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Introduction

It is well known that the generalized Hurwitz-Lerch zeta function as well as its extended version have many applications in various areas of mathematics and physics. In number theory, the Riemann and Hurwitz zeta functions are closely related to Dedekind zeta functions and Artin L-functions, which play a central role in the discipline. In addition, the generalized Hurwitz-Lerch zeta functions, evaluated at negative integers, are closely related to the Apostol-Bernoulli polynomials, the Apostol-Euler polynomials and the Frobenius-Euler polynomials [START_REF] Bayad | Reduction and duality of the generalized Hurwitz-Lerch zetas[END_REF][START_REF] Garg | Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch zeta functions[END_REF][START_REF] Srivastava | Some formulas for the Bernoulli and Euler polynomials at rational arguments[END_REF]. These functions are also connected to the generalized Fermi-Dirac functions and the generalized Bose-Einstein functions [START_REF] Bayad | Reduction and duality of the generalized Hurwitz-Lerch zetas[END_REF]. The generalized Fermi-Dirac and Bose-Einstein functions, which appear in quantum statistics, quantum interference and in the theory of quantum entanglement, have been introduced recently by Srivastava et al. [START_REF] Srivastava | Some extensions of the Fermi-Dirac and Bose-Einstein functions with applications to the family of the zeta and related functions[END_REF]. Moreover, the generalized Hurwitz-Lerch zeta functions have interesting applications in geometric function theory [START_REF] Raducanu | A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch zeta function[END_REF] and finally, Gupta et al. [START_REF] Gupta | A class of Hurwitz-Lerch zeta distributions and their applications in reliability[END_REF] investigated the generalized Hurwitz-Lerch zeta distribution and applied this new distribution in reliability.

The generalized Hurwitz zeta function ζ(s, a) is defined by [23, p. 88 

where

ζ(s, 1) = ζ(s) = 1 2 s -1 ζ s, 1 2 (2) 
yields the celebrated Riemann zeta function ζ(s). The Riemann zeta function is continued meromorphically to the whole complex s-plane except for a simple pole at s = 1 with residue 1.

The Hurwitz-Lerch zeta function Φ(z, s, a) is defined, as in [23, p. 121 

et seq.], by Φ(z, s, a) := ∞ n=0 z n (n + a) s (3) (a ∈ C \ Z - 0 ; s ∈ C when |z| < 1; Re(s) > 1 when |z| = 1)
. Clearly, we have the following relations

Φ(1, s, a) = ζ(s, a) and Φ(1, s, 1) = ζ(s). (4) 
The Hurwitz-Lerch zeta function has the well known integral representation

Φ(z, s, a) = 1 Γ(s) ∞ 0 t s-1 e -at 1 -ze -t dt (5) 
(Re(a) > 0; Re(s) > 0 when |z| ≤ 1 (z = 1); Re(s) > 1 when z = 1).

Recently, Lin and Srivastava [START_REF] Lin | Some families of the Hurwitz-Lerch zeta functions and associated fractional derivative and other integral representations[END_REF] investigated a more general family of Hurwitz-Lerch zeta functions. They introduced the function Φ

(ρ,σ) µ,ν (z, s, a) defined by Φ (ρ,σ) µ,ν (z, s, a) := ∞ n=0 (µ) ρn (ν) σn z n (a + n) s (6) µ ∈ C; a, ν ∈ C \ Z - 0 ; ρ, σ ∈ R + ; ρ < σ when s, z ∈ C; ρ = σ and s ∈ C when |z| < 1; ρ = σ and Re(s -µ + ν) > 1 when |z| = 1 ,
where (λ) κ denotes the Pochhammer symbol defined, in terms of the Gamma function, by

(λ) κ := Γ(λ + κ) Γ(λ) = λ(λ + 1) • • • (λ + n -1) (κ = n ∈ N; λ ∈ C) 1 (κ = 0; λ ∈ C \ {0}). (7) 
It is easily seen that

Φ (σ,σ) ν,ν (z, s, a) = Φ (0,0) µ,ν (z, s, a) = Φ(z, s, a) (8) and Φ (1,1) µ,1 (z, s, a) = Φ * µ (z, s, a) := ∞ n=0 (µ) n n! z n (n + a) s . ( 9 
)
The function Φ * µ (z, s, a) is, in fact, a generalized Hurwitz-Lerch zeta function investigated by Goyal and Laddha [6,p. 100,Equation (1.5)].

Let us recall some other important special cases of the Hurwitz-Lerch zeta function Φ(z, s, a). The Lerch zeta function defined by

l s (ξ) := ∞ n=1 e 2nπiξ n s (ξ ∈ R; Re(s) > 1) (10)
is related to the Hurwitz-Lerch zeta function by the following relation

l s (ξ) = e 2πiξ Φ e 2πiξ , s, 1 . (11) 
Also, we note, as a special case of the Hurwitz-Lerch zeta functions, the Lipschitz-Lerch zeta function [23, p. 122, Equation 2.5 [START_REF] Lin | Some expansion formulas for a class of generalized Hurwitz-Lerch zeta functions[END_REF]]:

φ(ξ, a, s) := ∞ n=0 e 2nπiξ (n + a) s = Φ e 2πiξ , s, a (12) 
(a ∈ C \ Z - 0 ; Re(s) > 0 when ξ ∈ R \ Z; Re(s) > 1 when ξ ∈ Z).
Setting z = exp 2πip q with p ∈ Z and q ∈ N, and using the next series identity

∞ n=0 f (n) = k-1 j=0 ∞ n=0 f (kn + j), (13) 
we obtain the following summation formula for the Lipschitz-Lerch zeta function φ(ξ, a, s):

φ p q , a, s = q -s q j=1 ζ s, a + j -1 q exp 2(j -1)pπi q (14)
in terms of the Hurwitz zeta function ζ(s, a) defined by equation (1) (see also [21, p. 81, Equation (3.9)]).

A very important result for the sequel is the Lerch's functional equation [3, p. 29, Equation 1.11 [START_REF] Gupta | A class of Hurwitz-Lerch zeta distributions and their applications in reliability[END_REF]]:

Φ(z, s, a) = i z -a (2π) s-1 Γ(1 -s) exp - 1 2 sπi Φ e -2πia , 1 -s, log z 2πi -exp 2a + 1 2 s πi Φ e 2πia , 1 -s, 1 - log z 2πi (15) Re(s) < 0; |arg(-log(z) mod 2πi)| ≤ π; a ∈ C \ Z - 0 .
Recently, Lin et al. [START_REF] Lin | Some expansion formulas for a class of generalized Hurwitz-Lerch zeta functions[END_REF] obtained some expansion formulas for a generalized Hurwitz-Lerch zeta function Φ * µ (z, s, a) defined by [START_REF]Fundamental properties of fractional derivatives via Pochhammer integrals[END_REF] 

D µ z f (z)g(z) = ∞ j=0 µ j D µ-j z f (z)D j z g(z) (16) 
where D µ z denotes the Riemann-Liouville fractional calculus operator [4, p. 181 et seq.] defined by:

D µ z f (z) :=        1 Γ(-µ) z 0 f (t)(z -t) -µ-1 dt if Re(µ) < 0, d m dz m D µ-m z f (z) if m -1 ≤ Re(µ) < m. (17) 
Explicitly, they proved the following expansion formula for the generalized Hurwitz-Lerch zeta function Φ * µ (z, s, a):

Φ * µ (z, s, a) = i z -a Γ(1 -s) ∞ j=0 (j -a + 1) µ-j-1 Γ(µ -j)j! j k=0 j -1 k -1 (1 -s) k B (j) j-k • (2π) s-k-1 exp - 1 2 (s -k)πi Φ e -2πia , 1 -s + k, log z 2πi -exp 2a + 1 2 (s -k) πi Φ e 2πia , 1 -s + k, 1 - log z 2πi (18) with Re(µ) > 0, s ∈ C, |arg(-log(z) mod 2πi)| ≤ π, a ∈ C \ Z - 0 , where B (α) n := B (α)
n (0) are the generalized Bernoulli numbers [START_REF] Luke | The special functions and their approximations[END_REF] given by the following generating function:

z e z -1 α e xz = ∞ n=0 B (α) n (x) z n n! (|z| < 2π; 1 α := 1). ( 19 
)
The aim of this paper is to make use of a new generalized Leibniz rule for fractional derivatives obtained recently by Tremblay et al. [START_REF] Tremblay | A new Leibniz rule and its integral analogue for fractional derivatives[END_REF] by means of a representation based on the Pochhammer's contour of integration for fractional derivatives [START_REF] Lavoie | Fundamental properties of fractional derivatives via Pochhammer integrals[END_REF] in order to derive a new expansion formula for the generalized Hurwitz-Lerch zeta function Φ * µ (z, s, a) in terms of the Hurwitz-Lerch zeta function Φ(z, s, a). Moreover, an expansion theorem is obtained for the generalized family of Hurwitz-Lerch zeta functions Φ (ρ,σ) µ,ν (z, s, a). Special cases are also given. The paper is arranged as follows. Section 2 is devoted to the representation of the fractional derivatives based on the Pochhammer's contour of integration and the new generalized Leibniz rule. In section 3, we prove the expansions formulas and finally, section 4 aims to provide some special cases.

Pochhammer contour integral representation for fractional derivative and a new generalized Leibniz rule

The use of contour of integration in the complex plane provides a very powerful tool in both classical and fractional calculus. The most familiar representation for fractional derivative of order α of z p f (z) is the Riemann-Liouville integral [START_REF] Erdelyi | An integral equation involving Legendre polynomials[END_REF][START_REF] Liouville | Mémoire sur le calcul des différentielles à indices quelconques[END_REF][START_REF] Riesz | L'intégrale de Riemann-Liouville et le problème de Cauchy[END_REF] that is

D α z z p f (z) = 1 Γ(-α) z 0 f (ξ)ξ p (ξ -z) -α-1 dξ, (20) 
which is valid for Re(α) < 0, Re(p) > 1. Here the integration is done along a straight line from 0 to z in the ξ-plane. By integrating by part m times, we obtain

D α z z p f (z) = d m dz m D α-m z z p f (z). ( 21 
)
This allows to relax the restriction Re(α) < 0 by Re(α) < m [START_REF] Riesz | L'intégrale de Riemann-Liouville et le problème de Cauchy[END_REF]. Another used representation for the fractional derivative is the one based on the Cauchy integral formula widely used by Osler [START_REF] Osler | Fractional derivatives of a composite function[END_REF][START_REF]Leibniz rule for the fractional derivatives and an application to infinite series[END_REF][START_REF]Leibniz rule, the chain rule and Taylor's theorem for fractional derivatives[END_REF][START_REF]Fractional derivatives Leibniz rule[END_REF]. These two representations have been used in many interesting research papers. It appears that the less restrictive representation of fractional derivative according to parameters is the Pochhammer's contour definition introduced in [START_REF]Fundamental properties of fractional derivatives via Pochhammer integrals[END_REF][START_REF] Tremblay | Une contribution à la théorie de la dérivée fractionnaire[END_REF]. Definition 2.1. Let f (z) be analytic in a simply connected region R. Let g(z)be regular and univalent on R and let g -1 (0) be an interior point of R. If α is not a negative integer, p is not an integer, and z is in R -{g -1 (0)}, we define the fractional derivative of order α of g(z) p f (z) with respect to g(z) by

D α g(z) g(z) p f (z) = e -iπp Γ(1 + α) 4π sin(πp) C(z+,g -1 (0)+,z-,g -1 (0)-;F (a),F (a)) f (ξ)g(ξ) p g (ξ) (g(ξ) -g(z)) α+1 dξ (22)
For non-integer α and p, the functions g(ξ) p and (g(ξ) -g(z)) -α-1 in the integrand have two branch lines which begin respectively at ξ = z and ξ = g -1 (0), and both pass through the point ξ = a without crossing the Pochhammer contour P (a) = {C 1 ∪ C 2 ∪ C 3 ∪ C 4 } at any other point as shown in Figure 1. F (a) denotes the principal value of the integrand in [START_REF] Srivastava | Some extensions of the Fermi-Dirac and Bose-Einstein functions with applications to the family of the zeta and related functions[END_REF] at the beginning and ending point of the Pochhammer contour P (a) which is closed on Riemann surface of the multiple-valued function F (ξ).

Remark 2.2. In the Definition 2.1, the function f (z) must be analytic at ξ = g -1 (0). However it is interesting to note here that we could also allow f (z) to have an essential singularity at ξ = g -1 (0), and the equation [START_REF] Srivastava | Some extensions of the Fermi-Dirac and Bose-Einstein functions with applications to the family of the zeta and related functions[END_REF] would still be valid.

Remark 2.3. The Pochhammer contour never crosses the singularities at ξ = g -1 (0) and ξ = z in [START_REF] Srivastava | Some extensions of the Fermi-Dirac and Bose-Einstein functions with applications to the family of the zeta and related functions[END_REF]. Then we know that the integral is analytic for all p and α and for z in R -{g -1 (0)}. Indeed, the only possible singularities of D α g(z) g(z) p f (z) are α = -1, -2, . . . , and p = 0, ±1, ±2, . . . which can directly be identified from the coefficient of the integral [START_REF] Srivastava | Some extensions of the Fermi-Dirac and Bose-Einstein functions with applications to the family of the zeta and related functions[END_REF]. However, integrating by parts N times the integral in [START_REF] Srivastava | Some extensions of the Fermi-Dirac and Bose-Einstein functions with applications to the family of the zeta and related functions[END_REF] by two different ways, we can show that α = -1, -2, . . . , and p = 0, 1, 2, . . . are removable singularities (see [START_REF]Fundamental properties of fractional derivatives via Pochhammer integrals[END_REF]) . 

D α z z p = Γ(1 + p) Γ(1 + p -α) z p-α (Re(p) > -1), (23) 
but by adopting the Pochhammer based representation for the fractional derivative this last restriction becomes p not a negative integer. In view of definition 6, the fractional derivative formula for the generalized Hurwitz-Lerch zeta function Φ (ρ,σ) µ,ν (z, s, a) with ρ = σ [10, p. 730, Equation [START_REF] Tremblay | Une contribution à la théorie de la dérivée fractionnaire[END_REF]] is

D µ-ν z z µ-1 Φ(z σ , s, a) = Γ(µ) Γ(ν) z ν-1 Φ (σ,σ) µ,ν (z σ , s, a) (24) 
with µ -1 not a negative integer.

A very interesting special case is obtained when setting ν = σ = 1, and equation [START_REF] Tremblay | Une contribution à la théorie de la dérivée fractionnaire[END_REF] reduces to the following form:

Φ * µ (z, s, a) = 1 Γ(µ) D µ-1 z z µ-1 Φ(z, s, a) (25) 
with µ -1 not a negative integer.

As remarked by Lin and Srivastava [START_REF] Lin | Some families of the Hurwitz-Lerch zeta functions and associated fractional derivative and other integral representations[END_REF], the function Φ * µ (z, s, a) is essentially a fractional derivative of the classical Hurwitz-Lerch function Φ(z, s, a). Many other interesting explicit representations for Φ * µ (z, s, a) have been proven by Lin and Srivastava [START_REF] Lin | Some families of the Hurwitz-Lerch zeta functions and associated fractional derivative and other integral representations[END_REF].

Recently, one of the authors obtained a new generalized Leibniz rule for fractional derivatives by making use of the properties of this representation [START_REF] Tremblay | A new Leibniz rule and its integral analogue for fractional derivatives[END_REF][START_REF]Taylor-like expansion in terms of a rational function obtained by means of fractional derivatives[END_REF]. Explicitly, we proved the following theorem: Theorem 2.4. (i) Let R be a simply connected region containing the origin. (ii) Let u(z) and v(z) satisfy the conditions of Definition 2.1 for the existence of the fractional derivative. (iii) Let U ⊂ R be the region of analyticity of the function u(z) and V ⊂ R the one for the function v(z). Then for z = 0, z ∈ U ∩ V, Re(1 -β) > 0 the following product rule holds (26)

D α z z α+β-1 u(z)v(z) = z sin(βπ)Γ(1 + α) sin(µπ) sin((α + β -µ)π) sin((α + β)π) sin((β -µ -ν)π) sin((µ + ν)π) • ∞ n=-∞ D α+ν+1-n z z α+β-µ-1-n u(z)D -1-ν+n z z µ-1+n v(z) Γ(2 + α + ν -n)Γ(-ν + n) .

Expansion formulas

In this section, we present the two expansion formulas obtained by means of fractional calculus techniques for the functions Φ (ρ,σ) µ,ν (z, s, a) and Φ * µ (z, s, a). The first expansion formula is a direct applications of the generalized Leibniz rule [START_REF]Taylor-like expansion in terms of a rational function obtained by means of fractional derivatives[END_REF]. The second expansion formula is analogous to Lerch's functional equation. We first state the first one in the form of the theorem below: Theorem 3.1. The following expansion formula holds true

Φ (σ,σ) µ,ν (z σ , s, a) = Γ(ν)Γ(µ -ν + 1) sin βπ sin(µ -ν + β -λ)π Γ(µ)Γ(ν -γ -λ -1)Γ(1 + γ + λ) sin(µ -ν + β)π sin(β -λ -γ)π • sin λπ sin(λ + γ)π ∞ n=-∞ Γ(µ -λ -n)Γ(λ + n) Γ(2 + µ -ν + γ -n)Γ(-γ + n) Φ (σ,σ)
λ+n,1+γ+λ (z σ , s, a)

(27) z = 0; Re(1-β) > 0; (λ+n) ∈ C\Z - 0 ; (1+λ+γ) ∈ C\Z - 0 ; a, ν, µ ∈ C\Z - 0 ; σ ∈ R + ; s ∈ C when |z σ | < 1 .
Proof. First, making the substitutions µ → λ, ν → γ in Theorem 2.4 and afterwards setting α = µ -ν, u(z) = z ν-β and v(z) = Φ (z σ , s, a) (both u(z) and v(z) satisfied the conditions of Theorem 2.4), we have

D µ-ν z z µ-1 Φ (z σ , s, a) = z Γ(µ -ν + 1) sin βπ sin λπ sin(µ -ν + β -λ)π sin(µ -ν + β)π sin(β -λ -γ)π sin(λ + γ)π • ∞ n=-∞ D µ-ν+γ+1-n z z µ-λ-1-n D -1-γ+n z z λ-1+n Φ (z σ , s, a) Γ(2 + µ -ν + γ -n)Γ(-γ + n) . ( 28 
)
Using ( 23) and ( 24), we find that

D µ-ν+γ+1-n z z µ-λ-1-n = Γ(µ -λ -n) Γ(ν -γ -λ -1) z ν-γ-λ-2 (29) and D -1-γ+n z z λ-1+n Φ (z σ , s, a) = Γ(λ + n) Γ(γ + λ + 1) z γ+λ Φ (σ,σ)
λ+n,γ+λ+1 (z σ , s, a) . Finally, the results follow by combining (29), ( 30) and (28). Now let us shift our focus on the second expansion formula involving the generalizerd Hurwitz-Lerch zeta function Φ * µ (z, s, a) which is stated in the next theorem: Theorem 3.2. The following expansion formula holds true for Φ * µ (z, s, a):

Φ * µ (z, s, a) = i Γ(1 -s)z -a sin βπ sin(β + µ -ω)π Γ(µ)Γ(1 -ω -a) sin(µ + β)π sin(β -ω)π ∞ n=0 n k=0 k j=0 n -1 k -1 • k j Γ(µ -a -ω -n) Γ(µ -n)n! B (n) n-k (2π) s-1-j (1 -s) j (ω -1 + n) k-j • exp - (s -j)πi 2 Φ e -2πia , 1 -s + j, log z 2πi -exp 2a + s -j 2 πi Φ e 2πia , 1 -s + j, 1 - log z 2πi (31) µ ∈ C \ Z - 0 ; ω ∈ C; Re(1 -β) > 0; s ∈ C; |arg(-log(z) mod 2πi)| ≤ π; a ∈ C \ Z - 0 .
Proof. Multiplying each member of equation ( 15) by z µ-1 and operating both sides of the resulting equation by D µ-1 z , we get

D µ-1 z z µ-1 Φ(z, s, a) = i (2π) s-1 Γ(1 -s) exp - iπs 2 D µ-1 z z µ-1-a Φ e -2πia , 1 -s, log z 2πi -exp 2a + s 2 iπ D µ-1 z z µ-1-a Φ e 2πia , 1 -s, 1 - log z 2πi . (32) 
Using (25), we have

Φ * µ (z, s, a) = i (2π) s-1 Γ(1 -s) Γ(µ) exp - iπs 2 D µ-1 z z µ-1-a Φ e -2πia , 1 -s, log z 2πi -exp 2a + s 2 iπ D µ-1 z z µ-1-a Φ e 2πia , 1 -s, 1 - log z 2πi . (33) 
We now have to evaluate the two fractional derivatives on the right hand side of (33). By applying the Leibniz rule ( 26) when ν = -1 on each member of the right hand side of (32) with u(z) = z 1-β-a and v(z) = Φ e -2πia , 1 -s, log z 2πi in the first member, and with u(z) = z 1-β-a and

v(z) = Φ e 2πia , 1 -s, 1 - log z 2πi
in the second member (we see that the functions u(z) and v(z) involved satisfied the conditions of Theorem 2.4), we obtain respectively:

D µ-1 z z µ-1-a Φ e -2πia , 1 -s, log z 2πi = z Γ(µ) sin βπ sin(µ + β -ω)π sin(µ + β)π sin(β -ω)π • ∞ n=0 D µ-1-n z z µ-ω-a-1-n D n z z ω-1+n Φ e -2πia , 1 -s, log z 2πi Γ(µ -n)n! (34) 
and

D µ-1 z z µ-1-a Φ e 2πia , 1 -s, 1 - log z 2πi = z Γ(µ) sin βπ sin(µ + β -ω)π sin(µ + β)π sin(β -ω)π • ∞ n=0 D µ-1-n z z µ-ω-a-1-n D n z z ω-1+n Φ e 2πia , 1 -s, 1 -log z 2πi Γ(µ -n)n! . (35) 
Equations ( 34) and (35) reduce after simple calculations to:

D µ-1 z z µ-1-a Φ e -2πia , 1 -s, log z 2πi = z 1-ω-a Γ(µ) sin βπ sin(µ + β -ω)π Γ(1 -ω -a) sin(µ + β)π sin(β -ω)π ∞ n=0 Γ(µ -ω -a -n)z -n Γ(µ -n) n! • (z n D n z ) z ω-1+n Φ e -2πia , 1 -s, log z 2πi (36) and D µ-1 z z µ-1-a Φ e 2πia , 1 -s, 1 - log z 2πi = z 1-ω-a Γ(µ) sin βπ sin(µ + β -ω)π Γ(1 -ω -a) sin(µ + β)π sin(β -ω)π ∞ n=0 Γ(µ -ω -a -n)z -n Γ(µ -n) n! • (z n D n z ) z ω-1+n Φ e 2πia , 1 -s, 1 - log z 2πi . ( 37 
)
We know from [13, p. 24, Equations ( 5) and ( 6)] that 36) and (37) become respectively

z n D n z = n k=0 n -1 k -1 B (n) n-k (zD z ) k . ( 38 
D µ-1 z z µ-1-a Φ e -2πia , 1 -s, log z 2πi = z 1-ω-a Γ(µ) sin βπ sin(µ + β -ω)π Γ(1 -ω -a) sin(µ + β)π sin(β -ω)π ∞ n=0 n k=0 n -1 k -1 Γ(µ -ω -a -n)z -n Γ(µ -n) n! • B (n) n-k D x 2πi k e 2πix(ω-1+n) Φ e -2πia , 1 -s, x (41) 
and

D µ-1 z z µ-1-a Φ e 2πia , 1 -s, 1 - log z 2πi = z 1-ω-a Γ(µ) sin βπ sin(µ + β -ω)π Γ(1 -ω -a) sin(µ + β)π sin(β -ω)π ∞ n=0 n k=0 n -1 k -1 Γ(µ -ω -a -n)z -n Γ(µ -n) n! • B (n) n-k -D y 2πi k e -2πi(y-1)(ω-1+n) Φ e 2πia , 1 -s, y . (42) 
With the help of the classical Leibniz rule and the fact that

∂ k ∂a k Φ(z, s, a) = (-1) k (s) k Φ(z, s + k, a), (43) 
the result follows after some simple calculations.

Special cases of Theorems 3.1 and 3.2

In this section, we first give two special cases of Theorem 3.1 involving the Hurwitz-Lerch zeta function Φ * µ (z, s, a). Next, we shift our focus on some interesting consequences of Theorem 3.2.

If we put σ = 1, ν = 1 and γ = -1 in equation ( 27) and use equation ( 9), we find

Φ * µ (z, s, a) = sin βπ sin(µ + β -λ)π Γ(1 -λ)Γ(λ) sin(µ + β)π sin(β -λ)π • ∞ n=0 Γ(µ -λ -n)Γ(λ + n) Γ(µ -n) n! Φ (1,1) λ+n,λ (z, s, a) (44) z = 0; Re(1-β) > 0; (λ+n) ∈ C\Z - 0 ; a, µ ∈ C\Z - 0 ; s ∈ C when |z| < 1 .
Setting σ = 1, µ = ν in equation ( 27) and with the help of equation ( 8), we obtain the following expansion formula:

Φ(z, s, a) = sin λπ sin(β -λ)π Γ(ν -γ -λ -1)Γ(1 + γ + λ) sin(β -λ -γ)π sin(λ + γ)π • ∞ n=-∞ Γ(ν -λ -n)Γ(λ + n) Γ(2 + γ -n)Γ(-γ + n) Φ (1,1) λ+n,1+γ+λ (z, s, a) (45) z = 0; Re(1 -β) > 0; (λ + n) ∈ C \ Z - 0 ; (1 +λ + γ) ∈ C \ Z - 0 ; a, ν ∈ C \ Z - 0 ; s ∈ C when |z| < 1 .
Let us now shift our focus on some interesting consequences of Theorem 3.2. Let z = e 2πiξ and a = p q (p ∈ Z; q ∈ N; ξ ∈ R)

and replace s by µ -s, and then apply definition [START_REF] Liouville | Mémoire sur le calcul des différentielles à indices quelconques[END_REF] and the series identity [START_REF] Miller | An introduction of the fractional calculus and fractional differential equations[END_REF], we obtain from our theorem:

Φ * µ e 2πiξ , µ -s, p q = i Γ(1 -µ + s) sin βπ sin(β + µ -ω)π Γ(µ)Γ 1 -ω -p q sin(µ + β)π sin(β -ω)π ∞ n=0 n k=0 k j=0 n -1 k -1 k j • Γ µ -p q -ω -n Γ(µ -n)n! B (n) n-k (2πq) µ-s-1-j (1 -µ + s) j (ω -1 + n) k-j • q r=1 ζ 1 -µ + s + j, ξ + r -1 q exp -iπ µ -s -j 2 + 2(r -1 + ξ)p q - q r=1 ζ 1 -µ + s + j, r -ξ q exp iπ µ -s -j 2 + 2(r -ξ)p q (46) µ ∈ C \ Z - 0 ; ω ∈ C; Re(1 -β) > 0; s ∈ C; 0 < ξ < 1; a ∈ C \ Z - 0 .
Moreover, if we set µ = m (m ∈ N) in equations ( 31 

k j • Γ m -p q -ω -n Γ(m -n)n! B (n) n-k (2πq) m-s-1-j (1 -m + s) j (ω -1 + n) k-j • q r=1 ζ 1 -m + s + j, ξ + r -1 q exp -iπ m -s -j 2 + 2(r -1 + ξ)p q - q r=1
ζ 1 -m + s + j, r -ξ q exp iπ m -s -j 2 + 2(r -ξ)p q (48)

ω ∈ C; Re(1 -β) > 0; s ∈ C; 0 < ξ < 1; a ∈ C \ Z - 0 .
Setting m = 1 in (47) yields the Lerch's functional equation [START_REF] Osler | Fractional derivatives of a composite function[END_REF].

For the sake of completeness, we choose to recall the expansion formulas analogue to equation ( 47 

  a) s (Re(s) > 1; a ∈ C \ Z - 0 ; Z - 0 := {0, -1, -2, ...})

Figure 1 .

 1 Figure 1. Pochhammer's contour It is well known that [14, p. 83, Equation (2.4)]

  to mention that in the case where ρ = σ and |z σ | = 1, the function Φ (ρ,σ) µ,ν (z, s, a) exists for Re(s -µ + ν) > 1. This implies that for |z σ | = 1, the function Φ (σ,σ) λ+n,γ+λ+1 (z σ , s, a) in (30) must satisfy Re(s + γn) > 0 for all n ∈ Z which case is impossible. Thus, the expansion holds true only for |z σ | < 1.

  ) and (46), we obtain respectivelyΦ * m (z, s, a) = i Γ(1 -s)z -a Γ(m)Γ(1 -ω -a) -a -ω -n) Γ(m -n)n! B (n) n-k (2π) s-1-j (1 -s) j (ω -1 + n) k-j • exp -(s -j)πi 2 Φ e -2πia , 1 -s + j, log z 2πi -exp 2a + s -j2πi Φ e 2πia , 1 -s + j, 1 -

•

  ) obtained recently by Lin et al.[START_REF] Lin | Some expansion formulas for a class of generalized Hurwitz-Lerch zeta functions[END_REF] p. 825, Equation (40)] and Garg et al.[START_REF] Garg | Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch zeta functions[END_REF] Theorem 2]. Respectively, they obtained:Φ * m (z, s, a) = i Γ(1 -s)z -a m-1 j=0 (j -a + 1) m-j-1 j! (m -j -(2π) s-1-k exp -(s -k)πi 2 Φ e -2πia , 1 -s + k, log z 2πi -exp 2a + s -k 2 πi Φ e 2πia , 1 -s + k, 1 -) k-j (2π) s-j-1 exp -(s -j)πi 2 Φ e -2πia , 1 -s + j, log z 2πi -exp 2a + s -j 2 πi Φ e 2πia , 1 -s + j, 1 -log z 2πi(50)with s ∈ C, |arg(-log(z) mod 2πi)| ≤ π, a ∈ C \ Z - 0 .