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Abstract. In this paper we prove a generalized symmetry relation be-
tween the generalized Euler polynomials and the generalized higher-order

(attached to Dirichlet character) Euler polynomials. Indeed, we prove a re-

lation between the power sum polynomials and the generalized higher-order
Euler polynomials..
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1. Introduction

Let d be a fixed positive integer and let χ be the Dirichlet’s character with
conductor d. Then the generalized Euler numbers and polynomials attached to
χ are defined as
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d
, (see [1-4]). (1)

For a real or complex parameter α, we define the generalized higher-order Euler
numbers and polynomials, of order α, attached to χ as follows:(
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. (2)
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The main purpose of this paper is to prove an identity of symmetry for the
generalized higher-order Euler polynomials. It turn out that the recurrence rela-
tion and multiplication theorem for the generalized Euler polynomials attached
to χ.

For the basic definitions and properties of the Euler polynomials, see [1-6].

2. Symmetry Identities related to the generalized higher-order Euler
polynomials

Theorem 1. Let χ be the Dirichlet’s character with conductor d ∈ N∗, and a, b
be the natural numbers with the same parity. For n,m ∈ N, we have
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Proof. The generating function of the left hand side of (3) is
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Since a ≡ b (mod 2) then we have the same generating functions. Thus, the
coefficients of these generating functions are the same. Hence, we obtain our
desired Theorem 1. �

Remark

1) Our theorem 1 is valid for arbitrary conductor d of the Dirichlet character
χ. a and b must only have the same parity.

2) Let m = 1 in (3). Then we have
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Now, for the rest of this paper, we set
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Theorem 2. Let χ be the Dirichlet’s character with an arbitrary conductor
d ∈ N∗. For a, b ∈ N with same parity we have
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By the symmetry of Fd,m(a, b;X,Y ) in a and b (because a ≡ b (mod 2)), we
also see that
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By comparing the coefficients on the both sides of (7) and (8), we obtain the
Theorem 2. �
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