
HAL Id: hal-04465758
https://hal.science/hal-04465758

Preprint submitted on 19 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Matheuristic variants of DSATUR for the vertex
coloring problem

Nicolas Dupin

To cite this version:
Nicolas Dupin. Matheuristic variants of DSATUR for the vertex coloring problem. 2024. �hal-
04465758�

https://hal.science/hal-04465758
https://hal.archives-ouvertes.fr

Matheuristic variants of DSATUR for the vertex
coloring problem

Nicolas Dupin1

Univ Angers, LERIA, SFR MATHSTIC, F-49000 Angers, France ;
nicolas.dupin@univ-angers.fr

Abstract. If DSATUR heuristic was proven efficient for many instances
of the vertex coloring problem, this paper aims to analyze inefficiency
causes of DSATUR heuristic, extending DSATUR with matheuristic op-
erators. Using an Integer Linear Programming formulation allows to
have larger local greedy optimization in DSATUR construction scheme.
Matheuristics allow also to initialize DSATUR heuristics and matheuris-
tics with cliques or a partial optimal coloring. Dual bounds are also ob-
tained, improving lower bounds implied by cliques computed by matheuris-
tics. Computational analyses are provided, highlighting the strengths and
weaknesses of DATUR heuristic and matheuristics.

Keywords: Matheuristic, Vertex Coloring; DSATUR; cliques; dual heuristic.

1 Introduction

The vertex coloring problem (VCP) is one of the most widely studied and popu-
lar optimization problems in graph theory, for theoretical insights and practical
applications like planning problems or interference avoidance in telecommunica-
tions, with many works in exact and heuristic methods to design efficient solvers
for VCP [19]. VCP is a NP-hard problem [14].

Exact methods can solve VCP to optimality with hundreds of vertices for dif-
ficult instances with Integer Linear Programming (ILP) techniques [13, 7]. First
compact ILP formulation, as an assignment problem, is quite inefficient with
symmetry issues, and was improved with cutting planes [21]. A more recent
compact formulation, based on representatives, breaks symmetries and improve
the LP relaxation [4]. The most efficient ILP resolution techniques use an ex-
tended formulation with column generation (CG) algorithms [13] or solve VCP
after transformation into maximum weight stable set problems [7] without CG.

Among the best seminal constructive heuristics for VCP, two adaptive greedy
algorithms, namely DSATUR [3] and RLF [18], are the most efficient. Some
previous works analyzed inefficiency issues of such constructive heuristics [6, 17].
Note that an exact tree search method was derived from DSATUR, and was
proven to be efficient [12, 22].

Among recent trends to hybridize heuristics, matheuristics rely on exact
methods to design heuristics that scales better than exact approaches, may pro-
vide results on design of meta-heuristics [2, 11], or furnish both lower and upper

bounds, with dual bounds provided by varied relaxations [1, 9]. This paper in-
vestigates such methodology to develop matheuristic variants of DSATUR for
VCP. The goal is not only to improve DSATUR heuristic, but also to under-
stand better inefficiency issues of DSATUR. Note that matheuristics were used
recently for VCP by [5] and for B-coloring [20].

2 Problem statements

2.1 Definitions and notation

Let G = (V,E) be an undirected graph on a finite vertex set V and edge set E.
Cardinalities of V and E are denoted n = |V | and m = |E| < n(n − 1)/2. We
write V = {v1, . . . , vn}, and denote I = [[1;n]] = [1;n]∩Z. An edge e ∈ E linking
vertices vi and vj is denoted e = (vi, vj) with i < j. Note that for VCP there is
no sense to consider loop edges (vi, vi) or multiple edges. For some equations, we
consider unordered notation ngb(i, j) = 1 if vertices vi and vj are linked by an
edge, i.e. (vmin(i,j), vmax(i,j)) ∈ E, otherwise ngb(i, j) = 0. For i ∈ I, δi denotes
the set of indexes corresponding to neighbors of vertex vi in G:

δi = {j ∈ I, ngb(i, j) = 1} (1)

The degree of vertex vi is denoted di = |δi|.
A k-coloring of G is an assignment of k colors to vertices V such that adjacent

nodes do not share the same color. VCP minimizes the number of color k to have
a k-coloring of G, the optimum is the chromatic number of graph G. Formally,
a proper k-coloring is denoted (c) where ci ∈ [[1; k]] denotes the color of vertex
vi, fulfilling:

∀i < j, (vi, vj) ∈ E =⇒ ci ̸= cj (2)

A clique in G is a subset of vertices C ⊂ V that forms a complete sub-graph
of G, i.e. each couple of vertices of C is linked by an edge in G. The cardinality
of any clique gives a first lower bound for the chromatic number, an optimal
coloring necessarily implies different colors for the clique.

For constructive heuristics, we define a partial k-coloring (c) where ci ∈
[[1; k]] ∪ {−1}. if ci > 0, ci is the color of vertex vi , otherwise ci = −1 denotes
that vertex vi is not colored yet. A partial k-coloring (c) fulfill:

∀i < j, (vi, vj) ∈ E =⇒ (ci ̸= cj or ci = cj = −1) (3)

For a given partial k-coloring (c), we consider for each vertex vi the saturation
table Si as the set of the assigned colors of the neighbors of vi. The saturation
(degree) denotes si = |Si|.

Si =

n⋃
j∈δi

{cj} \ {−1} (4)

We denote with ≽ the total order among vertices, as the hierarchic order
comparing firstly the saturation degrees and then the degree:

∀vi, vj ∈ V, vi ≽ vj ⇐⇒ si > sj or (si = sj and di ⩾ dj) (5)

2

2.2 Compact ILP formulations

This section presents two compact ILP formulations for VCP.

Assignment-based ILP model Having k a maximum number of colors, fol-
lowing ILP model minimizes the number of colors to cover G, if the chromatic
number is at most k, otherwise the infeasibility of this ILP proves there exists no
k-coloring for G. Two types of binary variables are used. On one hand, assign-
ment variables zi,c ∈ {0, 1} are defined for i ∈ I and c ∈ [[1; k]], zi,c = 1 if and
only if vertex vi is assigned to color c. On the other hand, availability variables
yc ∈ {0, 1} are defined c ∈ [[1; k]], yc = 1 if and only if color c is used. It gives
rise to following ILP:

min

k∑
c=1

yc (6)

s.t :

k∑
c=1

zi,c = 1 ,∀i ∈ I (7)

zi,c + zj,c ⩽ yc ,∀(vi, vj) ∈ E,∀c ∈ [[1; k]] (8)

Objective function (6) counts with variables y the number of colors used.
Constraints (7) ensure that each vertex is colored. Constraints (8) expresses
incompatibility of neighbor vertices to have the same color.

Having as initial value k an upper bound of the chromatic number, given
by a primal heuristic, or simply k = |V | ensures the feasibility to compute the
chromatic number and an optimal assignment of colors solving this last ILP.
However, for efficiency issues with ILP resolution, value of k should be as small
as possible. Symmetries in this encoding, for instance by permutation of colors,
is a bottleneck to solve large VCP with a Branch&Bound (B&B) tree search.

Representatives ILP model A compact formulation, based on representa-
tives, breaks symmetries and improves the LP relaxation [4]. Binary variables
zi,i′ ∈ {0, 1}, are defined for all i, i′ ∈ V with i ⩽ i′, zi,′ = 1 if and only if vertices
vi et vi′ have the same color, and i is the minimum index of its color. It induces
following asymmetric ILP formulation:

min
z

n∑
i=1

xi,i (9)

s.c :
∑
i′⩽i

xi′,i ⩾ 1 ,∀i ∈ I (10)

xj,i + xj,i′ ⩽ xj,j ∀(vi, vi′) ∈ E,∀j ⩽ i, (11)

Objective function (9) counts with variables xi,i the number of colors used.
Constraints (10) ensure that each vertex i is colored: either xi,i = 1 or there

3

exists a representative i′ < i such that xi′,i = 1. Constraints (11) expresses
incompatibility of neighbor vertices to have the same color, and that a variable
xi′,i = 1 implies that xi′,i′ = 1.

2.3 Standard DSATUR algorithm

DSATUR colors the vertices one after another, assigning the first color available
or adding a new color. The order of traversal follows order ≽. Among the uncol-
ored vertices, the selected vertex to color maximizes firstly the saturation and
then the degree in a lexicographic way. Coloring a new vertex updates satura-
tion, the order of traversal is not defined a priori, DSATUR is an adaptive greedy
algorithm. Algorithm 1 writes the standard version of DSATUR, iterating with
a partial coloring till the graph is fully colored.

Algorithm 1: Standard DSATUR algorithm

Input: G = (V,E) a non-empty and non-oriented graph
Initialization:

define partial coloring c with ci := −1 for all i ∈ I
define saturation table S with Si := ∅ for all i ∈ I
initialize set U := V , and color k := 0
while U ̸= ∅

find u ∈ U , a maximum of ≽ in U .
if |Su| = k then k:=k + 1 // a new color is added
compute ci := minSu // assign color to u
remove u from U
for all i ∈ δu ∩ U , Si = Si ∪ {ci} // update saturation

end while
return color k and (c) a k-coloring of G

3 DSATUR matheuristic variants

This section provides variants of DSATUR with matheuristic extensions of op-
erators of Algorithm 1.

3.1 Initialization

Several initialization strategies can be used before processing the standard DSATUR
constructive heuristic. Initialization consists of defining an initial partial coloring
and computing the saturation table for the uncolored vertices. Several strategies
can be provided:

• maxDeg: only one vertex is colored, one having the highest degree. Only the
neighbors of this vertex have a saturation set to 1.

4

• col-n: one considers n vertices having the highest degrees, and color them
solving to optimality ILP (9)-(11) restricted to these n vertices. Note that n
is a controlled parameter, that is set so that the ILP is solvable quickly.

• clq: one find a large clique in the graph, and color this clique with different
colors. Finding a maximum clique being NP-hard, this initialization requires
a heuristic. In Appendix, a constructive matheuristic dealing with maximum
clique problems of fixed size is presented.

• clq-col-n: initialization strategy clq is firstly operated. Then col-n strat-
egy is operated for n vertices having the highest saturation and degrees,
considering the clique. Colors of these n vertices are either colors used for
the clique, or new colors. If ILP formulations of section 2 can be used, fixing
variables of the clique to their assignment or defining them as representatives
of old colors, Section 3.2 provides an ILP formulation for VCP with existing
colors.

Note that maxDeg is equivalent to standard DSATUR as written in Algorithm
1: no initialization induces that the first node to be selected in the loop is one with
the highest degree. Many initialization are possible with maxDeg, there can be
many vertices having the maximum degree. With col-n strategies, there is more
depth in the initialization, to analyze if first iterations or standard DSATUR
algorithm induce bad decisions. Initializing saturation with a clique does not
induce a heuristic choice, it is an exact pre-processing, each color of the clique
shall be different. The initialization of the saturation table is more advanced
with a clique than with a single vertex.

3.2 Local optimization with larger neighborhoods

Let (c) be a partial k-coloring. Let k be the current number of colors in c, let C
be the set of colored vertices, and U a subset of un-colored vertices:

C = {i ∈ I, ci > 0} (12)

U ⊂ {i ∈ I, ci = −1} (13)

In this section, we define an ILP formulation to assign a color for ver-
tices indexed in U while preserving the colors that are assigned in C. Follow-
ing formulation hybridizes assignment-based ILP formulation for the existing
colors, and the representative-based formulation for new colors. Binary vari-
ables xu,u′ are defined here only for u < u′ ∈ U , considering subset of edges
EU = {(vu, vu′)}u<u′∈U . Binary variables zu,l to assign previous colors are de-
fined for u ∈ U and l ∈ [[1; k]] such that there is no neighbor u that have color l
in (c). Variables zu,l are defined for all defined for u ∈ U for l ∈ Ku where:

Ku = {l ∈ [[1; k]],∀i ∈ C, ci = l =⇒ ngb(i, j) = 0)} (14)

It induces following ILP formulation to color the vertices indexed in U :

5

min
z

∑
u∈U

xu,u

s.t : zi,l + zi′,l ⩽ 1 ∀(vi, vi′) ∈ EU ,∀l ∈ [[1; k]]
xu,i + xu,i′ ⩽ xu,u ∀(vi, vi′) ∈ EU ,∀u ∈ U, u ⩽ i∑

i′∈U :i′⩽i

xi′,i +
∑
l∈Ku

zi,l ⩾ 1 ∀u ∈ U

(15)

3.3 General algorithm

Algorithm 2: Matheuristic DSATUR variants

Input: G = (V,E) a non-empty and non-oriented graph
Parameters:
• an initialization strategy S (from section 3.1) ;
• o ∈ N, o > 1 ;
• r ∈ N.
Initialization:

initialize colored set C, and color k with strategy S.
initialize W := V \ C.
update partial coloring c and saturation table S with strategy S.
while W ̸= ∅

sort W with order ≽.
define U1 as the o first elements after sorting.
define U2 as the elements of rank o+ 1 and min(|W |, o+ r) after sorting.
solve ILP (15) with C and U = U1 ∪ U2.
k := k +OPT where OPT is the optimal value of the last ILP.
if o+ r ⩽ |W | then U1 = U end if
set W := W \ U1

assign colors cu of the ILP for u ∈ U1

end while
return color k and (c) a k-coloring of G

Algorithm 2 is a general version for an extended DSATUR matheuristic.
Initialization can be any strategy defined in section 3.1. The remaining of the
Algorithm simultaneously colors o vertices, solving an ILP (15) with o+r vertices
and the previously assigned colors. In the standard version of DSATUR heuristic,
we have o = 1 and r = 0. Having r > 0 ensures more depth in the local
decision making with the possibility to reoptimize these variables after, as in
[5, 11]. Having r = 0 could lead to threshold effects. To solve efficiently local
optimization, there are o + r new vertices to color using ILP formulation (15),
this parameter should be fixed according to the capability of the ILP solver
to solve VCP problems for this size. Note that the r vertices that can be re-
optimized are not necessarily chosen for the next iteration as the saturation
table is updated with the o fixed colors.

6

3.4 Dual bounds

As in [1, 9], some DSATUR matheuristics allow to have both lower and upper
bounds, with dual bounds provided by varied relaxations [1, 9]. Firstly, we recall
that the cardinality of any clique gives a first lower bound, an optimal coloring
(as any proper coloring) implies different colors for the clique. Algorithm 3 in
Appendix A gives thus first dual bounds for VCP, after the first phase to initialize
DSATUR with a clique.

After a clique initialization, any dual bounds of the ILP resolution of (15)
assigning n = o + r colors, either in clq-col-n initialization or in the first
iteration of in Algorithm 2 after clq initialization, is a dual bound for VCP,
relaxing the constraints corresponding to the unoptimized nodes, and without
any heuristic reduction of the original problem (which is not true once colors are
fixed in a subset that is not a clique). As in [9], dual bounds can be obtained
with several relaxations computations of ILP (15): an exact ILP resolution of
such ILP restricted with small values of n = o + r, larger values of N with
computations of LP relaxation, or intermediate dual bounds with truncated ILP
resolution with intermediate values of n. Note that such dual heuristics may take
advantage of exact reduction techniques as in [15] to compute more efficiently
dual bounds for smaller and equivalent VCP problems or to have a more relevant
selection of the subset of n nodes considered in the relaxation.

3.5 Towards randomization and multi-start?

As in [20], one may extend Algorithm 2 for a multi-start initialization and use
randomization. DSATUR standard algorithm can be randomized with the per-
turbation of the order of traversal of vertices, with the choice of the color to
assign, not necessarily the first one. In Algorithm 2, the color to assign is op-
timized regarding the depth of traversal, so that such randomization does not
make sense anymore. The depth in the order of traversal induces also few impact
to have local perturbations of the order of traversal. It makes sense only to break
ties for the threshold effects of the algorithm. A more promising randomization
is to consider several large cliques to have several initialization.

For the computation of dual bounds, two randomization may be considered:
the initial clique and also the selection of the n = o + r nodes for the second
phase computation of dual bounds using the ILP solver.

4 Computational results

Computational experiments were processed using a computer Intel(R) Core(TM)
i7-6700, 3.40GHz, running Linux Lubuntu 20.4, using up to 4 threads and 32 Gb
of RAM memory. CPLEX version 20.1 was used for ILP resolution. Algorithms
were coded in Julia programming language version 1.7.3, using the JuMP library
version 1.1.1 to call ILP solvers and LightGraphs version 1.3.5 for graphs. With-
out specific precision, we use CPLEX 20.1 with its default parameter, except

7

parameters CPX_PARAM_EPAGAP = 0.99999 to stop computation to optimality
knowing the objective function is integer, a time limit of 30 seconds maximum
for each computation (which was not reached in most of the following results).
CPLEX allows to set optimization parameters to sizes n = 123 for clique depth
search in Algorithm 3 and size n = o + r = 80 in Algorithm 2, to have partial
ILP computations solvable to optimality in at most few seconds. Note that CBC
can also be used with JuMP, to have an open source code, for these cases, we
set n = 100 and o+ r = 60.

4.1 Instances

For this study, we consider a subset of 53 DIMACS instances remowing instances
that are easy for DSATUR, where DSATUR and the matheuristics gives the
BKS that is proven optimal. These instances are highlighted in Appendix B,
with their characteristics and their best known lower and upper bounds. For
comparing primal heuristics, we used for this paper the instances without the
exact pre-processign reduction from [15]. For the selected difficult instances, only
13 are reduced by [15], which could lead to easy instances, which was used for
the computations of dual bounds. Original and reduced instances for VCP are
available at https://github.com/Cyril-Grelier/gc wvcp cp.

4.2 Standard DSATUR with varied initialization

Table 1 presents for different initialization of DSATUR the total number of
colors used for the 53 selected instances, the gaps to the Best Known Solutions
(BKS), the number of instances where BKS is equaled, and the other columns are
compared with the standard DSATUR Algorithm: #worse and #better counts
the number of instances where the considered Algorithms have different values
with BKS, respectively worse and better solutions, and quartiles are considered
with the absolute gap from DSATUR to the corresponding algorithm, negative
values means that the corresponding algorithm has better value than standard
DSATUR, quartiles allows to appreciate the dispersion of the results.

Table 1 shows that col-n strategies are disappointing, leading to worse re-
sults in average than standard DSATUR. On the contrary, clq initialization
improves significantly standard DSATUR. Using col-n strategies after clique
initialization improves also significantly standard DSATUR. Note that for in-
stance lr1000.1.col, a BKS is found by DSATUR and clq initialization, not
for the other approaches, which explains this instance is considered in the se-
lected pool of difficult instances for DSATUR.

It is interesting that clq-col-80 and clq improve DSATUR solutions on dif-
ferent instances, Considering the best results of both algorithms in the row ”Best
clq” of Table, as if we consider both approaches in parallel as in [10, 8], it pro-
vides an additional significative improvement. In the row, ”Best clq+DSATUR”
we consider the best result including also DSATUR, to analyze the complemen-
tarity with the original approach. A very slight improvement is observed, as well
as considering all the approaches in ”Best+DSATUR” row, or removing only

8

Table 1. Comparison of DSATUR matheuristics with different initialization of satu-
ration table. Results parallelizing several strategies are also provided.

#colors gap #BKS #worse #better Q1 Q2 Q3

maxDeg 3240 32.03 % 1 0 0 0 0 0

col-60 3251 32.48 % 1 19 16 -1 0 1
col-80 3250 32.44 % 2 20 16 -1 0 1
clq-col-80 3214 30.97 % 2 18 17 -1 0 1
clq 3209 30.77 % 4 13 19 -1 0 0

Best clq 3181 29.63 % 6 7 26 -1 0 0
Best clq+DSATUR 3174 29.34 % 6 0 26 -1 0 0
Best–DSATUR 3163 28.89 % 6 3 34 -2 -1 0
Best+DSATUR 3160 28.77 % 6 0 34 -2 -1 0

BKS 2454 0.00 % 53 0 52 -14 -5 -3

the . DSATUR standard approach in row ”Best–DSATUR”. These last results
highlight that for three instances, le450_5b; queen11_11 and queen15_15, none
of the other initialization improves or equals standard DSATUR. This section
validates to consider both clq-col-80 and clq strategies, in a multi-start of
parallel heuristic, and the power of using cliques for DSATUR variants. If the
solutions of standard DSATUR have been improved, the gaps from the BKS
remain very significant.

4.3 DSATUR with larger local optimization

Table 2 has the same shape as Table 1 to compare DSATUR extended matheuris-
tics to the standard Algorithm 1. Parameters o, r are the ones in Algorithm 2,
standard version of DSATUR, implemented with Algorithm 1, corresponds to
o = 1 and r = 0. This allows to analyze the impact of a larger depth in local
optimization and the part of vertices to reoptimize for a better efficiency.

Table 2. Comparison of DSATUR matheuristics with different initialization of satu-
ration, and values of optimization parameters o and r in Algorithm 2

Init satur o r #colors gap #BKS #worse #better Q1 Q2 Q3

maxDeg 1 0 3240 32,03 % 1 0 0 0 0 0

col-80 1 0 3250 32,44 % 2 20 16 -1 0 1
col-80 20 60 3181 29,63 % 6 12 30 -3 -1 0
col-80 40 40 3218 31,13 % 5 20 26 -2 0 1
col-80 80 0 3322 35,37% 2 35 13 0 1 2

clq 1 0 3209 30,77 % 4 13 19 -1 0 0
clq 40 40 3155 28,57% 10 9 32 -3 -1 0

Best Clq 3134 27,71 % 10 4 37 -3 -1 0

Best-DSATUR 3125 27,34 % 10 3 40 -3 -2 -1
Best+DSATUR 3122 27,22 % 10 0 40 -3 -2 -1

BKS 2454 0,00 % 53 0 52 -14 -5 -3

9

Table 2 does not provide results with maxDeg initialization, first iteration
of Algorithm 2 induce a similar saturation than using col-n initialization.
Using clq initialization, results are very stable considering parameters value
(o, r) ∈ {(20, 60); (40, 40); (60, 20); (80, 0)}. Using col-80 initialization, setting
parameter values (o, r) ∈ {(20, 60); (40, 40); (60, 20)} improves DSATUR stan-
dard algorithm, this is not the case with (o, r) = (80, 0). Coherently with [5, 11],
it is important to have a significant part of variables that can be reoptimized
to avoid bad choices due to threshold effects. A drawback of increasing r value
(and decreasing o value to keep value o + r stable), is that computation times
are increasing. (o, r) = (40, 40) is a good compromise between solution quality
and computation time.

Initializing with clq provides again the best results, (o, r) = (40, 40) improves
significantly DSATUR with both the standard and the clique initialization. Com-
bining (o, r) = (40, 40) and standard DSATUR construction (o, r) = (1, 0) allows
an additional improvement. This highlights that standard DSATUR algorithm
has good properties, that can be broken with more depth in local optimization.
Coherently with [8], using larger neighborhoods in greedy constructive heuris-
tics improves in average the solution quality. However, even with an ensemble of
such constructive heuristics that can be computed in parallel, a significant gap
remains to the BKS.

4.4 Dual bounds

In Appendix B, best known lower bounds reported, mainly after [16] and in some
cases the chromatic number is known by construction or specific reasoning. To
compute the dual bounds, we used the exact reduction from [15] for the 13
instances where a reduction is obtained, as shown in Tables 4 and 5.

For the DIMACS instances, Algorithm 3 is very efficient to find large cliques,
and gives already the maximum clique size which is also the chromatic number
for 28 out of the 53 selected instances with parameter n ∈ {100, 125}. This
often occurs also for the easy instances that were removed from the dataset for
this study as easy instances for DSATUR. We removed thus these instances for
results of dual bounds, these case being specific and easy to compute optimal
dual bounds. Note that having n = 100 or n = 125 produced the same results
with Algorithm 3, computations with n = 125 are slightly longer. For the 25
remaining instances, we report dual bounds and computation times obtained
after a clique computation with Algorithm 3 computations with n = 100 with
following parameters to analyze the compromise between the number of vertex
to consider in the ILP (15):

• n = o + r = 80 and a time limit of 300s, with bounds at the root node of
the B&B tree and in truncated resolution time, or the optimal value.

• n = o + r = 125 and a time limit of 900s, with bounds at the root node of
the B&B tree .

• n = o+ r = 200 and a time limit of 3600s for B&B tree search.

10

Table 3. Comparaison of the lower bounds obtained by initial clique computation and
ILP refinements to the BKS and BKLB, LB are reported as well as computation times.
For ILP refinements, the time to compute the clique is not counted, these times are
additional time to improve the lower bounds given by clique

UB LB LB t
BKS BKLB clq n = 125 n = 200 clq n = 125 n = 200

C2000.5 145 99 15 20 21 185 163 3600
C4000.5 259 107 17 21 22 252 99 3600

dsjc125.1 5 5 4 5 5 0,2 81,8 118
dsjc125.5 17 17 10 14 14 14 131,4 3600
dsjc125.9 44 44 34 43 44 33 1 1

dsjc250.1 8 7 4 6 5 0,7 186,4 3600
dsjc250.5 28 26 12 16 17 160 206 3600
dsjc250.9 72 71 41 56 70 53 1,5 105

dsjc500.1 12 9 5 5 5 5 4 3600
dsjc500.5 48 43 13 17 19 167 61 3450
dsjc500.9 126 123 51 65 79 50 0,4 274

dsjc1000.1 20 10 6 6 6 38 8,6 3600
dsjc1000.5 83 73 14 19 20 175 172,6 3600
dsjc1000.9 222 215 59 73 86 80 2,3 15

dsjr500.1c 85 85 76 77 79 47 3 11
dsjr500.5 122 122 114 122 122 5 0,6 10

flat300 26 0 26 26 11 15 16 167 217 3600
flat300 28 0 28 28 12 15 16 160 259 3600
flat1000 50 0 50 50 13 17 19 175 186 3600
flat1000 60 0 60 60 13 17 19 178 135 3600
flat1000 76 0 76 76 14 18 19 166 179 3600

latin square 97 90 90 90 90 32 0,2 12

r1000.1c 98 96 87 88 88 143 73 9
r1000.5 234 234 213 214 220 81 8,5 19

TOTAL 1965 1716 928 1039 1101
Average 95 87 2033

11

Table 3 shows that the computation of dual bounds with ILP (15) induced im-
provements of the cliques given in input for most of the instances. For latin_square
instance, a clique of size 90 is found easily, it is the actual best Lower Bound
known (BLBK) for VCP, the ILP computations of improved dual bounds do not
improve this bound. Note that in experiments of [16], computations could take
around 30 days to have dual bounds for very difficult problems, especially for
instances C2000.5 and C4000.5. For such large and difficult instance, where the
best cliques knows are far from the BKS and BLBK, our dual bounds are quite
limited, which is also the cases for [13].

Table 3 shows it is preferable and computable to tackle problems with n =
o+ r = 200. The higher the value of n is, the higher the optimal solution of ILP
(15), and truncated ILP resolution remains efficient to computer better dual
bounds than the ones computed optimally with smaller subproblems. For three
instances, namely dsjr500.5 dsjc125.1 and dsjc125.9, optimal lower bounds
are found quickly. Globally, more improvements are observed on dense graphs
(suffixed by .5 and .9 indicating the density) than on sparse ones (suffixed by .1),
the more difficult instances were no improvement is observed are sparse graphs.
Note that half of ILP (15) with n = 200 are solved to optimality in less than
one hour, sometimes very quickly, clique initialization may be helpful to speed
up such ILP computations, whereas for other instances some ILP computations
of size n = 125 are not solvable in one hour.

5 Conclusions and perspectives

This paper studied matheuristic variants of DSATUR, to improve its standard
version, and also to help understanding the strengths and weaknesses of this
well-known heuristic. Initializing DSATUR with a large clique, using a simple
greedy matheuristic, is a very significant improvement of the standard initial-
ization with one vertex of maximal degree. Having larger optimization in the
greedy construction is efficient when some vertices can be re-optimized to avoid
threshold effects. However, improvement of DSATUR is slight, significant gaps
to BKS remain using DSATUR constructive matheuristics. Dual bounds are also
provided, highlighting also the interest of cliques for DSATUR. With a newly
introduced ILP formulation, dual bounds implied by cliques can be improved in
short and long computation times.

These results offer several perspectives. Firstly, exact version of DSATUR [22,
12] could be improved using cliques for branching in the tree search algorithm,
dual and primal heuristics can be used and parametrized to prune some nodes
in this tree search. Secondly, dual bound can be improved using other exact
techniques for dual bounds, as [13, 7, 16]. Thirdly, perspectives are to extend
similarly RLF as matheuristics.

References

1. M. A. Boschetti, A. N. Letchford, and V. Maniezzo. Matheuristics: survey and
synthesis. Int Trans Oper Res, 30(6):2840–2866, 2023.

12

2. M. A. Boschetti and V. Maniezzo. Matheuristics: using mathematics for heuristic
design. 4OR, 20(2):173–208, 2022.

3. D. Brélaz. New methods to color the vertices of a graph. Communications of the
ACM, 22(4):251–256, 1979.

4. M. Campêlo, V. A. Campos, and R. C. Corrêa. On the asymmetric representatives
formulation for the vertex coloring problem. Discret. Appl. Math, 156(7):1097–
1111, 2008.

5. R. C. Chandrasekharan and T. Wauters. A constructive matheuristic approach
for the vertex colouring problem. In 13th International Conference on the Practice
and Theory of Automated Timetabling-PATAT, volume 1, 2021.

6. M. Chiarandini, G. Galbiati, and S. Gualandi. Efficiency issues in the rlf heuristic
for graph coloring. In Proceedings of the 9th Metaheuristics International Confer-
ence, MIC, pages 461–469, 2011.

7. D. Cornaz, F. Furini, and E. Malaguti. Solving vertex coloring problems as maxi-
mum weight stable set problems. Discret. Appl. Math, 217:151–162, 2017.

8. N. Dupin, R. Parize, and E. Talbi. Matheuristics and Column Generation for a
Basic Technician Routing Problem. Algorithms, 14(11):313, 2021.

9. N. Dupin and E. Talbi. Machine learning-guided dual heuristics and new lower
bounds for the refueling and maintenance planning problem of nuclear power
plants. Algorithms, 13(8):185, 2020.

10. N. Dupin and E. Talbi. Parallel matheuristics for the discrete unit commitment
problem with min-stop ramping constraints. Int Trans Oper Res, 27(1):219–244,
2020.

11. N. Dupin and E. Talbi. Matheuristics to optimize refueling and maintenance plan-
ning of nuclear power plants. Journal of Heuristics, 27(1):63–105, 2021.

12. F. Furini, V. Gabrel, and I.-C. Ternier. An improved dsatur-based branch-and-
bound algorithm for the vertex coloring problem. Networks, 69(1):124–141, 2017.

13. F. Furini and E. Malaguti. Exact weighted vertex coloring via branch-and-price.
Discrete Optimization, 9(2):130–136, 2012.

14. M. R. Garey and D. S. Johnson. The complexity of near-optimal graph coloring.
Journal of the ACM (JACM), 23(1):43–49, 1976.

15. O. Goudet, C. Grelier, and D. Lesaint. New bounds and constraint programming
models for the weighted vertex coloring problem. In Thirty-Second International
Joint Conference on Artificial Intelligence, pages 1927–1934, 2023.

16. S. Held, W. Cook, and E. C. Sewell. Safe lower bounds for graph coloring. In Inte-
ger Programming and Combinatoral Optimization: 15th International Conference,
IPCO 2011., pages 261–273. Springer, 2011.

17. R. Janczewski, M. Kubale, K. Manuszewski, and K. Piwakowski. The smallest
hard-to-color graph for algorithm dsatur. Discrete Mathematics, 236(1-3):151–165,
2001.

18. F. T. Leighton. A graph coloring algorithm for large scheduling problems. Journal
of research of the national bureau of standards, 84(6):489, 1979.

19. E. Malaguti and P. Toth. A survey on vertex coloring problems. Int Trans Oper
Res, 17(1):1–34, 2010.

20. R. A. Melo, M. F. Queiroz, and M. C. Santos. A matheuristic approach for the
b-coloring problem using integer programming and a multi-start multi-greedy ran-
domized metaheuristic. European Journal of Operational Research, 295(1):66–81,
2021.

21. I. Méndez-Dı́az and P. Zabala. A cutting plane algorithm for graph coloring.
Discret. Appl. Math, 156(2):159–179, 2008.

13

22. P. San Segundo. A new dsatur-based algorithm for exact vertex coloring. Com-
puters & Operations Research, 39(7):1724–1733, 2012.

Appendix A: matheuristic to find large cliques and stables

This appendix present the matheuristic that computes a large clique as initial-
ization of Algorithm 2. To ease presentation, we present the matheuristic in
Algorithm 3 for the Maximum Independent Set (MIS) problem applied to the
complementary graph of G. Indeed, it is equivalent for a subset V to be a clique
in the graph G and an independent (or stable) set in the complementary graph.

Algorithm 3: Matheuristic greedy computation of large cliques

Input: G = (V,E) a non-empty and non-oriented graph
Parameter: n > 0 the maximal size of MIS to solve
Initialization:

initialize I := ∅, R := V .
Compute G′ = (R,Ec) the complementary graph of G.
while R ̸= ∅

define U1 as the n vertices of G′ having the minimal degree.
solve ILP (16) with vertices in U1, let S a solution.
set I := I ∪ S
set R := R \ U1

remove from R the neighbors of vertices in S.
update graph G′ removing edges with removed vertices, update degrees.

end while
return value |I| and set I, clique in the graph G.

Algorithm 3 computes iteratively an independent set based on MIS of fixed
size n. Defining with U1 a subset of V , a maximum independent set in U1 can
be computed using the following ILP formulation, where binary variables zv ∈
{0, 1}, are defined with zv = 1 if and only if vertex v ∈ U1 is considered in the
stable:

max
z∈{0,1}|U1|

∑
v∈U1

zv

s.c : zv + zv′ ⩽ 1,∀(v, v′) ∈ E,
(16)

Algorithm 3 is an adaptive greedy algorithm: once vertices are added in
the current independent set, the next candidate vertices are chosen with the
minimum degrees in the updated graph, removing neighbors of selected points
that cannot be added in the current stable.

14

Appendix B: Selected instances and their characteristics

Table 4. Lists of selected instances (part 1/2), with their number of vertices and edges
without and with exact reduction, and reference values for lower and upper bounds

|V | |E| |V | |E| LB UB
reduction [15] no no yes yes

C2000.5 2000 999836 2000 999836 99 145
C4000.5 4000 4000268 4000 4000268 107 259

dsjc125.1 125 736 125 736 5 5
dsjc125.5 125 3891 125 3891 17 17
dsjc125.9 125 6961 125 6961 44 44

dsjc250.1 250 3218 250 3218 7 8
dsjc250.5 250 15668 250 15668 26 28
dsjc250.9 250 27897 250 27897 71 72

dsjc500.1 500 12458 500 12458 9 12
dsjc500.5 500 62624 500 62624 43 48
dsjc500.9 500 112437 500 112437 123 126

dsjc1000.1 1000 49629 1000 49629 10 20
dsjc1000.5 1000 249826 1000 249826 73 83
dsjc1000.9 1000 449449 1000 449449 215 222

dsjr500.1 500 121275 12 66 12 12
dsjr500.1c 500 3555 289 40442 85 85
dsjr500.5 500 58862 486 57251 122 122

flat300 26 0 300 21633 300 21633 26 26
flat300 28 0 300 21695 300 21695 28 28
flat1000 50 0 1000 245000 1000 245000 50 50
flat1000 60 0 1000 245830 1000 245830 60 60
flat1000 76 0 1000 246708 1000 246708 76 76

le450 5a 450 5714 450 5714 5 5
le450 5b 450 5734 450 5734 5 5
le450 5c 450 9803 450 9803 5 5
le450 5d 450 9757 450 9757 5 5
le450 15a 450 8168 449 8166 15 15
le450 15b 450 8169 410 7824 15 15
le450 15c 450 16680 450 16680 15 15
le450 15d 450 16750 450 16750 15 15
le450 25c 450 17343 435 17096 25 25
le450 25d 450 17425 433 17106 25 25

15

Table 5. Lists of selected instances (part 2/2), with their number of vertices and edges
without and with exact reduction, and reference values for lower and upper bounds

|V | |E| |V | |E| LB UB
reduction [15] no no yes yes

latin square 900 307350 900 307350 90 97

queen6 6 450 17343 450 17343 6 6
queen7 7 450 17425 450 17425 7 7
queen8 8 64 728 64 728 9 9
queen8 12 96 1368 96 1368 12 12
queen9 9 81 1056 81 1056 9 9
queen10 10 100 1470 100 1470 10 10
queen11 11 121 1980 121 1980 11 11
queen12 12 144 2596 144 2596 12 12
queen13 13 169 3328 169 3328 13 13
queen14 14 196 4186 196 4186 14 14
queen15 15 225 5180 225 5180 15 15
queen16 16 256 6320 256 6320 16 16

r125.5 125 3838 109 3323 36 36
r250.1c 250 30227 68 2270 64 64
r250.5 250 14849 235 13968 65 65
r1000.1 1000 14378 46 651 20 20
r1000.1c 1000 485090 686 227525 96 98
r1000.5 1000 238267 966 230416 234 234

school1 385 19095 371 18983 14 14
school1 nsh 352 14612 341 14537 14 14

16

