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Abstract. The aim of this paper is to make use of a new generalized
Leibniz rule for fractional derivatives obtained recently by Tremblay
et al. [Tremblay, Gaboury and Fugère, A new Leibniz rule and its
integral analogue for fractional derivatives, Integral Transforms Spec.
Funct. 24 (2013), 111-128] by means of a representation based on the
Pochhammer’s contour of integration for fractional derivatives in order
to derive new expansion formulas for several families of the Hurwitz-
Lerch zeta function. Special cases are also given.
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1. Introduction

It is well known that the generalized Hurwitz-Lerch zeta function as well
as its extended version have many applications in various areas of mathemat-
ics and physics. In number theory, the Riemann and Hurwitz zeta functions
are closely related to Dedekind zeta functions and Artin L-functions, which
play a central role in the discipline. In addition, the generalized Hurwitz-
Lerch zeta functions, evaluated at negative integers, are closely related to
the Apostol-Bernoulli polynomials, the Apostol-Euler polynomials and the
Frobenius-Euler polynomials [1, 5, 21]. These functions are also connected
to the generalized Fermi-Dirac functions and the generalized Bose-Einstein
functions [1]. The generalized Fermi-Dirac and Bose-Einstein functions,
which appear in quantum statistics, quantum interference and in the theory
of quantum entanglement, have been introduced recently by Srivastava et
al. [22]. Moreover, the generalized Hurwitz-Lerch zeta functions have in-
teresting applications in geometric function theory [19] and finally, Gupta
et al. [7] investigated the generalized Hurwitz-Lerch zeta distribution and
applied this new distribution in reliability.

∗Corresponding author.
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The generalized Hurwitz zeta function ζ(s, a) is defined by [23, p. 88 et
seq.]

ζ(s, a) :=
∞∑
n=0

1

(n+ a)s
(Re(s) > 1; a ∈ C \ Z−0 ;Z−0 := {0,−1,−2, ...})

(1)

where

ζ(s, 1) = ζ(s) =
1

2s − 1
ζ

(
s,

1

2

)
(2)

yields the celebrated Riemann zeta function ζ(s). The Riemann zeta func-
tion is continued meromorphically to the whole complex s-plane except for
a simple pole at s = 1 with residue 1.

The Hurwitz-Lerch zeta function Φ(z, s, a) is defined, as in [23, p. 121 et
seq.], by

Φ(z, s, a) :=
∞∑
n=0

zn

(n+ a)s
(3)

(a ∈ C \ Z−0 ; s ∈ C when |z| < 1; Re(s) > 1 when |z| = 1).

Clearly, we have the following relations

Φ(1, s, a) = ζ(s, a) and Φ(1, s, 1) = ζ(s).(4)

The Hurwitz-Lerch zeta function has the well known integral representation

Φ(z, s, a) =
1

Γ(s)

∫ ∞
0

ts−1e−at

1− ze−t
dt(5)

(Re(a) > 0; Re(s) > 0 when |z| ≤ 1 (z 6= 1); Re(s) > 1 when z = 1).

Recently, Lin and Srivastava [10] investigated a more general family of

Hurwitz-Lerch zeta functions. They introduced the function Φ
(ρ,σ)
µ,ν (z, s, a)

defined by

Φ(ρ,σ)
µ,ν (z, s, a) :=

∞∑
n=0

(µ)ρn
(ν)σn

zn

(a+ n)s
(6)

(
µ ∈ C; a, ν ∈ C \ Z−0 ; ρ, σ ∈ R+; ρ < σ when s, z ∈ C;

ρ = σ and s ∈ C when |z| < 1; ρ = σ and Re(s− µ+ ν) > 1 when |z| = 1

)
,

where (λ)κ denotes the Pochhammer symbol defined, in terms of the Gamma
function, by

(λ)κ :=
Γ(λ+ κ)

Γ(λ)
=

{
λ(λ+ 1) · · · (λ+ n− 1) (κ = n ∈ N;λ ∈ C)

1 (κ = 0;λ ∈ C \ {0}).
(7)

It is easily seen that

Φ(σ,σ)
ν,ν (z, s, a) = Φ(0,0)

µ,ν (z, s, a) = Φ(z, s, a)(8)
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and

Φ
(1,1)
µ,1 (z, s, a) = Φ∗µ(z, s, a) :=

∞∑
n=0

(µ)n
n!

zn

(n+ a)s
.(9)

The function Φ∗µ(z, s, a) is, in fact, a generalized Hurwitz-Lerch zeta function
investigated by Goyal and Laddha [6, p. 100, Equation (1.5)].

Let us recall some other important special cases of the Hurwitz-Lerch zeta
function Φ(z, s, a). The Lerch zeta function defined by

ls(ξ) :=

∞∑
n=1

e2nπiξ

ns
(ξ ∈ R; Re(s) > 1)(10)

is related to the Hurwitz-Lerch zeta function by the following relation

ls(ξ) = e2πiξΦ
(

e2πiξ, s, 1
)
.(11)

Also, we note, as a special case of the Hurwitz-Lerch zeta functions, the
Lipschitz-Lerch zeta function [23, p. 122, Equation 2.5 (11)]:

φ(ξ, a, s) :=

∞∑
n=0

e2nπiξ

(n+ a)s
= Φ

(
e2πiξ, s, a

)
(12)

(a ∈ C \ Z−0 ; Re(s) > 0 when ξ ∈ R \ Z; Re(s) > 1 when ξ ∈ Z).

Setting z = exp

(
2πip

q

)
with p ∈ Z and q ∈ N, and using the next series

identity

∞∑
n=0

f(n) =
k−1∑
j=0

∞∑
n=0

f(kn+ j),(13)

we obtain the following summation formula for the Lipschitz-Lerch zeta
function φ(ξ, a, s):

φ

(
p

q
, a, s

)
= q−s

q∑
j=1

ζ

(
s,
a+ j − 1

q

)
exp

(
2(j − 1)pπi

q

)
(14)

in terms of the Hurwitz zeta function ζ(s, a) defined by equation (1) (see
also [21, p. 81, Equation (3.9)]).

A very important result for the sequel is the Lerch’s functional equation [3,
p. 29, Equation 1.11 (7)]:

Φ(z, s, a) = i z−a(2π)s−1Γ(1− s)
{

exp

(
−1

2
sπi

)
Φ

(
e−2πia, 1− s, log z

2πi

)
− exp

[(
2a+

1

2
s

)
πi

]
Φ

(
e2πia, 1− s, 1− log z

2πi

)}
(15) (

Re(s) < 0; |arg(− log(z) mod 2πi)| ≤ π; a ∈ C \ Z−0
)
.

Recently, Lin et al. [11] obtained some expansion formulas for a general-
ized Hurwitz-Lerch zeta function Φ∗µ(z, s, a) defined by (9) in terms of the



4

Hurwitz-Lerch zeta function (3) by making use of the generalized Leibniz
rule for fractional derivative [14, p. 95, Equation (4.3)]:

Dµz f(z)g(z) =
∞∑
j=0

(
µ

j

)
Dµ−jz f(z)Dj

zg(z)(16)

where Dµz denotes the Riemann-Liouville fractional calculus operator [4, p.
181 et seq.] defined by:

Dµz f(z) :=


1

Γ(−µ)

∫ z

0
f(t)(z − t)−µ−1dt if Re(µ) < 0,

dm

dzm
Dµ−mz f(z) if m− 1 ≤ Re(µ) < m.

(17)

Explicitly, they proved the following expansion formula for the generalized
Hurwitz-Lerch zeta function Φ∗µ(z, s, a):

Φ∗µ(z, s, a) = i z−aΓ(1− s)
∞∑
j=0

(j − a+ 1)µ−j−1
Γ(µ− j)j!

j∑
k=0

(
j − 1

k − 1

)
(1− s)kB

(j)
j−k

· (2π)s−k−1
[

exp

(
−1

2
(s− k)πi

)
Φ

(
e−2πia, 1− s+ k,

log z

2πi

)
− exp

[(
2a+

1

2
(s− k)

)
πi

]
Φ

(
e2πia, 1− s+ k, 1− log z

2πi

)]
(18)

with Re(µ) > 0, s ∈ C, |arg(− log(z) mod 2πi)| ≤ π, a ∈ C \ Z−0 , where

B
(α)
n := B

(α)
n (0) are the generalized Bernoulli numbers [13] given by the

following generating function:(
z

ez − 1

)α
exz =

∞∑
n=0

B(α)
n (x)

zn

n!
(|z| < 2π; 1α := 1).(19)

The aim of this paper is to make use of a new generalized Leibniz rule
for fractional derivatives obtained recently by Tremblay et al. [25] by means
of a representation based on the Pochhammer’s contour of integration for
fractional derivatives [8] in order to derive a new expansion formula for the
generalized Hurwitz-Lerch zeta function Φ∗µ(z, s, a) in terms of the Hurwitz-
Lerch zeta function Φ(z, s, a). Moreover, an expansion theorem is obtained

for the generalized family of Hurwitz-Lerch zeta functions Φ
(ρ,σ)
µ,ν (z, s, a).

Special cases are also given. The paper is arranged as follows. Section 2
is devoted to the representation of the fractional derivatives based on the
Pochhammer’s contour of integration and the new generalized Leibniz rule.
In section 3, we prove the expansions formulas and finally, section 4 aims to
provide some special cases.

2. Pochhammer contour integral representation for
fractional derivative and a new generalized Leibniz rule

The use of contour of integration in the complex plane provides a very
powerful tool in both classical and fractional calculus. The most familiar
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representation for fractional derivative of order α of zpf(z) is the Riemann-
Liouville integral [2, 12, 20] that is

Dαz zpf(z) =
1

Γ(−α)

∫ z

0
f(ξ)ξp(ξ − z)−α−1dξ,(20)

which is valid for Re(α) < 0, Re(p) > 1. Here the integration is done along
a straight line from 0 to z in the ξ-plane. By integrating by part m times,
we obtain

Dαz zpf(z) =
dm

dzm
Dα−mz zpf(z).(21)

This allows to relax the restriction Re(α) < 0 by Re(α) < m [20]. An-
other used representation for the fractional derivative is the one based on
the Cauchy integral formula widely used by Osler [15, 16, 17, 18]. These
two representations have been used in many interesting research papers. It
appears that the less restrictive representation of fractional derivative ac-
cording to parameters is the Pochhammer’s contour definition introduced in
[9, 24].

Definition 2.1. Let f(z) be analytic in a simply connected region R. Let
g(z)be regular and univalent on R and let g−1(0) be an interior point of R.
If α is not a negative integer, p is not an integer, and z is in R− {g−1(0)},
we define the fractional derivative of order α of g(z)pf(z) with respect to
g(z) by

Dα
g(z)g(z)pf(z) =

e−iπpΓ(1 + α)

4π sin(πp)

∫
C(z+,g−1(0)+,z−,g−1(0)−;F (a),F (a))

f(ξ)g(ξ)pg′(ξ)

(g(ξ)− g(z))α+1
dξ(22)

For non-integer α and p, the functions g(ξ)p and (g(ξ) − g(z))−α−1 in the
integrand have two branch lines which begin respectively at ξ = z and
ξ = g−1(0), and both pass through the point ξ = a without crossing the
Pochhammer contour P (a) = {C1 ∪ C2 ∪ C3 ∪ C4} at any other point as
shown in Figure 1. F (a) denotes the principal value of the integrand in (22)
at the beginning and ending point of the Pochhammer contour P (a) which
is closed on Riemann surface of the multiple-valued function F (ξ).

Remark 2.2. In the Definition 2.1, the function f(z) must be analytic at
ξ = g−1(0). However it is interesting to note here that we could also allow
f(z) to have an essential singularity at ξ = g−1(0), and the equation (22)
would still be valid.

Remark 2.3. The Pochhammer contour never crosses the singularities at
ξ = g−1(0) and ξ = z in (22). Then we know that the integral is analytic for
all p and α and for z in R−{g−1(0)}. Indeed, the only possible singularities
of Dα

g(z)g(z)pf(z) are α = −1,−2, . . . , and p = 0,±1,±2, . . . which can

directly be identified from the coefficient of the integral (22). However,
integrating by parts N times the integral in (22) by two different ways, we
can show that α = −1,−2, . . . , and p = 0, 1, 2, . . . are removable singularities
(see [9]) .
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Figure 1. Pochhammer’s contour

It is well known that [14, p. 83, Equation (2.4)]

Dα
z z

p =
Γ(1 + p)

Γ(1 + p− α)
zp−α (Re(p) > −1),(23)

but by adopting the Pochhammer based representation for the fractional
derivative this last restriction becomes p not a negative integer. In view of
definition 6, the fractional derivative formula for the generalized Hurwitz-

Lerch zeta function Φ
(ρ,σ)
µ,ν (z, s, a) with ρ = σ [10, p. 730, Equation (24)]

is

Dµ−ν
z zµ−1Φ(zσ, s, a) =

Γ(µ)

Γ(ν)
zν−1Φ(σ,σ)

µ,ν (zσ, s, a)(24)

with µ− 1 not a negative integer.

A very interesting special case is obtained when setting ν = σ = 1, and
equation (24) reduces to the following form:

Φ∗µ(z, s, a) =
1

Γ(µ)
Dµ−1
z zµ−1Φ(z, s, a)(25)

with µ− 1 not a negative integer.

As remarked by Lin and Srivastava [10], the function Φ∗µ(z, s, a) is essentially
a fractional derivative of the classical Hurwitz-Lerch function Φ(z, s, a).
Many other interesting explicit representations for Φ∗µ(z, s, a) have been
proven by Lin and Srivastava [10].

Recently, one of the authors obtained a new generalized Leibniz rule for
fractional derivatives by making use of the properties of this representation
[25, 26]. Explicitly, we proved the following theorem:

Theorem 2.4. (i) Let R be a simply connected region containing the origin.
(ii) Let u(z) and v(z) satisfy the conditions of Definition 2.1 for the existence
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of the fractional derivative. (iii) Let U ⊂ R be the region of analyticity of
the function u(z) and V ⊂ R the one for the function v(z). Then for z 6= 0,
z ∈ U ∩ V, Re(1− β) > 0 the following product rule holds
(26)

Dα
z z

α+β−1u(z)v(z) =
z sin(βπ)Γ(1 + α) sin(µπ) sin((α+ β − µ)π)

sin((α+ β)π) sin((β − µ− ν)π) sin((µ+ ν)π)

·
∞∑

n=−∞

Dα+ν+1−n
z zα+β−µ−1−nu(z)D−1−ν+nz zµ−1+nv(z)

Γ(2 + α+ ν − n)Γ(−ν + n)
.

3. Expansion formulas

In this section, we present the two expansion formulas obtained by means

of fractional calculus techniques for the functions Φ
(ρ,σ)
µ,ν (z, s, a) and Φ∗µ(z, s, a).

The first expansion formula is a direct applications of the generalized Leibniz
rule (26). The second expansion formula is analogous to Lerch’s functional
equation. We first state the first one in the form of the theorem below:

Theorem 3.1. The following expansion formula holds true

Φ(σ,σ)
µ,ν (zσ, s, a)

=
Γ(ν)Γ(µ− ν + 1) sinβπ sin(µ− ν + β − λ)π

Γ(µ)Γ(ν − γ − λ− 1)Γ(1 + γ + λ) sin(µ− ν + β)π sin(β − λ− γ)π

· sinλπ

sin(λ+ γ)π

∞∑
n=−∞

Γ(µ− λ− n)Γ(λ+ n)

Γ(2 + µ− ν + γ − n)Γ(−γ + n)
Φ
(σ,σ)
λ+n,1+γ+λ (zσ, s, a)

(27)

(
z 6= 0; Re(1−β) > 0; (λ+n) ∈ C\Z−0 ; (1+λ+γ) ∈ C\Z−0 ; a, ν, µ ∈ C\Z−0 ;

σ ∈ R+; s ∈ C when |zσ| < 1

)
.

Proof. First, making the substitutions µ 7→ λ, ν 7→ γ in Theorem 2.4 and
afterwards setting α = µ−ν, u(z) = zν−β and v(z) = Φ (zσ, s, a) (both u(z)
and v(z) satisfied the conditions of Theorem 2.4), we have

Dµ−ν
z zµ−1 Φ (zσ, s, a)

=
z Γ(µ− ν + 1) sinβπ sinλπ sin(µ− ν + β − λ)π

sin(µ− ν + β)π sin(β − λ− γ)π sin(λ+ γ)π

·
∞∑

n=−∞

Dµ−ν+γ+1−n
z zµ−λ−1−n D−1−γ+nz zλ−1+n Φ (zσ, s, a)

Γ(2 + µ− ν + γ − n)Γ(−γ + n)
.(28)

Using (23) and (24), we find that

Dµ−ν+γ+1−n
z zµ−λ−1−n =

Γ(µ− λ− n)

Γ(ν − γ − λ− 1)
zν−γ−λ−2(29)
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and

D−1−γ+nz zλ−1+n Φ (zσ, s, a) =
Γ(λ+ n)

Γ(γ + λ+ 1)
zγ+λ Φ

(σ,σ)
λ+n,γ+λ+1 (zσ, s, a) .

(30)

It is important to mention that in the case where ρ = σ and |zσ| = 1, the

function Φ
(ρ,σ)
µ,ν (z, s, a) exists for Re(s − µ + ν) > 1. This implies that for

|zσ| = 1, the function Φ
(σ,σ)
λ+n,γ+λ+1 (zσ, s, a) in (30) must satisfy Re(s + γ −

n) > 0 for all n ∈ Z which case is impossible. Thus, the expansion holds
true only for |zσ| < 1.

Finally, the results follow by combining (29), (30) and (28). �

Now let us shift our focus on the second expansion formula involving the
generalizerd Hurwitz-Lerch zeta function Φ∗µ(z, s, a) which is stated in the
next theorem:

Theorem 3.2. The following expansion formula holds true for Φ∗µ(z, s, a):

Φ∗µ(z, s, a) =
i Γ(1− s)z−a sinβπ sin(β + µ− ω)π

Γ(µ)Γ(1− ω − a) sin(µ+ β)π sin(β − ω)π

∞∑
n=0

n∑
k=0

k∑
j=0

(
n− 1

k − 1

)

·
(
k

j

)
Γ(µ− a− ω − n)

Γ(µ− n)n!
B

(n)
n−k (2π)s−1−j(1− s)j(ω − 1 + n)k−j

·
[

exp

(
−(s− j)πi

2

)
Φ

(
e−2πia, 1− s+ j,

log z

2πi

)
− exp

[(
2a+

s− j
2

)
πi

]
Φ

(
e2πia, 1− s+ j, 1− log z

2πi

)]
(31) (

µ ∈ C \ Z−0 ; ω ∈ C; Re(1− β) > 0; s ∈ C;

|arg(− log(z) mod 2πi)| ≤ π; a ∈ C \ Z−0
)
.

Proof. Multiplying each member of equation (15) by zµ−1 and operating

both sides of the resulting equation by Dµ−1
z , we get

Dµ−1
z zµ−1 Φ(z, s, a)

= i (2π)s−1Γ(1− s)
[

exp

(
− iπs

2

)
Dµ−1
z zµ−1−a Φ

(
e−2πia, 1− s, log z

2πi

)

− exp
[(

2a+
s

2

)
iπ
]
Dµ−1
z zµ−1−a Φ

(
e2πia, 1− s, 1− log z

2πi

)]
.

(32)

Using (25), we have

Φ∗µ(z, s, a)

=
i (2π)s−1Γ(1− s)

Γ(µ)

[
exp

(
− iπs

2

)
Dµ−1
z zµ−1−a Φ

(
e−2πia, 1− s, log z

2πi

)
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− exp
[(

2a+
s

2

)
iπ
]
Dµ−1
z zµ−1−a Φ

(
e2πia, 1− s, 1− log z

2πi

)]
.

(33)

We now have to evaluate the two fractional derivatives on the right hand
side of (33). By applying the Leibniz rule (26) when ν = −1 on each
member of the right hand side of (32) with u(z) = z1−β−a and v(z) =

Φ

(
e−2πia, 1− s, log z

2πi

)
in the first member, and with u(z) = z1−β−a and

v(z) = Φ

(
e2πia, 1− s, 1− log z

2πi

)
in the second member (we see that the

functions u(z) and v(z) involved satisfied the conditions of Theorem 2.4),
we obtain respectively:

Dµ−1
z zµ−1−a Φ

(
e−2πia, 1− s, log z

2πi

)
=
z Γ(µ) sinβπ sin(µ+ β − ω)π

sin(µ+ β)π sin(β − ω)π

·
∞∑
n=0

Dµ−1−n
z zµ−ω−a−1−n Dn

z z
ω−1+n Φ

(
e−2πia, 1− s, log z2πi

)
Γ(µ− n)n!

(34)

and

Dµ−1
z zµ−1−a Φ

(
e2πia, 1− s, 1− log z

2πi

)
=
z Γ(µ) sinβπ sin(µ+ β − ω)π

sin(µ+ β)π sin(β − ω)π

·
∞∑
n=0

Dµ−1−n
z zµ−ω−a−1−n Dn

z z
ω−1+n Φ

(
e2πia, 1− s, 1− log z

2πi

)
Γ(µ− n)n!

.

(35)

Equations (34) and (35) reduce after simple calculations to:

Dµ−1
z zµ−1−a Φ

(
e−2πia, 1− s, log z

2πi

)

=
z1−ω−a Γ(µ) sinβπ sin(µ+ β − ω)π

Γ(1− ω − a) sin(µ+ β)π sin(β − ω)π

∞∑
n=0

Γ(µ− ω − a− n)z−n

Γ(µ− n) n!

· (znDn
z ) zω−1+n Φ

(
e−2πia, 1− s, log z

2πi

)
(36)

and

Dµ−1
z zµ−1−a Φ

(
e2πia, 1− s, 1− log z

2πi

)

=
z1−ω−a Γ(µ) sinβπ sin(µ+ β − ω)π

Γ(1− ω − a) sin(µ+ β)π sin(β − ω)π

∞∑
n=0

Γ(µ− ω − a− n)z−n

Γ(µ− n) n!

· (znDn
z ) zω−1+n Φ

(
e2πia, 1− s, 1− log z

2πi

)
.(37)
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We know from [13, p. 24, Equations (5) and (6)] that

znDn
z =

n∑
k=0

(
n− 1

k − 1

)
B

(n)
n−k(zDz)

k.(38)

Therefore upon setting

log z

2πi
= x and zDz =

1

2πi
Dx(39)

and

1− log z

2πi
= y and zDz =

−1

2πi
Dy(40)

equations (36) and (37) become respectively

Dµ−1
z zµ−1−a Φ

(
e−2πia, 1− s, log z

2πi

)
=

z1−ω−a Γ(µ) sinβπ sin(µ+ β − ω)π

Γ(1− ω − a) sin(µ+ β)π sin(β − ω)π

∞∑
n=0

n∑
k=0

(
n− 1

k − 1

)
Γ(µ− ω − a− n)z−n

Γ(µ− n) n!

·B(n)
n−k

(
Dx

2πi

)k
e2πix(ω−1+n) Φ

(
e−2πia, 1− s, x

)(41)

and

Dµ−1
z zµ−1−a Φ

(
e2πia, 1− s, 1− log z

2πi

)
=

z1−ω−a Γ(µ) sinβπ sin(µ+ β − ω)π

Γ(1− ω − a) sin(µ+ β)π sin(β − ω)π

∞∑
n=0

n∑
k=0

(
n− 1

k − 1

)
Γ(µ− ω − a− n)z−n

Γ(µ− n) n!

· B(n)
n−k

(
−Dy

2πi

)k
e−2πi(y−1)(ω−1+n) Φ

(
e2πia, 1− s, y

)
.

(42)

With the help of the classical Leibniz rule and the fact that

∂k

∂ak
Φ(z, s, a) = (−1)k(s)kΦ(z, s+ k, a),(43)

the result follows after some simple calculations. �

4. Special cases of Theorems 3.1 and 3.2

In this section, we first give two special cases of Theorem 3.1 involving the
Hurwitz-Lerch zeta function Φ∗µ(z, s, a). Next, we shift our focus on some
interesting consequences of Theorem 3.2.

If we put σ = 1, ν = 1 and γ = −1 in equation (27) and use equation (9),
we find

Φ∗µ(z, s, a) =
sinβπ sin(µ+ β − λ)π

Γ(1− λ)Γ(λ) sin(µ+ β)π sin(β − λ)π

·
∞∑
n=0

Γ(µ− λ− n)Γ(λ+ n)

Γ(µ− n) n!
Φ
(1,1)
λ+n,λ (z, s, a)(44)



11(
z 6= 0; Re(1−β) > 0; (λ+n) ∈ C\Z−0 ; a, µ ∈ C\Z−0 ; s ∈ C when |z| < 1

)
.

Setting σ = 1, µ = ν in equation (27) and with the help of equation (8), we
obtain the following expansion formula:

Φ(z, s, a) =
sinλπ sin(β − λ)π

Γ(ν − γ − λ− 1)Γ(1 + γ + λ) sin(β − λ− γ)π sin(λ+ γ)π

·
∞∑

n=−∞

Γ(ν − λ− n)Γ(λ+ n)

Γ(2 + γ − n)Γ(−γ + n)
Φ
(1,1)
λ+n,1+γ+λ (z, s, a)(45)

(
z 6= 0; Re(1−β) > 0; (λ+n) ∈ C\Z−0 ; (1+λ+γ) ∈ C\Z−0 ; a, ν ∈ C\Z−0 ;

s ∈ C when |z| < 1

)
.

Let us now shift our focus on some interesting consequences of Theorem 3.2.
Let

z = e2πiξ and a =
p

q
(p ∈ Z; q ∈ N; ξ ∈ R)

and replace s by µ−s, and then apply definition (12) and the series identity
(14), we obtain from our theorem:

Φ∗µ

(
e2πiξ, µ− s, p

q

)

=
i Γ(1− µ+ s) sinβπ sin(β + µ− ω)π

Γ(µ)Γ
(

1− ω − p
q

)
sin(µ+ β)π sin(β − ω)π

∞∑
n=0

n∑
k=0

k∑
j=0

(
n− 1

k − 1

)(
k

j

)

·
Γ
(
µ− p

q − ω − n
)

Γ(µ− n)n!
B

(n)
n−k (2πq)µ−s−1−j(1− µ+ s)j(ω − 1 + n)k−j

·

[
q∑
r=1

ζ

(
1− µ+ s+ j,

ξ + r − 1

q

)
exp

[
−iπ

(
µ− s− j

2
+

2(r − 1 + ξ)p

q

)]

−
q∑
r=1

ζ

(
1− µ+ s+ j,

r − ξ
q

)
exp

[
iπ

(
µ− s− j

2
+

2(r − ξ)p
q

)]](46)

(
µ ∈ C \ Z−0 ; ω ∈ C; Re(1− β) > 0; s ∈ C; 0 < ξ < 1; a ∈ C \ Z−0

)
.

Moreover, if we set µ = m (m ∈ N) in equations (31) and (46), we obtain
respectively

Φ∗m(z, s, a) =
i Γ(1− s)z−a

Γ(m)Γ(1− ω − a)

m−1∑
n=0

n∑
k=0

k∑
j=0

(
n− 1

k − 1

)(
k

j

)

· Γ(m− a− ω − n)

Γ(m− n)n!
B

(n)
n−k (2π)s−1−j(1− s)j (ω − 1 + n)k−j
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·
[

exp

(
−(s− j)πi

2

)
Φ

(
e−2πia, 1− s+ j,

log z

2πi

)
− exp

[(
2a+

s− j
2

)
πi

]
Φ

(
e2πia, 1− s+ j, 1− log z

2πi

)]
(47)

and

Φ∗m

(
e2πiξ,m− s, p

q

)
=

i Γ(1−m+ s)

Γ(m)Γ
(

1− ω − p
q

) m−1∑
n=0

n∑
k=0

k∑
j=0

(
n− 1

k − 1

)(
k

j

)

·
Γ
(
m− p

q − ω − n
)

Γ(m− n)n!
B

(n)
n−k (2πq)m−s−1−j(1−m+ s)j(ω − 1 + n)k−j

·

[
q∑
r=1

ζ

(
1−m+ s+ j,

ξ + r − 1

q

)
exp

[
−iπ

(
m− s− j

2
+

2(r − 1 + ξ)p

q

)]

−
q∑
r=1

ζ

(
1−m+ s+ j,

r − ξ
q

)
exp

[
iπ

(
m− s− j

2
+

2(r − ξ)p
q

)]](48)

(
ω ∈ C; Re(1− β) > 0; s ∈ C; 0 < ξ < 1; a ∈ C \ Z−0

)
.

Setting m = 1 in (47) yields the Lerch’s functional equation (15).

For the sake of completeness, we choose to recall the expansion formulas
analogue to equation (47) obtained recently by Lin et al. [11, p. 825,
Equation (40)] and Garg et al. [5, Theorem 2]. Respectively, they obtained:

Φ∗m(z, s, a) = i Γ(1− s)z−a
m−1∑
j=0

(j − a+ 1)m−j−1
j! (m− j − 1)!

j∑
k=0

(
j − 1

k − 1

)
(1− s)k B

(j)
j−k

· (2π)s−1−k

[
exp

(
−(s− k)πi

2

)
Φ

(
e−2πia, 1− s+ k,

log z

2πi

)

− exp

[(
2a+

s− k
2

)
πi

]
Φ

(
e2πia, 1− s+ k, 1− log z

2πi

)]
(49)

and

Φ∗m(z, s, a) =
i Γ(1− s)z−a

(m− 1)!

m−1∑
k=0

(
m− 1

k

)
B

(m)
m−k−1

k∑
j=0

(−1)m−k+j−1
(
k

j

)
j!

·
(
s− 1

j

)
(−a)k−j(2π)s−j−1

[
exp

(
−(s− j)πi

2

)
Φ

(
e−2πia, 1− s+ j,

log z

2πi

)

− exp

[(
2a+

s− j
2

)
πi

]
Φ

(
e2πia, 1− s+ j, 1− log z

2πi

)](50)

with s ∈ C, |arg(− log(z) mod 2πi)| ≤ π, a ∈ C \ Z−0 .
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