positive integer, where (r,q — 1) = 1.

1. If ¢ = 1 (mod 6), then the polynomial X" (X
is a permutation polynomial of .
2. If p = 1 (mod 3), and ¢ = p**, (k > 1). Then the polynomial

(¢—1) -
XT(X2 En + X% +2) is a permutation polynomial of Fy.
3. Ifp>5,p=—1 (mod 3) and ¢ = p** (k > 1). Then the polynomial
2(g=1)

X"(X75 4+ X5 4 2) is a permutation polynomial of F,.

2(g—1)
3

+X‘%1+%)

Using Theorem 3 and Theorem 4, we obtain the following two corollaries.

Corollary 2.1. Let ¢ = 25% (k > 1), and r be a positive integer, where (r, q—
1) = 1. Then there exists § in [y, such that the polynomials X"(XQ(%I) +

5X 5 +9) and X’"(XQ(%) + 22X +62) are permutation polynomials of
F,.

Corollary 2.2. Let p be a prime number, p > 5. We sezt( C{: p2k z'f_;z =-1
(mod 3) or ¢ = p*®=Y. Then the polynomials X" (X T X5) and

2(g—1)

X"(X ™3 —i—Xq%1 —1) are permutation polynomials of Fy, where (r,q—1) =
1.

3. Key Lemmas

Before we proceed to the proof of our main results, we present the follow-
ing elementary lemmas.

Lemma 3.1. Let p a prime number, x be a integer, and u be a positive
integer. Then zP" = x (mod p).

Proof. According to Fermat’s little theorem, we have 2P = z (mod p). And
by recurrence, we get #P* = z (mod p), for all u > 1. O
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Lemma 3.2. Let ¢ =1 (mod 3), and the polynomial f(X) = X?+X +1¢€
Fo[X]. Then f has two distinct roots in F.

Proof. Let g be a primitive element of ;. By putting J = g%l, we find that
63 =1 and 6 # 1, then §% + 6 + 1 = 0. Therefore 6 is root of the polynomial
fin F,. It is clear that §2 is the second root and 6 # 1, . O

Lemma 3.3. Let p a prime number, u be a positive integer and x be a
integer number, such that p{x. Then

3u _
25 =1 (mod p) if p=1 (mod 3)
2u _
=1 (mod p) if p=—1 (mod 3)

Proof. For u > 1, we have by Fermat’s little theorem

3u__ M 1+ 3+ 6++ 3u—3
s p (J;P—l)( 3 )( pr v =1 (mod p) if p=1 (mod 3)
2u_ p+1 2004 1 2u—2
= (ajpfl)(p(% )(4p4pt e 4p?e2) =1 (mod p) if p=—1 (mod 3).
Then we get our desired result. O

4. Proofs of main results

4.1. Proof of theorem 3.

We prove Theorem 3. It suffices to prove that the induced map f is
injective on F,. Suppose that f(a) = f(b) for some elements a and b of F,,.
If a = 0, then br(bz(%) T iy 1) = 0. Suppose b # 0, then

b25) 460" 462 +1=0. Put w =55, then

(4.1) W dw+624+1=0

and we have w3 = b9~! = 1, w is a cubic root of unity. This is equivalent
to {(w = 9) or (w? + dw + 6% = 0)}. If w = §, then 35 + 1 = 0, which
contradicts the condition (362 + 1)% = 1. If w # §, by equation (4.1), we
have 1 = 0 which is a contradiction (¢ > 2). Then b =0 = a.

Now we suppose that ab # 0, and we put 0 = a%, then 6% = 1 = §3. By
symmetry, we have just the following three cases:

1. If 0 = w = §. From equation f(a) = f(b) we get: (362 + 1)a" =
(362 + 1)b". Hence (%)" = 1. Then the order [ of ¢ in F} divides
(r,q—1), and by the condition (r,g—1) = 1, we have [ = 1. Therefore
a="b.

2. If = 6 and w # 6. From equation f(a) = f(b) we get: (362+1)a" =
b", and hence (g)r = 362 + 1. Then we deduce that

1T _
(b;) — (362 +1)"F = 1.

93
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Then we have (%)T = 1, this implies that the order [ of (%) in Fj

divides (r,q — 1),. On the other hand w # ¢, then | > 2, therefore

(r,q — 1) > 2, which contradicts the condition (r,q — 1) = 1.

3.If 0 # 6 and w # 6, then 6% + 60 + 6% = w? + dw + 62 = 0. The

equation f(a) = f(b) gives that a" = b", hence (%)T = 1. We then

deduce from the condition (r,¢ — 1) =1 that a = b.
To prove the second part of the Theorem 3, we follow the same method that
we used to prove the first one below. So it suffices to prove that the induced
map f is injective on F,. Suppose that f(a) = f(b) for some elements a
and b of F,. If a = 0, then b" (b5 +b"5 + ) = 0. Suppose b # 0, then
255 —ﬁ—b% +~4=0. Put w= bq%l, then w? +w + v = 0, and we have
w3 = b97! =1, w is a cubic root of unity. This is equivalent to {(w = 1) or
(w? 4+ w+1=0)}. We then get v = —2 or v = 1, which is a contradiction.
Then b =0 = a.

Now, we assume that ab # 0, and we put 6 = aq%l, then 6 = 1. By
symmetry, we get the only following three cases:
1. If = w = 1. By equation f(a) = f(b), we have (y+2)a” = (v+2)b",
hence (%)T = 1. Then the order [ of (3) in F} divides (r,¢ — 1), and
by the condition (r,q — 1) = 1, we have | = 1. hence a = b.
2. If 9 =1 and w # 1. From equation f(a) = f(b), we get: (y+2)a" =

(v —1)b", hence (g)r = (%) Then we deduce that

a1\ 7" a—1
b3 (v t2)\ 3 _1
aq%l - 7_1 -

Then we have w” = 1. Since w # 1, then w is a primitive cubic
root of unity, therefore 3 | (r,¢ — 1), which contradicts the condition
(r,g—1)=1.

3.If 0 # 1 and w # 1. The two elements 6 and w are primitives
cubic roots of unity, then #? + 0 = w? + w = —1. By the equation
fla) = f(b), we get: (y —1)a”™ = (y — 1)b", hence (%)T =1, we
deduce from the condition (r,¢ — 1) =1 that a = b.

This gives our Theorem 3.

4.2. Proof of theorem 4.

1) If ¢ =1 (mod 6), here we have p # 2 and p # 3. By taking v = prl in

the second part of Theorem 3, then we obtain v # 1 and vy # —2. It follows

that
2 % -1
<7+> — (-5 =1.
v—1
Hence the condition of second part of Theorem 3 is satisfied. Therefore we
deduce first part of the Theorem 4.
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2) According to the Lemma 3.3, we have 45 =1in F Then by the

Theorem 3, the polynomial f(X) = X" (X5 D4 X5 4 2)is a
permutation polynomial of F,. This proves the second part of Theorem 4.
3) We prove the remaing case in the same way as the proof of the second
result.

4.3. Proof of Corollary 2.1.
We have ¢ =1 (mod 9), so 3| 45— 1 . From the Lemma 3.2t exmts d € Fy,
such that 6 # 1 and 6% = 1. Then we get (3624 1) =45 5 =1 and
(36% + l)q%1 =(0+ l)q%l = (62)%1 = 1. By the Theorem 1, we ﬁnd that
g—1 g1 g—1
the polynomials X"(X237) + §X "5 +6) and X" (X2("57) 4 62X "5 g 52)
are permutation polynomials of F,.
4.4. Proof of Corollary 2.2.
If ¢ = p*®=1 we can write g — 1= (p—1)(1+p+p? +---+p*~D-1) By
Lemma 3.1, we have
o(Ltpt—4p"=D71) - —  op=1yk( 04 p)
= 1( mod p).
Since p > 5 then p — 1 is even and (6,p) = 1. So by Euler’s theorem we get

p*P=1) =1 (mod 6). We deduce that 3 |p—1or3|1+p+---+pFP-D-1
OIf3|p—1then

p=1
2% — (21+P+"'+pk(p71>71) * =1 (mod p).

eIf 3|1 +p+--+pFP=D=1 then
_ 14+pt---+ k(p—1)—1
9% — (2p_1)( B ) =1 (mod p).
Now if p = —1 (mod 3) and ¢ = p?* then it is clear that (3,p — 1) =1 and
g =1 (mod 6), hence we deduce that 3(p 1) € N*. By Fermat’s little
theorem, we have

q—1

oist _ (2]3—1)(350;*11)) =1 (mod p).

Then we conclude in both cases that 2%5 =1 in Fy.
By taking v = 0 or v = —1 in the second part of Theorem 3, we get
-1

- - —
(M)  — 1, then we find that both polynomials X" (X *% + X 5"

o +X3)
and X"(X

2(q—1) -1 . .
T X - 1) are permutation polynomials of Fy.

5. New classes of complete permutation polynomials

For r = 1 and thanks to Theorems 3 and 4, we extract two new families
of (CPP) over finite fields. This is formulated in the following theorems.
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Theorem 5. Let ¢ = 7% and u be any positive integer. Then we have

2(g—1)
the polynomial f(z) = X1T E
polynomial of Fy.

XH'q 42X s a complete permutation

Proof. We can write

flz) = X1+2<q = Xl“ +oX
= X( s 2).
And we have f(X) + X = X( e X5 4 3), thanks to Theorem 4 (

with p = 7 and ¢ = 73" ), we find that both polynomials f(X) and f(X)+X
are permutation polynomials of Frs.. Then we get our desired result. O

Theorem 6. Let p be a prime number, p > 5. We set qQ(:_]la)% ifp= 1—1
(mod 3) or g = p*®=Y . Then the polynomial f(X) = X'+ T X
X is a complete permutation polynomial of IF,.

Proof. We have

2(q 1)

+ XS X

2(¢—1) g—1
3

+X3 —1)

fx) = x5
= X(X

and we can see that f(X)+ X = X( q;sl), thanks to Corollary
2.2 (with vy = 0 or v = —1) , we find that both polynomials f(X) and
f(X)+ X are permutation polynomials of F,. Then the polynomial f(X) =
X1+2(q L))

+ X 5% _ X isa complete permutation polynomial of F,. O

6. Examples

In the following we give many interesting (PP) and (CPP) polynomials
for some finite fields.

6.1. Example 1. Thanks to Theorems 3, 4, 5, and 6 we obtain

a) the binomials X7 + X° X2+ X183 X234 X1 and X%7 + x1
are permutation polynomials of IF25

( 'U.
b) the trinomial X" (X +2X —|—5) is a permutation polynomial
of Fru, where (r, 7" — 1) =1

c) the trinomial X" (X L xS
of Fy3u, where (r,13"% — 1) =1

d) the trinomial X'7 + X? — X is a complete permutation polynomials
of F25.

e) the trinomial X?? + X5 42X is a complete permutation polyno-

mials of F343 .

+6) is a permutation polynomial
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6.2. Example 2. We have Fig ~ <ﬂ;?[))(()]>, where p(X) = X4+ X3 + X% +

X + 1 is an irreducible polynomial in the ring Fo[X]. Then the field Fig
contains a root « of the polynomial p(X), and it is clear that a # 1. Put

v = 325, then we have
5
Y 5
—_— = =1.
(7— 1> “

Hence, by Theorem 3, we find that the trinomial f(X) = X"(X0+ X° +~)
is a permutation polynomial of Fi4, where (r,15) = 1. And we have the
polynomial X! + X6 4+ X is a complete permutation polynomials of Fy.
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