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1 Introduction

Let n be a non-zero integer. A set of m distinct positive integers such that the product of any
two of its elements increased by n is a perfect square is called D(n)-m-tuple. The most studied
case is n = 1 in which we call D(1)-m-tuple simply Diophantine m-tuple. There is the folklore
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conjecture that there does not exist a Diophantine quintuple. This conjecture is intensively stud-
ied in recent years. To see all references the reader should consult the webpage [5]. The most
important contribution was done by Dujella [7] in 2004 when he proved that there does not exist
a Diophantine sextuple and that there are only finitely many Diophantine quintuples. Moreover,
he also gave an upper bound for the number of Diophantine quintuples, which was recently sig-
nificantly improved by various authors. The best known bound can be found in [4]. But that
upper bound is still too large such that it is impossible to completely solve the problem using
today’s computers. Therefore, the conjecture is still open. Moreover, in the case n = 1, there
is a stronger version of the main conjecture which says that every D(1)-triple can be extended
to a quadruple with a larger element in a unique way. More precisely, the conjecture says that if
{a, b, c, d} is a Diophantine quadruple such that a < b < c < d, then d = a+b+c+2(abc+rst),
where r, s, and t are positive integers defined by ab + 1 = r2, ac + 1 = s2 and bc + 1 = t2 .
Such Diophantine quadruples are called regular. So the conjecture implies that all Diophantine
quadruples are regular. Similar results and conjectures exist when n = −1 and n = 4. In the case
n = −1, there is a conjecture that there does not exist D(−1)-quadruple, while in the case n = 4,
we have an analogous conjecture (as in the case n = 1) that there does not exist D(4)-quintuple.
Those conjectures are also extensively studied recently, and for details the reader could again
consult [5].

There are various generalizations of the above problems. One of them consists in taking
elements of m-tuples in a commutative ring with unity. Let R be a commutative ring with unity
1. One can consider m different non-zero elements in R such that the product of any two distinct
elements increased by some element of R is a perfect square in R. Recently, there are also results
on the extendibility of Diophantine m-tuples in other rings such as the ring of Gaussian integers
and rings of integers of quadratic fields. For example, in 2008, Franušić [8] proved that the
Diophantine triple {k−1, k+1, 4k} extends uniquely to a Diophantine quadruple in the ring Z[i].
The first, third and the fourth author [2] proved the same result for the triple {k, 4k + 4, 9k + 6}.
In this paper, we will consider a D(4)-tuple in the ring of Gaussian integers. Precisely, we study
the D(4)-extensions of the triple {k − 2, k + 2, 4k} in Z[i] and our main result is the following
theorem.

Theorem 1.1. Let k ∈ Z[i] and k 6= 0,±2. If {k − 2, k + 2, 4k, d} is a D(4) quadruple in Z[i],
then d = 4k3 − 4k.

That result was proven in the ring of integers by Fujita [9]. This is the first time that a D(4)-
tuple is studied in the ring of Gaussian integers. The organization of this paper is as follows. In
Section 2, we determine a system of Pell equations and the sequences vm, wn and w′n correspond-
ing to our problem of extendibility. Moreover, we prove some useful results that we will need to
prove Theorem 1.1. We find the relation between indices m and n in the equations vm = wn and
vm = w′n and the lower bound on |x| in terms of |k| in Section 3. To prove the main result for
|k| ≥ 155402, we devote Section 4 to the use of a generalization of Bennett’s result (see [10]), that
consists in simultaneous rational approximations of algebraic numbers that are close to 1. The
study of the remaining cases is done in two steps. First, by the means of the Baker-Davenport
reduction method, we complete the proof of Theorem 1.1 for 5 < |k| < 155402 in Section 5. In
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the section 6, we deal with the second step that consists in looking the problem for 2 < |k| ≤ 5.
In the final section, we study the cases |k| ≤ 2. This is really a laborious work. Our proof follows
mostly the methods from [8].

2 Solving a system of Pell equations

Let k ∈ Z[i], k 6= 0,±2. The aim of this paper is to determine all D(4)-quadruples of the form
{k − 2, k + 2, 4k, d} in Z[i]. Thus, we have to solve the system

(k − 2)d+ 4 = x2, (k + 2)d+ 4 = y2, (4k)d+ 4 = z2, (1)

in d, x, y, z ∈ Z[i]. Eliminating d in (1), we obtain the following system of diophantine equations

(k + 2)x2 − (k − 2)y2 = 16 (2)

(4k)x2 − (k − 2)z2 = 12k + 8. (3)

Lemma 2.1. Let k ∈ Z[i] with |k| > 2. Then there exist x0 and y0 ∈ Z[i] such that

(i) (x0, y0) is a solution of (2)

(ii) the estimates

|x0|2 ≤
8 |k − 2|
|k| − 2

, (4)

|y0|2 ≤
8 |k + 2|
|k| − 2

+
16

|k − 2|
. (5)

(iii) For each solution (x, y) of equation (2) there exists m ∈ Z such that

x
√
k + 2 + y

√
k − 2 = (x0

√
k + 2 + y0

√
k − 2)

(
k +
√
k2 − 4

2

)m
. (6)

Proof. If (x, y) is a solution of (2), then (xm, ym) is obtained by

xm
√
k + 2 + ym

√
k − 2 = (x

√
k + 2 + y

√
k − 2)

(
k +
√
k2 − 4

2

)m
(7)

is also a solution of (2), for all m ∈ Z.
Let (x0, y0) be an element of the sequence (xm, ym)m∈Z (defined by (7)) such that the absolute
value |x0| is a minimal. We put

x′
√
k + 2 + y′

√
k − 2 = (x0

√
k + 2 + y0

√
k − 2)

(
k +
√
k2 − 4

2

)
x′′
√
k + 2 + y′′

√
k − 2 = (x0

√
k + 2 + y0

√
k − 2)

(
k +
√
k2 − 4

2

)−1
= (x0

√
k + 2 + y0

√
k − 2)

(
k −
√
k2 − 4

2

)
.
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Due to minimality of |x0|, we have

|x0| ≤ |x′| =
∣∣∣∣x0k + y0(k − 2)

2

∣∣∣∣
|x0| ≤ |x”| =

∣∣∣∣x0k − y0(k − 2)

2

∣∣∣∣ .
At least one of the expressions

∣∣∣x0k+y0(k−2)2

∣∣∣ and
∣∣∣x0k−y0(k−2)2

∣∣∣ must be greater or equal to
∣∣x0k

2

∣∣,
since

∣∣∣x0k+y0(k−2)2

∣∣∣ +
∣∣∣x0k−y0(k−2)2

∣∣∣ ≥ 2
∣∣x0k

2

∣∣. Let us assume that
∣∣∣x0k+y0(k−2)2

∣∣∣ ≥ ∣∣x0k2 ∣∣. Hence,
we get ∣∣∣∣x20k2

∣∣∣∣ ≤ ∣∣∣∣(x0k)2 − (y0(k − 2))2

4

∣∣∣∣ ,
and ∣∣∣∣x20k2

∣∣∣∣ ≤ ∣∣∣∣4x20 + 16(k − 2)

4

∣∣∣∣ .
Immediately, we obtain the following estimate for |x0|

|x0|2 ≤
8 |k − 2|
|k| − 2

.

This implies that the estimate for |y0| is∣∣(k − 2)y20
∣∣ =

∣∣(k + 2)x20 − 16
∣∣ ≤ |k + 2| 8 |k − 2|

|k| − 2
+ 16.

It is obvious that there exist only finitely many x0 an y0 such that above estimates are fulfilled.
Thus, the definition of x0 implies there exist m0 ∈ Z such that

x0
√
k + 2 + y0

√
k − 2 = (x

√
k + 2 + y

√
k − 2)

(
k +
√
k2 − 4

2

)m0

.

Therefore, we obtain

x
√
k + 2 + y

√
k − 2 = (x0

√
k + 2 + y0

√
k − 2)

(
k +
√
k2 − 4

2

)−m0

Analogously, all solutions of (3) are given by the following lemma.

Lemma 2.2. Let k ∈ Z[i] with |k| > 2. Then, there exist x1 and z1 ∈ Z such that

(i) (x1, z1) is a solution of (3)

(ii) the estimates

|x1|2 ≤
|3k + 2| |k − 2|
|k − 1| − 1

, (8)

|z1|2 ≤
|4k| |3k + 2|
|k − 1| − 1

+
|12k + 8|
|k − 2|

. (9)
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(iii) For each solutions (x, z) of equation (3) there exist n ∈ Z such that

x
√

4k + z
√
k − 2 = (x1

√
4k + z1

√
k − 2)

(
k − 1 +

√
k2 − 2k

)n
. (10)

Now, we define the following sequences

v0 = x0, v1 =
1

2
(x0k + y0(k − 2)) , vm+2 = kvm+1 − vm, (11)

v′0 = x0, v′1 =
1

2
(x0k − y0(k − 2)) , v′m+2 = kv′m+1 − v′m, (12)

for all m ∈ N. If x is a solution of (2), then there exists a nonnegative integer m such that x = vm
or x = v′m.

Similarly, if x is a solution of (3), then there exists a nonnegative integer n such that x = wn
or x = w′n, where

w0 = x1, w1 =
1

2
(2x1(k − 1) + z1(k − 2)) , wn+2 = 2(k − 1)wn+1 − wn, (13)

w′0 = x1, w′1 =
1

2
(2x1(k − 1)− z1(k − 2)) , w′n+2 = 2(k − 1)w′n+1 − w′n. (14)

The next result will specify the values of x0 and y0.

Lemma 2.3. Let k ∈ Z[i], k 6= ±6 and |k| > 5. Then, x0 = ±2 and y0 = ±2 are the
only fundamental solutions of (2) and all solutions are represented by the sequences (vm)m and
(−vm)m defined by

v0 = 2, v1 = 2k − 2, vm+2 = kvm+1 − vm, m ∈ Z. (15)

Proof. Suppose (x0, y0) is a fundamental solution of (2). Then we have

x20(k + 2)− y20(k − 2) = 16.

Thus, we have x20 − y20 =
16−4x20
k−2 . Relation (1) implies x20 − y20 = 4d0, x

2
0 ≡ 4 (mod k −

2), with d0 ∈ Z[i]. Thus, we have

|d0| =
|4− x20|
|k − 2|

≤ 4 + |x20|
|k − 2|

≤ 12

|k| − 2
. (16)

If |k| > 14, then we have |d0| < 1, so d0 = 0. Thus, we have x20 − y20 = 0. So we deduced
x0 = ±2 and y0 = ±2.

If 5 < |k| ≤ 14 and k 6= ±6, using Maple, the following relations x0 ∈ Z[i], y0 ∈ Z[i], x20 =

4 + d0(k− 2), y20 = 4 + d0(k + 2) and (16) are simultaneous satisfied if and only if x0 = ±2 and
y0 = ±2.

Let us mention that from this lemma, we have that for k 6= ±6 and |k| > 5, all possible d’s
are of the form d = 2d′ for some d′ ∈ Z[i]. We can conclude that, because those fundamental
solutions will generate all possible elements that extend D(4)-pair {k − 2, k + 2}, and it is easy
to see that all of them will be of that form 2d′. It furthermore implies, using the above mentioned
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result from [8], that for such k and k = 2t for some t ∈ Z[i], the statement of the main Theorem
is valid.

Before proceeding further, let us recapitulate our results. For |k| > 5 and k 6= ±6 the problem
of solving (2) and (3) is reduced to looking for the intersections of recursive sequences, i.e. to
solving the equations

vm = ±wn, vm = ±w′n,m, n ≥ 0. (17)

3 The congruence method

In this section, we will determine all fundamental solutions of equation (3) under the assumption
that one of the equations in (17).

Lemma 3.1. Let k ∈ Z[i], |k| > 5 and k 6= ±6. If (x1, z1) is a fundamental solution of (3), then

x1 (mod k − 1) ∈ {±2, 0}

or
1

2
(k − 2)z1 (mod k − 1) ∈ {±2, 0}.

Proof. We have

(vm (mod k − 1))m≥0 = (2, 0,−2,−2, 0, 2, 2, 0,−2,−2, 0, 2, . . . ),

(wn (mod k − 1))n≥0 = (x1,
1

2
(k − 2)z1,−x1,−

1

2
(k − 2)z1, x1,

1

2
(k − 2)z1 . . . ),

(w′n (mod k − 1))n≥0 = (x1,−
1

2
(k − 2)z1,−x1,

1

2
(k − 2)z1, x1,−

1

2
(k − 2)z1, . . . ).

These congruence relations are obtained by induction from (15), (13), (14), respectively. The rest
follows immediately from (17).

In what follows, we will discuss all the possibilities given in Lemma 3.1.

• x1 ≡ ±2 (mod k − 1):
In this case, if x1 6= ±2, we have: |k − 1| − 2 ≤ |x1| . From this relation and (8), we have

(|k| − 3)2 ≤ |x1|2 ≤
|3k + 2| |k − 2|
|k − 1| − 1

.

Therefore, we obtain
|k|3 − 11 |k|2 + 17 |k| − 22 ≤ 0.

If |k| ≥ 10, then
|k|3 − 11 |k|2 + 17 |k| − 22 > 0.

So, if |k| ≥ 10 then x1 = ±2.
If 5 < |k| < 10, then we put x1 = ±2 + l0(k − 1). Suppose that |l0| ≥ 2. We have

|x1| ≥ 2 |k − 1| − 2. This relation and (8) give

4 |k|3 − 27 |k|2 + 44 |k| − 36 ≤ 0.
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If |k| > 5, then we get
4 |k|3 − 27 |k|2 + 44 |k| − 36 > 0.

So, if 5 < |k| < 10 then |l0| ≤
√

2. In this case, l0 = ±1 or l0 = ±i or l0 = ±(1± i).
l0 = ±1 implies x1 = ±(k+ 1) or x1 = ±(k− 3). In this case, the following relation x21 ≡ 4

(mod (k − 2)), (8) are not simultaneously satisfied.
l0 = ±i implies x21 ≡ 3 ± 4i (mod (k − 2)). This relation and (1) imply 1 ± 4i ≡ 0

(mod (k − 2)). We deduce |k| ≤
√

17 + 2. In this case, relation (8) is not satisfied.
l0 = 1± i and x1 = 2 + l0(k − 2) imply |x1| ≥

√
2 |k| −

√
2. These relations and (8) imply

2 |k|3 − 11 |k|2 + 6 |k| − 8 ≤ 0. This inequality is not satisfied if 5 < |k| < 10.

l0 = −1± i and x1 = 2 + l0(k − 2) imply 2x3 − (7 + 4
√

5)x2 + (8
√

5 + 6)x− 24 ≤ 0. This
inequality is not satisfied if |k| ≥

√
41. If 5 < |k| <

√
41, using Maple in the various cases the

relation (8) is not satisfied. If x1 = −2 + l0(k − 2), we have similar results.
So, if x1 ≡ ±2 (mod k − 1) and |k| > 5 , then x1 = ±2.

• x1 ≡ 0 (mod (k − 1)):
In this case, if x1 6= 0, we have |k − 1| ≤ |x1| . This relation and (8) give

(|k| − 1)2 ≤ |x1|2 ≤
|3k + 2| |k − 2|
|k − 1| − 1

.

Therefore, we obtain
|k|3 − 7 |k|2 + |k| − 6 ≤ 0.

If |k| ≥ 7, then
|k|3 − 7 |k|2 + |k| − 6 > 0.

So we deduce that x1 = 0.

Suppose that x1 = l1(k − 1). If 5 < |k| < 7 then |l1| ≤ 1. If |l1| = 1, thus relations (1) or (8)
are not satisfied. This implies that l1 = 0. Consequently, if x1 ≡ 0 (mod (k − 1)) then x1 = 0.

If x1 = 0, then relation (3) implies −(k − 2)z21 = 12k + 8. In this case, using Maple, the
equation −(k − 2)z21 = 12k + 8 has no solution in Z[i] for all k ∈ Z[i] with 5 < |k| < 7.

If x1 = ±2, then relation (3) implies z1 = ±2.

• k = 6:
In this case, the fundamental solutions of (2) are (x0, y0) = (±2,±2), (x0, y0) = (0,±2i)

and the fundamental solutions of (3) are (x1, z1) = (±2,±2), (x1, z1) = (±(2 + 2i),±(4 + 6i)),
(x1, z1) = (±(2 − 2i),±(4 − 6i)). In Section 2, the solutions of (2) are given by recurrence
sequences (11) and (12). In these cases, we have

q0 = 0, q1 = 4i, qm+2 = 6qm+1 − qm, m ∈ N,

q′0 = 0, q1 = −4i, qm+2 = 6qm+1 − qm, m ∈ N,

v0 = 2, v1 = 10, vm+2 = 6vm+1 − vm, m ∈ N.
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From (13) and (14), all solutions of (3) are given by

x0 = 2 + 2i, x1 = 18 + 22i, xn+2 = 10xn+1 − xn, n ∈ N,

x′0 = 2 + 2i, x′1 = 2− 2i, x′n+2 = 10x′n+1 − x′n, n ∈ N,

u0 = 2− 2i, u1 = 18− 22i, un+2 = 10un+1 − un, n ∈ N,

u′0 = 2− 2i, u′1 = 2 + 2i, u′n+2 = 10u′n+1 − u′n, n ∈ N,

w0 = 2, w1 = 14, wn+2 = 10wn+1 − wn, n ∈ N,

w′0 = 2, w′1 = 6, w′n+2 = 10w′n+1 − w′n, n ∈ N.

So, we have the following relations:
a) qm = ±xn or qm = ±x′n or qm = ±wn or qm = ±w′n or qm = un or qm = u′n,
b) q′m = ±xn or q′m = ±x′n or q′m = ±wn or q′m = ±w′n or q′m = un or q′m = u′n,
c) vm = ±xn or vm = ±x′n or vm = ±wn or vm = ±w′n or vm = um or vm = u′n.

We see that
(qm (mod (10) = (0, 4i, 4i, 0,−4i,−4i, 0, 4i, 4i, ...),

(q′m (mod 10) = (0,−4i,−4i, 0, 4i, 4i, 0,−4i,−4i, ...),

(vm (mod 10) = (2, 0,−2,−2, 0, 2, 2, 0,−2, ...),

(xn (mod 10) = (2 + 2i,−2 + 2i,−2− 2i, 2− 2i, 2 + 2i,−2 + 2i, ...),

(x′n (mod 10) = (2 + 2i, 2− 2i,−2− 2i,−2 + 2i, 2 + 2i, 2− 2i, ...),

(un (mod 10) = (2− 2i,−2− 2i,−2 + 2i, 2 + 2i, 2− 2i,−2− 2i,−2 + 2i, ...),

(u′n (mod 10) = (2− 2i, 2 + 2i,−2 + 2i,−2− 2i, 2− 2i, 2 + 2i, ...),

(wn (mod 10) = (2, 4,−2,−4, 2, 4,−2,−4, ...),

(w′n (mod 10) = (2,−4,−2, 4, 2,−4,−2, 4, ...).

By these relations, we deduce that the only following equality are possible:

vm = ±wn, or vm = ±w′n.

• The case k = −6 is similar to the case k = 6.

The above results can be summarized in the following lemma.

Lemma 3.2. Let k ∈ Z[i] and |k| > 5. If at least one of the equations in (17) is solvable, then
all fundamental solutions of equation (3) are x1 = ±2, z1 = ±2 and related sequences (wn) and
(w′n) are given by

w0 = 2, w1 = 3k − 4, wn+2 = (2k − 2)wn+1 − wn, (18)

w′0 = 2, w′1 = k, w′n+2 = (2k − 2)w′n+1 − w′n, (19)

for n ∈ N.
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We now prove the following results:

Lemma 3.3. Let k ∈ Z[i] and |k| > 5.

• The equation vm = w2n+1 has no solution.
• The equation vm = w′2n+1 has no solution.

Proof. The result comes from the following facts:

(vm (mod k − 1))m≥0 = (2, 0,−2,−2, 0, 2, 2, 0,−2,−2, 0, 2, . . . ),

(wn (mod k − 1))m≥0 = (2,−1,−2, 1, 2,−1,−2, 1, 2,−1,−2, . . . ),

(w′n (mod k − 1))m≥0 = (2, 1,−2,−1, 2, 1,−2,−1, 2, 1,−2,−1, . . . ).

Lemma 3.4. The sequences (vm)m, (wn)n and (w′n)n defined by (15), (18) and (19) respectively,
satisfy the following congruences

(vm (mod k))m≥0 = (2,−2,−2, 2, 2,−2,−2, 2, 2,−2, ...),

(wn (mod k))n≥0 = (−1)n(2n+ 2),

(w′n (mod k))n≥0 = (−1)n+1(2n− 2).

Proof. This can be verified by induction.

Lemma 3.4 implies the following lemma.

Lemma 3.5. Let k ∈ Z[i], |k| > 5 and let x ∈ Z[i] be a solution of the system of equations (2)
and (3). Then, there exist m,n ∈ N, (2n± 2) ≡ ±2 (mod (k)), such that

x = vm = wn or x = vm = −wn or x = vm = w′n or x = vm = −w′n,

where (vm)m, (wn)n and (w′n)n are defined by (15), (18) and (19), respectively.

Now, observe that v0 = w0 = w′0 = 2 and v2 = w′2 = 2k2 − 2k − 2. So, x = ±2 and
x = ±(2k2 − 2k − 2) are solutions of the system of equations (2) and (3). The solutions x = ±2

are not interesting, because they correspond to d = 0. The solutions x = ±(2k2 − 2k − 2)

correspond to d = 4k3 − 4k. Since we intend to prove that this is the unique nontrivial extension
of the D(4)-triple {k − 2, k + 2, 4k} in Z[i]. We have to show that the system of equations (2),
(3) has no other solution. Our next step is to determine an upper bound for all solutions of (2) and
(3) that are different from the previous ones.

Lemma 3.6. Let k ∈ Z[i] and |k| > 5. If x ∈ Z[i]\{±2,±(2k2 − 2k − 2)} is a solution of the
system of equations (2) and (3), then 2n ≥ |k| − 4.

9



Proof. If m ≥ 2, then |w′1| < |vm| . Otherwise,

|w1 − v1| 6= 0, |w1 − v3| 6= 0, |w1 − v4| 6= 0.

We have |v0| < |v1| . Suppose |vm| < |vm+1|. We have

|vm+2| ≥ |kvm+1| − |vn| = (|k| − 1) |vm+1|+ |vm+1| − |vm| > |vm+1| .

|w1| < |v4| < |v5| < ....

|v1 − w2| 6= 0, |v3 − w2| 6= 0, |v4 − w2| 6= 0, |v5 − w2| 6= 0, |w2| < |v6| < |v7| < ...

So, by Lemma 3.5 if x is a solution of the system of equations (2) and (3), then we have 2n−2 ≥
2 + |k| or 2n− 2 ≥ −2 + |k| or 2n+ 2 ≥ 2 + |k| or 2n+ 2 ≥ −2 + |k|.

Lemma 3.7. Let k ∈ Z[i] and |k| > 5. If x ∈ Z[i]\{±2,±(2k2 − 2k − 2)} is a solution of the
system of equations (2) and (3) then

|x| ≥ |k| (2 |k| − 3)|k|−5.

Proof. If x ∈ Z[i]\{±2,±(2k2 − 2k− 2)}, then n ≥ 2. We have |w2| ≤ |w3| . Now, assume that
|wn| ≤ |wn+1| . From (18), we have that

|wn+2| ≥ (2 |k| − 3) |wn+1|+ |wn+1| − |wn| ≥ (2 |k| − 3) |wn+1| .

So, we get |wn+2| ≥ |wn+1| .
One can see that |w2| ≥ |k| (2 |k| − 3). Assume that |wn| ≥ |k| (2 |k| − 3)n−1. From (18), we

have that
|wn+1| ≥ |k| (2 |k| − 3) |wn|+ |wn| − |wn−1| ≥ |k| (2 |k| − 3) |wn| .

So, we conclude that
|wn+1| ≥ |k| (2 |k| − 3)n.

Analogously, if n ≥ 2, we obtain |w′n| ≥ |k| (2 |k| − 3)n−1. From Lemma 3.6, If x ∈ Z[i]\{±2,

±(2k2 − 2k − 2)} is a solution of the system of equations (2) and (3) then

|x| ≥ |k| (2 |k| − 3)|k|−5.

4 An application of the theorem
on simultaneous approximations

In this section, we prove that if the parameter |k| is large enough, then x = ±2 and x = ±(2k2−
2k − 2) give all solutions of the system of equations (2), (3). For that reason, we apply the
following generalization of Bennett’s theorem [3] on simultaneous rational approximations of
square roots which are close to one.

10



Theorem 4.1. ([10]) Let θi =
√

1 + ai
T
, i = 1, 2, with a1 and a2 pairwise distinct quadratic

integers in the imaginary quadratic field K and let T be an algebraic integer of K. Further, let
M = max{|a1| , |a2|}, |T | > M and

l =
27 |T |

64 |T | −M
,

L =
27

16 |a1|2 |a2|2 |a1 − a2|2
(|T | −M)2 > 1,

p =

√
2 |T |+ 3M

2 |T | − 2M
,

P = 16
|a1|2 |a2|2 |a1 − a2|2

min{|a1| , |a2| , |a1 − a2|}3
(2 |T |+ 3M).

Then

max

(∣∣∣∣θ1 − p1
q

∣∣∣∣ , ∣∣∣∣θ2 − p2
q

∣∣∣∣) > c |q|−λ ,

for all algebraic integers p1, p2, q ∈ K, where

λ = 1 +
logP

logL
,

c−1 = 4pP (max{1, 2l})λ−1.

First, let us show the following technical lemma.

Lemma 4.1. Let k ∈ Z[i] and |k| > 5 and let (x, y, z) ∈ Z[i]3 be a solution of the system of (2)
and (3). Furthermore, let

θ
(1)
1 = ±

√
1 +

4

k − 2
, θ

(2)
1 = −θ(1)1 ,

θ
(1)
2 = ±

√
1 +

2

k − 2
, θ

(2)
2 = −θ(1)2 ,

where the signs are chosen such that∣∣∣θ(1)1 −
y

x

∣∣∣ ≤ ∣∣∣θ(2)1 −
y

x

∣∣∣ , ∣∣∣θ(1)2 −
z

2x

∣∣∣ ≤ ∣∣∣θ(2)2 −
z

2x

∣∣∣ .
Then, we obtain ∣∣∣θ(1)1 −

y

x

∣∣∣ ≤ 16√
|k2 − 4| |x|2

,

∣∣∣θ(1)2 −
z

2x

∣∣∣ ≤ |3k + 2|∣∣∣√k(k − 2)
∣∣∣ |x|2 .

11



Proof. We have∣∣∣θ(1)1 −
y

x

∣∣∣ =

∣∣∣∣(θ(1)1 )2 − y2

x2

∣∣∣∣ · ∣∣∣θ(1)1 +
y

x

∣∣∣−1 =
16

|k − 2| |x|2
∣∣∣θ(2)1 −

y

x

∣∣∣−1 .
Because of the assumptions on θ(1)1 and θ(2)1 , we get

∣∣∣θ(2)1 −
y

x

∣∣∣ ≥ 1

2

(∣∣∣θ(2)1 −
y

x

∣∣∣+
∣∣∣θ(1)1 −

y

x

∣∣∣) ≥ 1

2

∣∣∣θ(1)1 − θ
(2)
1

∣∣∣ =

∣∣∣∣∣
√
k + 2

k − 2

∣∣∣∣∣ .
Hence, we see that ∣∣∣θ(1)1 −

y

x

∣∣∣ ≤ 16√
|k2 − 4| |x|2

.

Similarly, we get ∣∣∣θ(1)2 −
z

2x

∣∣∣ =

∣∣∣∣(θ(1)2 )2 − z2

(2x)2

∣∣∣∣ · ∣∣∣θ(1)2 +
z

2x

∣∣∣−1
=

|3k + 2|
|k − 2| |x|2

∣∣∣θ(2)2 −
z

2x

∣∣∣−1 ,
and ∣∣∣θ(2)2 −

z

2x

∣∣∣ ≥ ∣∣∣∣∣
√

k

k − 2

∣∣∣∣∣ ,
the other estimate is obtained.

Now, we apply Theorem 4.1 on θ(1)1 and θ(1)2 . In our case, we have

a1 = 4, a2 = 2, T = k − 2, M = 4

and

l =
27 |k − 2|

64 |k − 2| − 4
, L =

27

4096
(|k − 2| − 4)2 , p =

√
2 |k − 2|+ 12

2 |k − 2| − 8
=

√
|k − 2|+ 6

|k − 2| − 4
,

P = 1024(|k − 2|+ 6).

If |k| ≥ 155402, then we have L > 1. Thus, the condition L > 1 of Theorem 4.1 is satisfied. So,
we conclude that

max
{∣∣∣θ(1)1 −

y

x

∣∣∣ , ∣∣∣θ(1)2 −
z

2x

∣∣∣} > c |2x|−λ , (20)

where
λ = 1 +

logP

logL
, c−1 = 4pP (max{1, 2l})λ−1.

If we assume that |k| ≥ 155402, then max{1, 2l} = 1 and c−1 = 4pP. Furthermore, according to
Lemma 4.1, we have

max
{∣∣∣θ(1)1 −

y

x

∣∣∣ , ∣∣∣θ(1)2 −
z

2x

∣∣∣} ≤ 3.1

|x|2
,
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and inequality (20) implies

1

4

√
|k − 2| − 4

|k − 2|+ 6
· 1

1024(|k − 2|+ 6)
|2x|−λ < 3.1

|x|2
.

Hence,

|2x|2−λ ≤ 12697.6

√
|k − 2|+ 6

|k − 2| − 4
(|k − 2|+ 6). (21)

If |k| ≥ 155402, then 2− λ ≥ 0.000014. Thus, using the estimate for x, |x| ≥ |k| (2 |k| − 3)|k|−5

(from Lemma 3.7), and after taking the logarithm of (21), we obtain

(2− λ) (log 2 + log |k|+ (|k| − 5) log(2 |k| − 3)) < log

(
12697.6

√
|k − 2|+ 6

|k − 2| − 4
(|k − 2|+ 6)

)
(22)

If |k| ≥ 155402, then we have a contradiction. Therefore, we just prove the following statement.

Theorem 4.2. Let k ∈ Z[i] and |k| ≥ 155402. Then, all solution of the system of equations (2)
and (3) are given by

x = ±2, y = ±2, z = ±2

and
x = ±(2k2 − 2k − 2), y = ±(2k2 + 2k − 2), z = ±(4k2 − 2).

5 Linear forms in three logarithms

In this section, we will use the already well-known method in solving the equations of the form
vm = wn or vn = w′n, that consists in searching for the intersection of binary recurrence se-
quences. This will be done using Baker’s theory on linear forms in logarithms. It gives the upper
bound of m (and n) which will later be reduced using the reduction method. For more details,
one can refer to [6] (for the integer case) and [8] (for the case of Gaussian integers). We assume
5 < |k| < 155402 and we will use it at several places.

Let vm = wn or vm = w′n, for n > 2 and |k| > 5. Then we have

vm =

√
k + 2 +

√
k − 2√

k + 2

(
k +
√
k2 − 4

2

)m
+

√
k + 2−

√
k − 2√

k + 2

(
k −
√
k2 − 4

2

)m
,

wn =

√
4k +

√
k − 2√

4k

(
k − 1 +

√
k2 − 2k

)n
+

√
4k −

√
k − 2√

4k

(
k − 1−

√
k2 − 2k

)n
,

w′n =

√
4k −

√
k − 2√

4k

(
k − 1 +

√
k2 − 2k

)n
+

√
4k +

√
k − 2√

4k

(
k − 1−

√
k2 − 2k

)n
.

Now, let us define

P =

√
k + 2 +

√
k − 2√

k + 2

(
k +
√
k2 − 4

2

)m
,
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Q =

√
4k ±

√
k − 2√

4k

(
k − 1 +

√
k2 − 2k

)2n
,

where √
k − 2

k + 2
,±
√
k − 2

4k
,

√
1− 4

k2
,

√
1− 1

(k − 1)2

are chosen such that

Re

(√
k − 2

k + 2

)
≥ 0, Re

(
±
√
k − 2

4k

)
≥ 0, Re

(√
1− 4

k2

)
≥ 0, Re

(√
1− 1

(k − 1)2

)
≥ 0.

The equation vm = w2n or vm = w′2n implies that

P +
4

k + 2
P−1 = Q+

3k + 2

4k
Q−1. (23)

We have

|P | =

∣∣∣∣∣1 +

√
k − 2

k + 2

∣∣∣∣∣
∣∣∣∣k2
∣∣∣∣m
∣∣∣∣∣1 +

√
1− 4

k2

∣∣∣∣∣
m

>

∣∣∣∣k2
∣∣∣∣2 > 2.52 > 6.

|Q| =

∣∣∣∣∣1±
√
k − 2

4k

∣∣∣∣∣ |k − 1|2n
∣∣∣∣∣1 +

√
1− 1

(k − 1)2

∣∣∣∣∣
2n

> |k − 1|2n > 44 ≥ 256.

Furthermore, from (23) we have

||P | − |Q|| ≤ |P −Q| ≤
∣∣∣∣3k + 2

4k

∣∣∣∣ |Q|−1 +

∣∣∣∣ 4

k + 2

∣∣∣∣ |P |−1 < 0.23.

Hence, |P | ≤ |Q|+ 0.23 ≤ 1.001 |Q| , which yields |Q|−1 ≤ 1.001 |P |−1 and∣∣∣∣P −QP

∣∣∣∣ ≤ ∣∣∣∣3k + 2

4k

∣∣∣∣ |Q|−1 |P |−1 +

∣∣∣∣ 4

k + 2

∣∣∣∣ |P |−2 < 2.19 |P |−2 < 0.061.

Finally, we get ∣∣∣∣log
|P |
|Q|

∣∣∣∣ =

∣∣∣∣log

(
1− |P | − |Q|

|P |

)∣∣∣∣
< 2.19 |P |−2 + (2.19 |P |−2)2

< 0.061· 2.19· |P |−2

<

∣∣∣∣k2
∣∣∣∣−2m < 6−m.

The above expression can be written as a linear form in three logarithms:∣∣∣∣∣m log

∣∣∣∣k +
√
k2 − 4

2

∣∣∣∣− 2n log
∣∣∣k − 1 +

√
k2 − 2k

∣∣∣+ log

∣∣∣∣∣
√

4k(
√
k + 2 +

√
k − 2)

√
k + 2(

√
4k ±

√
k − 2)

∣∣∣∣∣
∣∣∣∣∣ < 6−m.

(24)

Lemma 5.1. If vm = w2n, then |P | 6= |Q| for k ∈ Z[i], k 6= 0,±2.
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Proof. The proof is analogous as [8, Lemma 5.2]. Assume that |P | = |Q|. If P = Q, then (23)
implies 3k2 − 8k + 4 = 0. The only solution in Z[i] of this equation is k = 2, so we conclude
that P 6= Q. Let us denote

α =

√
k − 2

k + 2
, β =

√
k − 2

k
.

Then, we have
P = a+ bαQ = c+ dβ,

where a, b, c, d ∈ Q[i]. Furthermore, the assumption vm = wn implies that a = c because

vm = a+ bα + a− bα = 2a,

wn = c+ dβ + c− dβ = 2c.

Moreover, we have
|P |2 = p+ uα + uα + q|α|2,

|Q|2 = r + vβ + vβ + s|β|2.

where p, q, r, s ∈ Q and u, v ∈ Q[i]. In the exactly same way as in [8] we can prove several
important facts:

• The complex numbers α and β are algebraic numbers of degree 2, for k ∈ Z[i], k 6= 0,±2.

• The basis for Q[i](α, α), considered as a vector space over Q[i] is Bα = {1, α, α, |α|2},
and the basis for Q[i](β, β) is Bβ = {1, β, β, |β|2}.

• The set B = {1, α, α, |α|2, β, β, |β|2} is linearly independent.

Now we have |P |2 ∈ Q[i](α, α) and |Q|2 ∈ Q[i](β, β) and they are uniquely represented. Thus,
the assumption |P |2 = |Q|2 implies p = q = r = s = 0 because B is linearly independent set.
So we have P = a and Q = c which is not possible because we showed that a = c.

Put

Λ = m log

∣∣∣∣k +
√
k2 − 4

2

∣∣∣∣− 2n log
∣∣∣k − 1 +

√
k2 − 2k

∣∣∣+ log

∣∣∣∣∣
√

4k(
√
k + 2 +

√
k − 2)

√
k + 2(

√
4k ±

√
k − 2)

∣∣∣∣∣ .
From (24) and 5.1, if |k| > 5, we have 0 < |Λ| < 6−m.

Lemma 5.2. Let k ∈ Z[i] such that |k| > 5. If vm = ±wn or vm = ±w′n then n ≤ m < 1.33n.

Proof. The statement is trivially satisfied if m = n = 0, which is the only possibility if one of
the index is equal to 0. Moreover, it can be proved by induction that

(2 |k| − 2)(|k| − 1)m−1 ≤ |vm| ≤ (2 |k|+ 2)(|k|+ 1)m−1,

(3 |k| − 4)(2 |k| − 3)n−1 ≤ |wn| ≤ (3 |k|+ 4)(2 |k|+ 3)n−1,

|k| (2 |k| − 3)n−1 ≤ |wn| ≤ |k| (2 |k|+ 3)n−1,
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for n,m ≥ 1. So vm = wn or vm = w′n implies

|k| (2 |k| − 3)n−1 ≤ (2 |k|+ 2)(|k|+ 1)m−1,

which yields n < m. On the other hand, vm = wn or vm = w′n also implies

2(|k| − 1)m ≤ (3 |k|+ 4)(2 |k|+ 3)n−1 < 2(2 |k|+ 3)n,

if |k| > 5. Now, if we take the logarithm of both sides of the inequality and use the condition
|k| > 5, we easily get m < 1.33n.

We use the following theorem of Baker and Wüstholz (see [1], p.20) to obtain a upper bound
for m.

Theorem 5.1. Let Λ be a nonzero linear form in logarithms of l algebraic numbers α1, . . . , αl
with rational integer coefficients b1, . . . , bl . Then

log Λ ≥ −18(l + 1)!ll+1(32d)l+2h′(α1) · · ·h′(αl) log(2ld) logB,

where B = max(|b1| , . . . , |bl|) and d is the degree of the number field generated by α1, . . . , αl
over the rationals.

Here
h′(α) = max(h(α),

1

d
|logα| , 1

d
),

where h(α) denotes the standard logarithmic Weil height of α.

In our case, we have

log |m logα1 − 2n logα2 + logα3| ≥ −18· 4!34(32d)5h′(α1) · · ·h′(αl) log(2ld) logB,

where

α1 =

∣∣∣∣k +
√
k2 − 4

2

∣∣∣∣ , α2 =
∣∣∣k − 1 +

√
k2 − 2k

∣∣∣ , α3 =

∣∣∣∣∣
√

4k(
√
k + 2 +

√
k − 2)

√
k + 2(

√
4k ±

√
k − 2)

∣∣∣∣∣ .
The minimal polynomials of α1, α2 are respectively

p1(x) = (2x4 − |k|2 x2 + 2)2 −
∣∣k2 − 4

∣∣2 x4, (25)

p2(x) = (x4 − 2 |k − 1|2 + 1)2 − 4
∣∣k2 − 2k

∣∣2 x4. (26)

The roots of p1 are

x1, x2 = ±
∣∣∣∣k +

√
k2 − 4

2

∣∣∣∣ = ±α1, x3, x4 = ±
∣∣∣∣k −√k2 − 4

2

∣∣∣∣ ,

x5, x6 = ±

√
|k|2 − |k2 − 4|+

√
(|k|2 − |k2 − 4|)2 − 4

2
,
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x7, x8 = ±

√
|k|2 − |k2 − 4| −

√
(|k|2 − |k2 − 4|)2 − 4

2
.

If i = 1, 2 then |xi| > 1 and if i = 3, 4, 5, 6, 7, 8 then |xi| ≤ 1. Thus, if 5 < |k| < 155402 then
we have

h(α1) =
1

4
log(2

∣∣∣k +
√
k2 − 4

∣∣∣) < 3.34.

The roots of p2 are

x1, x2 = ±
∣∣∣k − 1 +

√
k2 − 2k

∣∣∣ = ±α2, x3, x4 = ±
∣∣∣k − 1−

√
k2 − 2k

∣∣∣ ,
x5, x6 = ±

√
|k − 1|2 − |k2 − 2k|+

√
(|k − 1|2 − |k2 − 2k|)2 − 1,

x7, x8 = ±
√
|k − 1|2 − |k2 − 2k| −

√
(|k − 1|2 − |k2 − 2k|)2 − 1.

If i = 1, 2, then |xi| > 1 and if i = 3, 4, 5, 6, 7, 8, thus |xi| ≤ 1. So, if 5 < |k| < 155402 then we
have

h(α2) =
1

4
log
(∣∣∣k − 1 +

√
k2 − 2k

∣∣∣) < 3.17.

For the estimate of h(α3), we compute the minimal polynomial using Maple. However, be-
cause we do not need this estimate to be so accurate (we will significantly improve the bound on
m using the reduction method), we only estimate the leading coefficient of the minimal polyno-
mial and the conjugates of α3. For that we use |k| > 5. We have

h(α3) ≤
1

32
log(|a0| |α′|32) < 14.74,

as
|a0| ≤ (

√
|k|+ 2(

√
4 |k|+

√
|k|+ 2))32 < 4.51· 10181,

|α′| <
√

4 |k|(2
√
|k|+ 2)√

|k| − 2(
√

4 |k| −
√
|k|+ 2)

< 5.27.

Applying Baker-Wüstholz theorem with l = 3 and d ≤ 8· 32· 8 = 2048, we get −m log 6 >

−34992· 1.3· 1024· 3.34· 3.17· 14.74· log 12288· log 2m, which yields
m

log 2m
< 3.74· 1031

andm < 2.91· 1033. Therefore, we have just proved that for 5 < |k| < 155402, equation vm = wn
or vm = w′n implies m < 2.91· 1033. As this bound for m is very large, we have to reduce it.

Lemma 5.3. Let M be a positive integer, let p/q be a convergent of the continued fraction of the
irrational γ such that q > 6M , and let A,B, µ be some real numbers with A > 0 and B > 1.
Let ε := ‖µq‖ −M‖γq‖, where ‖ · ‖ denotes the distance from the nearest integer. If ε > 0, then
there is no solution to the inequality

0 < nγ −m+ µ < AB−n,

in positive integers m,n with
log(Aq/ε)

logB
≤ n ≤M.
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As
0 < m logα1 − 2n logα2 + logα3 < 6−m,

we apply Lemma 5.3 with

γ =
logα1

2 logα2

, µ =
logα3

2 logα2

, A =
1

2 logα
, B = 6, M = 2.91 · 1033.

The program was developed in Mathematica running with 500 digits. For the computations, if
the first convergent such that q > 6M does not satisfy the condition ε > 0, then we use the next
convergent until we find the one that satisfies the conditions. In a few days all the computations
were done. After the first run, we obtained M ≤ 67. For the second run, we set M = 67 to obtain
another bound M = 16. The third run of the reduction method yields n ≤ m ≤ 14. In this range,
we check the equations vm = wn and vm = w′n and see that they confirm the result in the main
theorem.

6 The case 2 < |k| ≤ 5

There are some extra fundamental solutions of (2) and (3) for certain values of parameter k.
Precisely, these fundamental solutions of (2) also appear (besides x = ±2):
• x0 = ±(1− i) , y0 = ±(1 + i) and x0 = ±(1− 3i) , y0 = ±(1 + 3i) for k = 4i,
• x0 = ±(1 + i) , y0 = ±(1− i) and x0 = ±(1 + 3i) , y0 = ±(1− 3i) for k = −4i,
• x0 = ±4i , y0 = ±4(1 + i) for k = 1 + 2i,
• x0 = ±4i , y0 = ±4(1− i) for k = 1− 2i,
• x0 = ±4i , y0 = ±4(1 + i) for k = −1 + 2i,
• x0 = ±4i , y0 = ±4(1− i) for k = −1− 2i,
• x0 = ±(2 + 2i) , y0 = ±(6 + 2i) for k = 2 + i,
• x0 = ±(2− 2i) , y0 = ±(6− 2i) for k = 2− i
• x0 = ±(6− 2i) , y0 = ±(2− 2i) for k = −2 + i,
• x0 = ±(6 + 2i) , y0 = ±(2 + 2i) for k = −2− i,
• x0 = ±(2− 2i) , y0 = ±4i and x0 = 0, y0 = ±(2 + 2i) for k = 2 + 2i,
• x0 = ±(2 + 2i) , y0 = ±4i and x0 = 0, y0 = ±(2− 2i) for k = 2− 2i,
• x0 = ±(2− 2i) , y0 = 0 and x0 = ±4i, y0 = ±(2 + 2i) for k = −2 + 2i,
• x0 = ±(2 + 2i) , y0 = 0 and x0 = ±4i, y0 = ±(2− 2i) for k = −2− 2i,
• x0 = ±6i , y0 = ±2i and x0 = ±4i, y0 = 0 for k = −3,
• x0 = ±(1− i) , y0 = ±(1− 3i) for k = 4,
• x0 = ±(1 + 3i) , y0 = ±(1 + i) and x0 = ±(1− 3i), y0 = ±(1− i) for k = −4, and for

(3), we have:
• x1 = ±4i , z1 = ±(2 + 8i) for k = 4i,
• x1 = ±4i , z1 = ±(2− 8i) for k = −4i,
• x1 = ±(1 + 2i) , z1 = ±4(1 + i) for k = 1 + 2i,
• x1 = ±(1− 2i) , z1 = ±4(1− i) for k = 1− 2i,
• x1 = ±(1− 2i) , z1 = ±4i for k = −1 + 2i,
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• x1 = ±(1− 2i) , z1 = ±4i for k = −1− 2i,
• x1 = ±(2 + 3i) , z1 = ±(10 + 6i) and x1 = ±(2 + i) , z1 = ±(6 + 2i) for k = 2 + i,
• x1 = ±(2− 3i) , z1 = ±(10− 6i) and x1 = ±(2− i) , z1 = ±(6− 2i) for k = 2 + i,
• x1 = ±(2− i) , z1 = ±(2− 2i) for k = −2 + i,
• x1 = ±(2 + i) , z1 = ±(2− 2i) for k = −2− i,
• x1 = ±(2 + 2i) , z1 = ±(6 + 4i) and x1 = 0, z1 = ±(2 + 4i) for k = 2 + 2i,
• x1 = ±(2− 2i) , z1 = ±(6− 4i) and x1 = 0, z1 = ±(2− 4i) for k = 2− 2i,
• x1 = ±(2− 2i) , z1 = ±(−2 + 4i) for k = −2 + 2i,
• x1 = ±(2 + 2i) , z1 = ±(−2− 4i) for k = −2− 2i,
• x1 = ±3 , z1 = ±4 for k = −3,
• x1 = ±3i , z1 = ±10i and x1 = ±i , z1 = ±6i for k = 4,
• x1 = ±1 , z1 = ±2i for k = −4.
Each of the above cases will be treated separately.
• k = 4i

In Section 2, the solutions of (2) are given by recurrence sequences (11) and (12). In this
cases we have

q0 = 1− i, q1 = −1 + 3i, qm+2 = 4iqm+1 − qm, m ∈ N,

q′0 = 1− i, q1 = 5 + i, qm+2 = 4iqm+1 − qm, m ∈ N,

u0 = 1− 3i, u1 = −1 + i, um+2 = 4ium+1 − um, m ∈ N,

u′0 = 1− 3i, u′1 = 13 + 3i, u′m+2 = 4iu′m+1 − u′m, m ∈ N,

v0 = 2, v1 = −2 + 8i, vm+2 = 4ivm+1 − vm, m ∈ N.

The relations (13) and (14) giving all solutions of (3) become

x0 = 4i, x1 = −34− 8i, xn+2 = 2(4i− 1)xn+1 − xn, n ∈ N,

x′0 = 4i, x′1 = 2, x′n+2 = 2(4i− 1)xn+1 − xn, n ∈ N,

w0 = 2, w1 = −4 + 12i, wn+2 = 2(4i− 1)wn+1 − wn, n ∈ N,

w′0 = 2, w′1 = 4i, w′n+2 = 2(4i− 1)w′n+1 − w′n, n ∈ N.

So, we have the following relations:
a): qm = ±xn or qm = ±x′n or qm = ±wn or qm = ±w′n,
b): q′m = ±xn or q′m = ±x′n or q′m = ±wn or q′m = ±w′n,
c): um = ±xn or um = ±x′n or um = ±wn or um = ±w′n,
d): u′m = ±xn or u′m = ±x′n or u′m = ±wn or u′m = ±w′n,
e): vm = ±xn or vm = ±x′n or vm = ±wn or vm = ±w′n.

Thus, we get:
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(qm (mod 2) = (1− i,−1 + i,−1 + i, 1− i, 1− i,−1 + i, ...),

(q′m (mod 2) = (1− i, 1 + i,−1 + i,−1− i, 1− i, 1 + i, ...),

(um (mod 2) = (1− i,−1 + i,−1 + i, 1− i, 1− i,−1 + i,−1 + i, ...),

(u′m (mod 2) = (1− i, 1 + i,−1 + i,−1− i, 1− i, 1 + i,−1 + i, ...),

(vm (mod 2) = (0, 0, 0, 0, 0, 0, 0, 0, ...),

(xn (mod 2) = (0, 0, 0, 0, 0, 0, 0, 0, 0, ...),

(x′n (mod 2) = (0, 0, 0, 0, 0, 0, 0, 0, 0, ..., ),

(wn (mod 2) = (0, 0, 0, 0, 0, 0, 0, 0, 0, ...),

(w′n (mod 2) = (0, 0, 0, 0, 0, 0, 0, 0, 0, ...).

By these relations, we deduce that the only possible equations are:

vm = ±wn, or vm = ±w′n, or vm = ±xn, or vm = ±x′n.

The equations vm = ±wn and vm = ±w′n can be solved similarly as in the previous sections.
Moreover, xn = w′n+1 and x′n+1 = wn.

• k = 1 + 2i

In Section 2, the solutions of (2) are given by recurrence sequences (11) and (12). In these
cases, we have

q0 = 4i, q1 = −10 + 4i, qm+2 = (1 + 2i)qm+1 − qm, m ∈ N,

q′0 = 4i, q′1 = 2, qm+2 = (1 + 2i)qm+1 − qm, m ∈ N,

v0 = 2, v1 = 4i, vm+2 = (1 + 2i)vm+1 − vm, m ∈ N.

The relations (13) and (14) that give all solutions of (3) become

x0 = 1 + 2i, x1 = −10 + 4i, xn+2 = 2(2i)xn+1 − xn, n ∈ N,

x′0 = 1 + 2i, x′1 = 2, x′n+2 = 2(2i)xn+1 − xn, n ∈ N,

w0 = 2, w1 = −1 + 6i, wn+2 = 2(2i)wn+1 − wn, n ∈ N,

w′0 = 2, w′1 = 1 + 2i, w′n+2 = 2(2i)wn+1 − wn, n ∈ N.

Thus, the following cases should be analyzed:
a): qm = ±xn or qm = ±x′n or qm = ±wn or qm = ±w′n,
b): q′m = ±xn or q′m = ±x′n or q′m = ±wn or q′m = ±w′n,
c): vm = ±xn or vm = ±x′n or vm = ±wn or vm = ±w′n.
Moreover, qm = vm+1, q′m+2 = vm, xn = w′n+1, x′n+1 = wn. So, the cases a), b), c) can be

reduced to
vm = ±wn or vm = ±w′n.

This case can be solved similarly as in the previous sections.
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• k = −2 + i

In Section 2, the solutions of (2) are given by recurrence sequences (11) and (12). In these
cases, we have

q0 = 6− 2i, q1 = −8 + 10i, qm+2 = (−2 + i)qm+1 − qm, m ∈ N,

q′0 = 6− 2i, q′1 = −2, qm+2 = (−2 + i)qm+1 − qm, m ∈ N,

v0 = 2, v1 = −6 + 2i, vm+2 = (−2 + i)vm+1 − vm, m ∈ N.

The relations (13) and (14) that all solutions of (3) are

x0 = 2− i, x1 = −8 + 10i, xn+2 = 2(−3 + i)xn+1 − xn, n ∈ N,

x′0 = 2− i, x′1 = −2, x′n+2 = 2(−3 + i)xn+1 − xn, n ∈ N,

w0 = 2, w1 = −10 + 3i, wn+2 = 2(−3 + i)wn+1 − wn, n ∈ N,

w′0 = 2, w′1 = −2 + i, w′n+2 = 2(−3i)wn+1 − wn, n ∈ N.

So, the following cases should be analyzed:
a): qm = ±xn or qm = ±x′n or qm = ±wn or qm = ±w′n,
b): q′m = ±xn or q′m = ±x′n or q′m = ±wn or q′m = ±w′n,
c): vm = ±xn or vm = ±x′n or vm = ±wn or vm = ±w′n.
Moreover, qm = −vm+1, q′m+2 = vm, xn = −w′n+1, x′n+1 = −wn. So, the cases a), b), c) are

reduced to
vm = ±wn or vm = w′n.

These equations can be solved similarly as in the previous sections.
• k = −2 + 2i

In the Section 2, the solutions of (2) are given by recurrence sequences (11) and (12). In this
cases we have

q0 = 2− 2i, q1 = 4i, qm+2 = (−2 + 2i)qm+1 − qm, m ∈ N,

q′0 = 4i, q′1 = −10− 6i, q′m+2 = (−2 + 2i)q′m+1 − q′m, m ∈ N,

q′′0 = 4i, q′′1 = 2− 2i, q′′m+2 = (−2 + 2i)q′′m+1 − q′′m, m ∈ N,

v0 = 2, v1 = −6 + 4i, vm+2 = (−2 + 2i)vm+1 − vm, m ∈ N.

The relations (13) and (14) that give all solutions of (3) are

x0 = 2− 2i, x1 = −2, xn+2 = 2(−3 + 2i)xn+1 − xn, n ∈ N,

x′0 = 2− 2i, x′1 = −2 + 20i, x′n+2 = 2(−3 + 2i)xn+1 − xn, n ∈ N,

w0 = 2, w1 = −10 + 3i, wn+2 = 2(−3 + i)wn+1 − wn, n ∈ N,

w′0 = 2, w′1 = −2 + i, w′n+2 = 2(−3i)wn+1 − wn, n ∈ N.

Hence, the following cases should be analyzed:
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a): qm = ±xn or qm = ±x′n or qm = ±wn or qm = ±w′n,
b): q′m = ±xn or q′m = ±x′n or q′m = ±wn or q′m = ±w′n,
c): q′′m = ±xn or q′′m = ±x′n or q′′m = ±wn or q′′m = ±w′n,
d): vm = ±xn or vm = ±x′n or vm = ±wn or vm = ±w′n.
Moreover, we have qm+1 = q′m, qm = q′′m+1, wn = −xn+1, w′n+1 = −x′n. So, the cases a), b),

c), d) are reduced to

vm = ±wn or vm = w′n or qm = ±wn or qm = ±w′n.

These equations vm = ±wn or vm = w′n can be solved similarly as in previous sections. More-
over, by the congruence method, the equations wn = ±qm have no solution. Now, we study the
equations qm = ±w′n. One can check that for the small values of m,n, i.e. m,n ≤ 2 and one gets
the only solutions: q0 = −w′1 = 2 − 2i, which gives d = 2i. Thus, we have to solve qm = ±w′n
, for n > 2. The same way as in Lemma 5.2, we get n < m. Moreover, using Baker’s theory on
linear forms in logarithms we get

0 < |m logα1 − n logα2 + logα3| < 1.42−m,

where

α1 =
∣∣∣−1 + i+

√
−2i− 1

∣∣∣ , α2 =
∣∣∣−3 + 2i+

√
4− 12i

∣∣∣ , α3 =

∣∣∣∣ (1− i)
√
−8 + 8i√

−8 + 8i−
√
−4 + 2i

∣∣∣∣ .
Now, we have to combine this bound with that obtained by Baker-Wüstholz theorem. Similarly
as for general case, we get

h(α1) < 0.27, h(α2) < 0.5, h(α3) < 3.61.

This yields
m

logm
< 5.54· 1029

and then m < 4.1· 1031. The previous reduction method confirms the result.
• k = −3

In Section 2, the solutions of (2) are given by recurrence sequences (11) and (12). In this
cases we have

q0 = 6i, q1 = −14i, qm+2 = (−3)qm+1 − qm, m ∈ N,

q′0 = 6i, q′1 = −4i, q′m+2 = (−3)q′m+1 − q′m, m ∈ N,

q′′0 = 4i, q′′1 = −6i, q′′m+2 = (−3)q′′m+1 − q′′m, m ∈ N,

v0 = 2, v1 = −8, vm+2 = (−3)vm+1 − vm, m ∈ N.

The relations (13) and (14) of all solutions of (3) are given by

x0 = 3, x1 = −22, xn+2 = −8xn+1 − xn, n ∈ N,

x′0 = 3, x′1 = −2, x′n+2 = −8xn+1 − xn, n ∈ N,
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w0 = 2, w1 = −13, wn+2 = −8wn+1 − wn, n ∈ N,

w′0 = 2, w′1 = −3, w′n+2 = −8wn+1 − wn, n ∈ N.

Therefore, the following cases will be analyzed:
a): qm = ±xn or qm = ±x′n or qm = ±wn or qm = ±w′n,
b): q′m = ±xn or q′m = ±x′n or q′m = ±wn or q′m = ±w′n,
c): q′′m = ±xn or q′′m = ±x′n or q′′m = ±wn or q′′m = ±w′n,
d): vm = ±xn or vm = ±x′n or vm = ±wn or vm = ±w′n.

We have qm ∈ iZ, q′m ∈ iZ, q′′m ∈ iZ, xn ∈ Z, x′n ∈ Z, wn ∈ Z, w′n ∈ Z. So in the cases a), b),
c) have no solution. Moreover, xn = −wn+1 and x′n+1 = −wn. Consequently, the case d) can be
summed to vm = ±wn or vm = w′n. This case can be solved similarly as in previous sections.
• k = 4

In Section 2, the solutions of (2) are given by recurrence sequences (11) and (12). In these
cases, we have

q0 = 1− i, q1 = 3− 5i, qm+2 = 4qm+1 − qm, m ∈ N,

q′0 = 1− i, q1 = 1 + i, qm+2 = 4qm+1 − qm, m ∈ N,

v0 = 2, v1 = 6, vm+2 = 4vm+1 − vm, m ∈ N.

The relations (13) and (14) of all solutions of (3) become

x0 = 3i, x1 = 19i, xn+2 = −6xn+1 − xn, n ∈ N,

x′0 = 3i, x′1 = −i, x′n+2 = −6xn+1 − xn, n ∈ N,

u0 = i, u1 = 9i, un+2 = −6un+1 − xn, n ∈ N,

u′0 = i, u′1 = −3i, u′n+2 = −6u′n+1 − u′n, n ∈ N,

w0 = 2, w1 = 8, wn+2 = −6wn+1 − wn, n ∈ N,

w′0 = 2, w′1 = 4, w′n+2 = −6wm+1 − wm, n ∈ N.

So, we have the following relations:
a): qm = ±xn or qm = ±x′n or qm = ±wn or qm = ±w′n or qm = un or qm = u′n,
b): q′m = ±xn or q′m = ±x′n or q′m = ±wn or q′m = ±w′n or q′m = un or q′m = u′n,
c): vm = ±xn or vm = ±x′n or vm = ±wn or vm = ±w′n or vm = un or vm = un.

We have:

(qm (mod 4)) = (1− i,−1− i,−1 + i, 1 + i, 1− i, ...),
(q′m (mod 4)) = (1− i, 1 + i,−1 + i,−1− i, 1− i, ...),
(vm (mod 4)) = (2, 2,−2,−2, 2, 2,−2,−2, ...),

(xn (mod 4)) = (−i,−i,−i,−i,−i,−i,−i, ..., ),
(x′n (mod 4)) = (−i,−i,−i,−i,−i,−i,−i, ..., ),
(un (mod 4)) = (i, i, i, i, i, i, i, i, i, , ..., ),

(u′n (mod 4)) = (i, i, i, i, i, i, i, i, i, ..., ),

(wn (mod 4)) = (2, 0,−2, 0, 2, 0,−2, 0, 2, ...).
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By these relations, we deduce that the only possible equations are:

vm = ±wn, or vm = ±w′n.

The equations vm = ±wn and vm = ±w′n can be solved similarly as in previous sections.
• k = −4i, k = 1− 2i, k = −2− i, −2− 2i.
By conjugating, this cases becomes the same as the previous one.
• k = −4, k = 2− 2i, k = 2 + 2i, k = −2 + i, k = 2 + i, k = −1− 2i, k = −1 + 2i.

Lemma 6.1. Let k ∈ Z[i]. The set {−k − 2,−k + 2,−4k, d} is a D(4)-quadruple in Z[i] if only
if {k − 2, k + 2, 4k,−d} is a D(4)-quadruple in Z[i].

Proof. {−k − 2,−k + 2,−4k, d} is a D(4)-quadruple in Z[i] if only if there exist x, y, z in Z[i]

such that
d(−k − 2) + 4 = x2, d(−k + 2) + 4 = y2, d(−4k) + 4 = z2.

This relation is equivalent to

−d(k + 2) + 4 = x2, − d(k − 2) + 4 = y2, − d(4k) + 4 = z2.

Consequently, if k ∈ Z[i] the set {−k − 2,−k + 2,−4k, d} is a D(4)-quadruple in Z[i] if only if
{k − 2, k + 2, 4k,−d} is a D(4)-quadruple in Z[i].

Using Lemma 6.1, the above cases become the same as the previous cases.

7 The case 1 ≤ |k| ≤ 2

• k = 1.

In this case, system (1) is equivalent to the following system of Pell equations

3x2 + y2 = 16 (27)

4x2 + z2 = 20. (28)

We have z2 ≡ 0 (mod 4), so there exists z′ ∈ Z[i] such that z = 2z′. Equations (27) and (28) are
equivalent to

3x2 + y2 = 16 (29)

x2 + z′2 = 5. (30)

Equation (30) implies |x− iz′|2 |x+ iz′|2 = 25. So the solution of the system of Pellian equa-
tions (27) and (28) is (x, y, z) = (2, 2, 2). We deduce that d = 0.

• k = i.

In this case, the fundamental solution of (2) is (x0, y0) = (2, 2) and the fundamental solution
of (3) is (x1, z1) = (2, 2). By repeating the procedure described in Section 5, we conclude that
the above equations have two solutions v0 = w0 = w′0 = 2 and v2 = w′2 = −4 − 2i. So, the
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nontrivial extension of the D(4)-triple {i − 2, i + 2, 4i} is obtained for d = −8i, i.e. 4k3 − 4k,
for k = i.

• k = 2i.

In this case, the fundamental solution of (2) is (x0, y0) = (2, 2) and the fundamental solution
of (3) is (x1, z1) = (2, 2). By repeating the procedure described in Section 5, we conclude that
the above equations have two solutions v0 = w0 = w′0 = 2 and v2 = w′2 = −10 − 4i. So, the
nontrivial extension of the D(4)-triple {2i−2, 2i+2, 8i} is obtained for d = −40i, i.e. 4k3−4k,
for k = 2i.

• k = 1 + i.

In this case, the fundamental solution of (2) is (x0, y0) = (2, 2) and the fundamental solution
of (3) is (x1, z1) = (2, 2). Thus, we get two solutionsv0 = w0 = w′0 = 2 and v2 = w′2 = −4+2i.

Therefore, the nontrivial extension of the D(4)-triple {−1 + i, 3 + i, 4 + 4i} is obtained for
d = −12 + 4i, i.e. 4k3 − 4k, for k = 1 + i.

• k = 1− i, k = −2i, k = i.

By conjugating, these cases become the same as the previous cases.
• k = −1− i, k = −1 + i, k = −1.

Using Lemma 6.1, we make similar conclusion for these cases.
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