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The perfectly matched layer technique is routinely used and relied upon to solve time-harmonic radiation and scattering problems. Its purpose is to truncate the computational domain and absorb outgoing waves in order to mimic the Sommerfeld radiation condition. Thanks to its substantial development, the method has been successfully applied to many time-harmonic unbounded problems. While the perfectly matched layer is very effective in the high frequency regime, its accuracy can deteriorate at low frequencies, hampering the robustness of the method. This article investigates the low frequency limitation of the perfectly matched layer for three-dimensional Helmholtz exterior problems. To handle the issue we propose a novel family of parameter-free absorbing functions, that can be directly integrated in classical discretization schemes with minimal modifications. We assess our method on academic and industrial benchmarks in a finite element context, and show how the approach reduces the computational cost and modelling time in an engineering workflow.

Introduction

The accurate truncation of unbounded domains for wave propagation is a longstanding problem, with initial investigations going back to the late 1970s [START_REF] Engquist | Absorbing boundary conditions for the numerical simulation of waves[END_REF][START_REF] Bayliss | Radiation boundary conditions for wave-like equations[END_REF]. Problems posed in an unbounded domain must satisfy a radiation condition posed at infinity, which translates into a non-local boundary condition when the computation domain is truncated. These class of boundary conditions fall into the family of non-reflecting boundary conditions. A large variety of robust methods have been devised over the years. We refer for example to [START_REF] Tsynkov | Numerical solution of problems on unbounded domains. A review[END_REF][START_REF] Givoli | High-order local non-reflecting boundary conditions: a review[END_REF] for a review of historical developments. The design of non-reflecting boundary conditions is still an active research area and a design issue in simulation software, even for basic wave propagation models.

Among the non-reflecting boundary techniques, the Perfectly Matched Layer (PML) introduced in [START_REF] Berenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF] has been widespread because of its versatility. It is a local method that extends the computational domain by a small volume layer and damps outgoing waves through a complex stretching applied to the spatial coordinates. The complex coordinate stretching was generalized in [START_REF] Collino | The perfectly matched layer in curvilinear coordinates[END_REF][START_REF] Teixeira | Complex space approach to perfectly matched layers: a review and some new developments[END_REF] and triggered many initiatives aimed at employing PMLs in domains of complex geometry. In that context, we can highlight the locally-conformal PML [START_REF] Ozgun | Non-Maxwellian locally-conformal PML absorbers for finite element mesh truncation[END_REF][START_REF] Ozgun | Parametrization-free locally-conformal perfectly matched layer method for finite element solution of Helmholtz equation[END_REF] and the Automatically Matched Layer [START_REF] Bériot | An automatic perfectly matched layer for acoustic finite element simulations in convex domains of general shape[END_REF] approaches, that enable a standardized implementation suitable for industrial simulations. Although the perfectly matched layer has found applications extending beyond its initial purpose e.g. [START_REF] Zheng | A perfectly matched layer approach to the nonlinear schrödinger wave equations[END_REF][START_REF] Antoine | Towards perfectly matched layers for time-dependent space fractional PDEs[END_REF], it still faces many challenges for example in periodic [START_REF] Oskooi | The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers[END_REF] and anisotropic [START_REF] Bécache | Stability of perfectly matched layers, group velocities and anisotropic waves[END_REF] materials.

In addition, once the PML is discretized, it loses its reflectionless property at the continuous level and causes numerical reflections [START_REF] Johnson | Notes on Perfectly Matched Layers (PMLs)[END_REF][START_REF] Harari | Analytical and numerical studies of a finite element PML for the Helmholtz equation[END_REF][START_REF] Givoli | Computational absorbing boundaries[END_REF]. This is why the damping is typically applied gradually, and several efforts to optimize the PML parameters have been undertaken [START_REF] Modave | Optimizing perfectly matched layers in discrete contexts[END_REF][START_REF] Collino | Optimizing the perfectly matched layer[END_REF]. A notable advance in this direction was the usage of a singular, unbounded damping profile introduced by Bermúdez et al. [START_REF] Bermúdez | An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems[END_REF], enabling to recover the exact wavefield in the truncated domain at the continuous level. Using finite difference schemes, nearly-optimal PMLs based on rational interpolation were constructed in [START_REF] Druskin | Near-optimal perfectly matched layers for indefinite Helmholtz problems[END_REF], and a first layer design that cancels all numerical reflections has been achieved in [START_REF] Chern | A reflectionless discrete perfectly matched layer[END_REF] using discrete complex analysis.

This article focuses on improving the PML absorbing profile for three-dimensional exterior Helmholtz problems, with a focus on low frequencies. While it is well-known that the method converges exponentially with the layer width [START_REF] Lassas | Analysis of the PML equations in general convex geometry[END_REF], it is difficult to determine which accuracy can be achieved in a given numerical configuration. It is generally advised to position the PML at a minimum distance of half a wavelength from the obstacle [START_REF] Thompson | A review of finite-element methods for time-harmonic acoustics[END_REF], and to select its size sufficiently large with respect to the excitation frequency [START_REF] Bériot | On the locally-conformal perfectly matched layer implementation for Helmholtz equation[END_REF][START_REF] Cimpeanu | A parameter-free perfectly matched layer formulation for the finite-element-based solution of the Helmholtz equation[END_REF]. We will observe that these recommendations impose a severe limitation on the PML's ability to achieve a reasonable accuracy at low frequencies. This lack of clear guideline reveals a non-trivial behaviour of the wavefield in the PML, and can be overcome by using adaptive refinement techniques [START_REF] Chen | An adaptive perfectly matched layer technique for time-harmonic scattering problems[END_REF][START_REF] Michler | Improving the performance of perfectly matched layers by means of hp-adaptivity, Numerical Methods for Partial Differential Equations[END_REF].

In this article, we rather propose to revisit the unbounded function from Bermudez et al. [START_REF] Bermúdez | An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems[END_REF] by extending it to spherical waves, such as to approach a linear decay of the wavefield inside the PML for all frequencies. By doing so, we minimize discrete reflections when using a conventional finite element approach. We propose a simple, yet efficient methodology to improve the selection of the absorbing function, based on a systematic analysis of the interpolation errors in radial coordinates.

Our approach leads to approximations of the special Lambert function, which gives rise to damping profiles with both unbounded real and imaginary parts. As a result, evanescent waves are also damped and may accelerate the convergence of the PML. The approach can be related to non-linear transformations [START_REF] Hugonin | Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization[END_REF] or an infinite mapping layer [START_REF] Schoder | Revisiting infinite mapping layer for open domain problems[END_REF]. In this direction, the perfectly absorbing layer (PAL) method advocates the idea of a complex compression coordinate transformation for both evanescent and propagative modes [START_REF] Yang | A truly exact perfect absorbing layer for time-harmonic acoustic wave scattering problems[END_REF], albeit a rescaling of the unknown variable. Closely tied to our research, let us must mention the PhD work [START_REF] Deakin | Optimal PML transformations for the Helmholtz equation[END_REF] regarding optimal PML transformations. Finally when the nature of the wavefield is known at infinity, one may completely bypass domain truncation techniques by transforming the Helmholtz problem into another PDE [START_REF] Zenginoglu | A null infinity layer for wave scattering[END_REF][START_REF] Nabizadeh | Kelvin transformations for simulations on infinite domains[END_REF].

It is worth mentioning that the damping of low frequency waves have been investigated in detail in the time-domain, in particular for geophysics applications. Kuzuoglu and Mittra [START_REF] Kuzuoglu | Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers[END_REF] early proposed a solution, which has been improved through the complex frequency-shifted PML [START_REF] Roden | Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media[END_REF] and double-pole PML [START_REF] Correia | Performance of regular PML, CFS-PML, and second-order PML for waveguide problems[END_REF]. Such PMLs imply more parameters to be tuned, which is often done by heuristic considerations. We refer to the review [START_REF] Pled | Review and recent developments on the perfectly matched layer (PML) method for the numerical modeling and simulation of elastic wave propagation in unbounded domains[END_REF] for historical developments.

The article is organized as follows: we first highlight in Section 2 the low frequency limitation that arises at the discrete level when using common PML formulations for exterior Helmholtz problems. With the goal of targeting a linear decay of the wavefield for all frequencies, we derive and propose in Section 3 improved absorbing functions in either the low or high frequency regimes. In Section 4, we assess the performance of the new absorbing functions on simple academic problems in a finite element discretization context. We show that we can partially overcome the low frequency limitation with parameter-free functions, while maintaining the usual accuracy for high frequencies. We set up a variety of models in an industrial context in Section 5, where we show the potential of the approach to handle large frequency sweeps accurately at a low computational cost, with a single finite element mesh. We conclude by discussing perspectives and limitations of the method.

Low frequency limitation of the PML

Exterior problem setting

We consider a three dimensional Helmholtz radiation problem set in the unbounded domain Ω + = R 3 \Ω -, where Ω -is an open bounded set modeling a closed obstacle that we assume of regular boundary. Through all the article we stick to the +ıωt time-harmonic convention. We want to compute the acoustic wavefield u(x), x ∈ Ω + , solution of the boundary value problem

∆u + k 2 u = 0 in Ω + , ∂u ∂n = g on ∂Ω -, g ∈ L 2 (∂Ω -), lim r→∞ r ∂ ∂r + ık u = 0, r = ∥x∥,
where n is the outward unit normal to ∂Ω -, g is a given source function, and r ≥ 0 is the radial coordinate.

We have introduced the wavenumber k = 2πf /c 0 , with c 0 the speed of sound of the medium at rest, and f the running frequency. It is well-established that the outgoing solution to the radiation problem can be decomposed into spherical harmonics Y m ℓ [START_REF] Wilcox | A generalization of theorems of Rellich and Atkinson[END_REF],

u(r, θ, φ) = ∞ ℓ=0 ℓ m=-ℓ C mℓ h (2) ℓ (kr)Y m ℓ (θ, φ), (1) 
where (r, θ, φ) are the spherical coordinates, h 

0 (z) = ı e -ız z , h (2) 
1 (z) = -(z -ı) e -ız z 2 , h (2) 
2 (z) = -ı(z 2 -3ız -3) e -ız z 3 .
In the far field, the fundamental solution h

(2) 0 (z) is a spherical wave that satisfies the Sommerfeld radiation condition. It behaves locally as a plane wave. In the near field, at low frequencies, the series (1) typically requires only a few terms to converge, while at higher frequencies more terms may be necessary. In practice, we would like to solve the Helmholtz radiation problem in a bounded domain. To do so, we must introduce a domain truncation technique that reproduces the behaviour of the solution at infinity. In this article, we study the perfectly matched layer method, and focus on its numerical accuracy and computational cost for three-dimensional exterior Helmholtz problems.

The perfectly matched layer transformation for spherical waves

The perfectly matched layer method introduces a fictitious volume layer surrounding the truncated, bounded domain. The goal of the method is to make the solution decay in the layer without introducing back-reflections. Let us consider a spherical domain of radius r 0 . The PML appends a spherical layer defined in the range r ∈ [r 0 , r 0 +δ], where δ > 0 defines the width of the layer. The outgoing solution u is transformed in the layer by a complex change of variables of the form

r = r + F (r) ık , F (r) = r r0 σ(s)ds, r ∈]r 0 , r 0 + δ[, (2) 
where σ(r) ≥ 0 is the absorbing function which is strictly increasing. For a plane wave at normal incidence u p (r) = e -ıkr , the transformation gives r) , such that the real part of F is responsible for the decay of the wave in the layer. The value F (r 0 + δ) should be sufficiently large, such that u p (r 0 + δ) is close to zero, and no back-reflections occur in the physical domain. Moreover, the perfect matching continuity relation u p (r 0 ) = u p (r 0 ) has to be satisfied, such that no reflections occur at the transition between the physical and PML domains. If these conditions are fulfilled, the Sommerfeld radiation condition is emulated at the continuous level. For a spherical wave of the form u s (r) = e -ıkr /r, a difficulty arises because the transformation also acts on the radial decay of the field. Applying transformation (2) gives

u p (r) = u p (r)e -F (
u s (r) = u s (r)d(r), d(r) = e -F (r) 1 + 1 ıkr F (r) , (3) 
where we refer to the function d as the decay function. In this case, the choice of an appropriate absorbing function F is more difficult since the behaviour of the decay function is also driven by its denominator, in particular as kr → 0. This impacts the PML performance at the discrete level, an issue that we propose to address in this study. When kr is large, lim kr→+∞ d(r) = e -F (r) and we recover the plane wave behaviour. We show in Figures 1a and1b the transformation of the spherical wave u s (r) by two common PML mappings, at respectively wavenumbers of k = 64π and k = π/64. For the illustration, we choose the commonly used hyperbolic [START_REF] Bermúdez | An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems[END_REF] and cubic stretchings [START_REF] Collino | Optimizing the perfectly matched layer[END_REF], denoted respectively σ u and σ c

σ u (r) = 1 (r 0 + δ) -r , σ c (r) = σ r -r 0 δ 3 , σ = - 2 δ ln(R), (4) 
where we set the reflection coefficient of outgoing waves to R = 10 -6 . The hyperbolic absorbing function is attractive for the following reasons: i) the resulting PML is exact at the continuous level, since F (r 0 + δ) = 0; ii) the formulation is parameter-free. Polynomial profiles such as the cubic one are parameter dependent, but the reflection coefficient R can be made arbitrarily small at the end layer. At the continuous level it is clear that both choices are satisfactory: the wavefield u s (r) is perfectly matched and decays to zero at r = r 0 + δ. 

ℑ( u) ℑ(d) (b) k = π/64

Polynomial approximation of the decay function

At the discrete level, a thorough analysis is necessary to determine whether the solution u s within the PML can be accurately interpolated. We focus on polynomial discretization methods since they cover most of the numerical schemes used in this context. From equation (3) it is clear that u s (r) can be well-represented by a polynomial basis. However the discretization error linked to d(r) requires a more intricate analysis. When kr → ∞, the hyperbolic profile σ u (r) has the nice property to make the decay function linear in the layer. We indeed have

F u (r) = r r0 σ u (s) ds = -ln(1 -ξ), ξ = r -r 0 δ , and 
lim kr→∞ d u (r) = (1 -ξ),
where we have introduced ξ(r) ∈ [0, 1) the scaled coordinate in the layer, and indexed the decay d u according to σ u . As a result, a simple linear function is able to exactly interpolate the decay. In this regime, the computational error is dominated by the discretization method and not by the domain truncation method. We call such a linear decay to be an optimal decay. For the cubic profile, we expect the decay d c (r) to be a smooth function at high frequencies.

In the low frequency regime, as kr → 0, the denominator of the decay function 1 + F (r) ıkr function may take large values, resulting in an abrupt decay of the transformed wavefield u, as shown in Figure 1b. Large interpolation errors are expected. To confirm this intuition, we discretize the PML domain Ω pml = [r 0 , r 0 + δ] with finite elements and compute the best polynomial approximation of the decay function in the L 2 -norm, also called the projection error. The relative projection error reads

E proj (%) = 100 ∥Pd(r) -d(r)∥ L 2 (Ω pml ) ∥d(r)∥ L 2 (Ω pml ) , Ω pml = [r 0 , r 0 + δ],
where Pd(r) = N j=1 d j ϕ j (r) is the projection of decay function on the polynomial basis {ϕ j } 1≤j≤N . We use the one-dimensional integrated Legendre polynomial basis or order p > 0, and solve the least-squares 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 -6

10 -2 10 2 k E proj (%) F u (r) p = 1 p = 2 p = 4 p = 8
10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 -6 problem using a Galerkin formulation with four elements. We set r 0 = 1 and δ = 0.1. The error is reported in Figure 2.

10 -2 10 2 k E proj (%) F c (r)
In the high frequency regime the hyperbolic profile is more easily interpolated by the polynomial basis than the cubic profile for low orders p. This behaviour is expected because the decay function associated to σ u is asymptotically linear. Nevertheless, the projection error linked to the cubic stretching decreases rapidly with p in this regime, which suggests that the decay function is relatively smooth. Overall the error remains sufficiently low, such that the discretization error associated to u s (r) will dominate the accuracy of the computation.

On the contrary, at low frequencies, the projection error is large even when employing a high order basis, which will drive the overall accuracy of the computation. Common absorbing functions do not perform well in this regime. This issue can be circumvented by either increasing the number of PML layers or relocating the PML further from the acoustic sources. However, such strategies come at the expense of an increased computational cost. In particular, for large frequency sweeps, regenerating the PML multiple times for different frequencies becomes necessary, when employing common absorbing functions.

We shall address these practical issues later in the numerical experiments, when dealing with domains of convex shape. In the next section, we shall propose new absorbing profiles with the goal to extend the applicability of the PML in the low frequency regime. Since we only modify the absorbing profile, the approach is expected to be valid for any conventional polynomial discretization method, hence covering most of existing industrial and academic implementation frameworks.

Improved absorbing functions

In this section, we derive new absorbing functions with the goal of obtaining a linear decay function of the first spherical harmonic for a wide frequency range. By doing so, we expect to reduce the polynomial projection error, hence improving the accuracy of the discrete PML. We focus the analysis on the radial component of the solution.

Optimal absorbing function in three-dimensions

We start our analysis by considering the first component of the expansion in [START_REF] Engquist | Absorbing boundary conditions for the numerical simulation of waves[END_REF], that is the spherical Hankel function h

(2) ℓ (kr) with ℓ = 0. It is also the Green kernel of the three-dimensional Helmholtz operator. In order to obtain a decay function that is linear and independent of the frequency, we need to satisfy d(r) = (1 -ξ) according to Equation (3). In other words, we would like to choose the absorbing profile F (r) such that it satisfies

e -F (r) = (1 -ξ) 1 + F (r) ıkr , ξ = r -r 0 δ , in Ω pml . (5) 
When kr → ∞, e -F (r) → (1 -ξ) and we verify that the unbounded profile F u (r) = -ln(1 -ξ) originally introduced in [START_REF] Bermúdez | An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems[END_REF] solves the problem. To solve equation ( 5), we need to allow F to be complex valued, which has already been suggested in many studies e.g. [START_REF] Kuzuoglu | Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers[END_REF][START_REF] Hugonin | Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization[END_REF][START_REF] Yang | A truly exact perfect absorbing layer for time-harmonic acoustic wave scattering problems[END_REF]. The exact solution can be expressed through the special Lambert function

W b F ex (r) = -ıkr + W b ıkr 1 -ξ e ikr , b ∈ Z, ( 6 
)
where b is the branch of the multi-valued Lambert function [START_REF] Corless | On the Lambert W function[END_REF]. The Lambert function has a countable, infinite number of branches, and it is not clear at this stage how to select the correct branch for a given frequency. Fortunately, we can take advantage of the simpler Wright omega function w [START_REF] Corless | The Wright ω function[END_REF], satisfying W b (z) = w(ln(z) + 2ıπb), such as the optimal absorbing function is uniquely determined by

F ex (r) = -ıkr + w ln ıkr 1 -ξ + ıkr , (7) 
which amounts to selecting the branch b = ⌈ℑ(ln(z))/(2π) -1/2⌉ = ⌈kr/(2π) -1/4⌉ of the Lambert function, using the principal value of the complex logarithm. This choice leads, for all frequencies, to a linear decay function in the PML for the spherical Hankel function h

(2) 0 (kr). This choice will also undoubtedly impact the damping of higher-order harmonics. For higher-order harmonics, we can readily extend the optimal absorbing function for wavefields of the form u s,ℓ (r) = e -ıkr /r ℓ+1 .We can solve again equation ( 7) exactly for a fixed radial mode ℓ ∈ N

F ex,ℓ (r) = -ıkr + (ℓ + 1) w ln ıkr ℓ + 1 + ıkr ℓ + 1 - ln(1 -ξ) ℓ + 1 . (8) 
Unfortunately, this solution is not general enough to account for a linear combination of the radial harmonics.

In order to fit a linear decay that accounts for a combination of radial harmonics one would need to use generalized version of the Lambert function [START_REF] Maignan | Fleshing out the generalized Lambert W function[END_REF], which is out of scope of this study.

In short, we have obtained an ideal absorbing function for a spherical wave hitting a spherical PML boundary at normal incidence. The derivation is more of theoretical interest, since the evaluation of the Wright omega function in the complex domain is not standard and can be costly compared to usual mathematical functions. We recall that our goal is to reduce the projection error linked to the decay function and make the PML solution amenable to a polynomial discretization method in a wide frequency regime. To this end, we hereafter derive approximations of the optimal stretching profile (7), and we will show in Section 4 and 5 how this choice affects the damping of higher-order harmonics.

Approximate solutions

In this section, we derive approximations to the Wright omega function, which will lead to various choices for the absorbing function F . We start by fixing the leading behaviour for large arguments, such that we recover the expected PML performance at high frequencies. For large arguments we have the asymptotic expansion [START_REF] Corless | The Wright ω function[END_REF] 

w(z) = z -ln(z) + o(1), z → ∞. ( 9 
)
If we use the approximation ln(ıkr) ≪ ıkr as kr → ∞ in equation ( 7) and keep the first term of the asymptotic expansion, we recover the hyperbolic profile F u (r) ≈ -ln(1 -ξ) as a rough approximation. From this point, one may adopt different strategies to derive more accurate stretching functions. We discuss how to correct the leading behaviour either in the high or low frequency limit.

High frequency corrections

In this strategy, we write relation [START_REF] Berenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF] under the form

F (r) = -ln(1 -ξ) -ln 1 + F (r) ıkr ,
and use a continuous fraction representation of the natural logarithm as kr → ∞. The first term gives F (r) ≈ -ln(1 -ξ) -F (r)/ıkr, leading to

F ∞ 1 (r) = -ıkr ln(1 -ξ) 1 + ıkr . ( 10 
)
One may recognize a form of a convolutional PML [START_REF] Kuzuoglu | Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers[END_REF][START_REF] Bérenger | Application of the cfs pml to the absorption of evanescent waves in waveguides[END_REF], that we can interpret as the complex change of variables r = r + Fu(r) ık+1/r . The second term of the continuous fraction representation gives

F (r) ≈ -ln(1 -ξ) - 2F (r) 2ıkr + F (r) ,
which can be solved explicitly

F ∞ 2 (r) = -(1 + ıkr) + ln(1 -ξ) 2 -(1 + ıkr) 2 + (1 -ıkr) ln(1 -ξ) + ln 2 (1 -ξ) 4 ,
where we have chosen the minus sign for the square-root such that lim kr→∞ F ∞ 2 (r) = -ln(1 -ξ).

Low frequency corrections

In this strategy, we look for F under the form F (r) = -ln(S(r)), and further use a low frequency correction. Equation [START_REF] Berenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF] becomes

S(r) = (1 -ξ) 1 - ln(S(r)) ıkr . ( 11 
)
The idea is now to use an approximation of ln(S(r)) around S(r) = 1, that is around F (r) = 0, which occurs when kr → 0 and ξ → 0. The first order approximation is ln(S(r)) ≈ -1 + S(r). Solving equation [START_REF] Zheng | A perfectly matched layer approach to the nonlinear schrödinger wave equations[END_REF] gives the stretching function

F 0 1 (r) = ln 1 -ξ 1 -γξ , γ = 1 -ıkr 1 + (kr) 2 . ( 12 
)
We can view this derivation as an approximation of the principal branch of the Lambert function in the low frequency limit. We first notice from ( 7) that when kr → 0 the principal branch b = 0 of the Lambert function will be selected. From the exact solution [START_REF] Teixeira | Complex space approach to perfectly matched layers: a review and some new developments[END_REF] we have e -F (r) = e ıkr e -W (z) . A first order Taylor expansion for the principal branch e ıkr e -W0(z) ≈ 1 + ıkr -W 0 (z) can be used since W 0 (z) → 0 when kr → 0 and ξ ̸ = 1, which we rewrite as F (r) ≈ 1 -e -F (r) . The substitution of this approximation in [START_REF] Berenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF] gives [START_REF] Antoine | Towards perfectly matched layers for time-dependent space fractional PDEs[END_REF]. One may also remark that for the principal branch

W 0 (z) ≈ 1 -e -W0(z) ⇔ W 0 (z) z ≈ 1 -W 0 (z) ⇔ W 0 (z) ≈ z 1 + z ,
such that the approximation can be seen as a first order Padé approximation of W 0 (z) around z = 0. The next term of the continuous fraction representation of ln(S(r)) is

ln(S(r)) ≈ 2 S(r) -1 S(r) + 1 . (13) 
Extending the previous analysis, it corresponds to the following approximation of the Lambert function for small arguments

W 0 (z) ≈ -1 + z 2 + 2z + 1 + z 2 2 , z → 0. ( 14 
)
The substitution of the Padé approximation in [START_REF] Zheng | A perfectly matched layer approach to the nonlinear schrödinger wave equations[END_REF] gives a quadratic equation for S(r)

S(r) 2 + S(r) 1 -(1 -ξ) 1 - 2 ıkr = (1 -ξ) 1 + 2 ıkr ,
that we can solve explicitly. Among the two roots, we again select the sign such that we retrieve the hyperbolic profile in the high frequency limit. After algebraic manipulations we obtain

F 0 2 (r) = -ln a(1 -ξ) -ξ/2 + (2 a -1) (ξ -1) + (ξ/2 + a (ξ -1)) 2 , a = ı/kr. (15) 
We show in Figure 3 the quality of the approximation of ( 13) and ( 14) for small arguments, which capture respectively two and four terms of the Taylor series of W 0 around 0. 13) and ( 14) of the Lambert function for small arguments.

-(1 + z/2) + 2z + (1 + z/2) 2

Comparison of the approximations

We compare the accuracy of the derived absorbing functions. We first measure the relative error of the resulting decay function with the optimal decay over a given frequency range in the maximum norm

E max = max Ω pml |d(r) -d opt (r)| max Ω pml |d opt (r)| , d opt (r) = (1 -ξ) . ( 16 
)
The error is reported in Figure 4 over the range k = [10 -4 , 10 4 ]. The absorbing functions F 0 1 and F 0 2 show an increasing accuracy in the low frequency regime while F ∞ 1 and F ∞ 2 are more accurate at high frequency, which can be beneficial to improve the convergence properties of the discrete PML in the mid-frequency range. We further plot in Figure 5 the relative projection error of the decay function in the PML, as already performed in Figure 2. We note that the exact absorbing function F ex , which has been evaluated thanks to the algorithm [START_REF] Lawrence | Algorithm 917: Complex double-precision evaluation of the Wright ω function[END_REF], is as expected close to the machine precision. The maximal projection error for F 0 2 is 0.25% which is attained at k = 1, whereas for F ∞ 2 the maximal error reaches 3.6% at k = 10 -4 . The gain in accuracy when increasing the order p is limited, since d opt is a linear function. To sum up, we have improved the polynomial interpolability of the decay function. We see a notable improvement with the absorbing function F 2 0 in the low frequency range. We now apply these developments to relevant wave propagation problems.

10 0 k E max F u F ∞ 1 F 0 2 F ∞ 2 F 0 1

Assessment in academic cases

In this section, we assess the performance of the newly developed absorbing functions. For a fixed layer width δ, the PML applicability is extended to both large and short wavelengths up to roughly λ/10 4 , where λ is the typical wavelength of the problem. We recall that this is achieved only by modifying the PML absorbing profile, without parameter tuning.
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10 3 k E proj (%) p = 1 p = 2 p = 4 p = 8 (b) F ∞ 2 (r)

One-dimensional spherical wave

The first benchmark is a one-dimensional Helmholtz problem that represents the three-dimensional radial behaviour of the acoustic field. For a fixed mode ℓ ∈ N, the Helmholtz operator in spherical coordinates writes

H = ∂ 2 r + 2 r ∂ r + k 2 - ℓ(ℓ + 1) r 2 ,
for which we have the exact solution u ex (r) = A ℓ h

ℓ (kr). The spherical Helmholtz operator is discretized by a conformal p-FEM strategy using the one-dimensional integrated Legendre polynomial basis. The physical domain is the line Ω = [r * , r 0 ], r * > 0 and the PML domain is Ω pml = [r 0 , r 0 + δ]. We set a homogeneous Dirichlet boundary condition at r = r 0 + δ, as recommended in [START_REF] Bermúdez | An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems[END_REF]. The implementation is available in GmshFem [START_REF] Royer | Gmsh-Fem: An Efficient Finite Element Library Based On Gmsh[END_REF], an open source finite element library written in C++ based on Gmsh [START_REF] Geuzaine | Gmsh: A 3-D finite element mesh generator with built-in pre-and postprocessing facilities[END_REF].

We discretize the domain with linear elements and denote with h the typical element size. The PML interface is at r 0 = 0.4, and the input boundary condition at r * = 0.1. We solve the discrete solution u h and report the relative L 2 -error

E L 2 (%) = 100 ∥u h -u ex ∥ L 2 (Ω) ∥u ex ∥ L 2 (Ω) , (17) 
over the physical domain Ω for the three first spherical harmonics ℓ = {0, 1, 2} in Figure 1, using p-FEM orders p = {1, 2, 4} with respectively N pml = {5, 2, 1} layers. Each layer has the width of the typical element size such that δ = N pml h. In each plot, we show the performance of the absorbing functions F ex , F u , F ∞ 2 and F 0 2 . As a reference, the relative projection error of u ex by the p-FEM basis in the physical domain Ω is shown.

As expected, the hyperbolic profile F u from [START_REF] Bermúdez | An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems[END_REF] is effective for high frequencies, but shows large reflections in the low frequency regime. The function F ∞ 2 slightly improves this behaviour but is not effective in the low frequency regime, which is consistent with the analysis from Section 3.3. The newly introduced function F 0 2 is able, on the other hand, to target low frequencies effectively, while maintaining the accuracy of F u at high frequencies. This behaviour also holds with a finer discretization of the problem, for instance when increasing the p-FEM order. When p is large, the error is limited by the interpolation error of the decay function for F 0 2 and F ∞ 2 . High-order radial harmonics may also affect the accuracy of the discrete PML, because they include terms that behave as O(1/r ℓ+1 ) at low frequencies. The error plots for ℓ = 1 and ℓ = 2 suggest that the proposed absorbing functions, although derived for an optimal decay of the first radial harmonic, are also efficient on damping higher order harmonics.

The exact absorbing function F ex has the best performance among all the tested functions, but does not always reach the projection error. In our tests we use a classical Gauss quadrature with 2p + 1 points, which is not optimal to handle the singular integrand on the last PML element. We highlight this difficulty by recomputing the relative L 2 -error in Figure 7, using a graded mesh with 2p + 20 Gauss points in the PML layer. The graded mesh is formed by five linear elements of respective size h, h/2, h/4, h/8 and h/16, leading to a total layer width δ ≈ 1.93h. We are able to improve the behaviour of F ex , which suggests that quadrature (%)

10 -3 10 -1 10 1 10 3 k 10 -3 10 -1 10 1 10 3 k Figure 6: Relative L 2 -error (%) in Ω with h = 2.5 × 10 -3 . Legend: Fu ( ), F 0 2 ( ), F ∞ 2 ( ), Fex ( ), E proj ( ).
errors are also a limiting factor. We observe that the behaviour of all absorbing functions could be further enhanced by designing a tailored quadrature, which is left for a future work. 

Three-dimensional point source radiation

We now assess the proposed absorbing functions in a three-dimensional situation. We consider the acoustic radiation of point sources in a bounded, spherical computational domain centered at the origin Ω = B r0 (0), and set up a PML through a classical change of coordinates with r(r) = r + F (r) ık and γ r (r) = d r dr = 1 + σ(r) ık . We define the PML tensor A through 

A = RDR T , D = diag
-∇ • (A∇u) -k 2 det(A)u = 0, in Ω pml . ( 18 
)
The PML domain is terminated by a homogeneous Dirichlet boundary condition. We discretize again the variational formulation of this problem with a conformal H 1 -basis based on integrated Legendre polynomials. We select a variety of input loads that are set on the boundary of a smaller sphere Ω * = B r * (x * ) of radius r * , centered at x * . We impose the trace of an acoustic monopole or an acoustic dipole oriented in the x-direction.

The boundary condition reads

∂u ∂n = ∂f m,d ∂r , on ∂Ω * , (19) 
where the loads for the monopole and dipoles are, respectively

f m (r) = e -ık∥x-x * ∥ ∥x -x * ∥ , f d (r) = -cos(θ) e -ık∥x-x * ∥ ∥x -x * ∥ ık + 1 ∥x -x * ∥ . ( 20 
)
For the computations, we mesh a volume domain defined between two spheres of radii r * and r 0 . A spherical PML layer of width δ = N pml h is extruded from r 0 . We use second order tetrahedral elements with a typical element size h, and fix the basis function order to p = 2. The quadrature is a tensorized Gauss-Legendre rule of order 2p + 2. We report in Figure 8 the relative L 2 -error with the exact solution in the physical domain Ω for different absorbing profiles as a function of the frequency, for the two load cases centered at the origin. We also plot the relative projection error by the polynomial basis in the physical domain. We observe a drastic improvement of the accuracy in the low frequency regime, in particular for the function F 0 2 . For the dipole source the improvement of the F 0 2 function also leads an improvement, which is however less pronounced due to the near field contribution. In the next experiment, we fix the frequency to k = 0.1 and look at the accuracy of the absorbing function F 0 2 for different sources locations x * . The inner sphere is taken of radius r * = 0.15 and the source is moved along the x-direction. The relative L 2 -errors are reported in Figure 9. Although the error increases when x * is close to the PML interface, the function F 0 2 seems relatively robust with respect to the source location. For completeness, we assess the convergence of the absorbing functions with the number of layers N pml at k = 0.1. As the frequency decreases, the number of layers required to reach the projection error increases, such that a reasonable accuracy for the usual function F u comes at the price of a large computational cost.

To sum up, the proposed function F 0 2 can reach a reliable engineering accuracy in a large frequency range with a classical finite element discretization method. It greatly improves the state-of-the-art usage of F u from [START_REF] Bermúdez | An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems[END_REF] by allowing a small PML width compared to the wavelength. Our experiments correspond to a PML width of approximately λ/10 6 for the lowest simulated frequency, which is several orders of magnitude below existing recommendations. In the following, we select the function F 0 2 given in Equation [START_REF] Johnson | Notes on Perfectly Matched Layers (PMLs)[END_REF] to conduct experiments in an industrial setting. 

Industrial applications

As discussed is Section 3, the newly developed function results in a linear decay of the first spherical harmonic inside the PML. Since the first spherical harmonic typically dominates the behavior of low-frequency solutions, the use of the F 2 0 function is expected to improve the absorbing performance of the discrete PML at low frequencies. The proposed absorbing function is included into the commercial finite element software Simcenter 3D Acoustics [START_REF]Siemens Industry Software Simcenter Nastran user's guide[END_REF]. All computations are performed on a DELL Precision 7560 laptop with 64 Gb of RAM.

Low frequency correction for arbitrary convex shapes

In the following, the Automatically Matched Layer (AML) implementation, introduced by Beriot et al. [START_REF] Bériot | An automatic perfectly matched layer for acoustic finite element simulations in convex domains of general shape[END_REF] is used. In this specific PML realization, a convex envelope surrounding the obstacle is generated using the quickhull algorithm [START_REF] Barber | The quickhull algorithm for convex hulls[END_REF] and is scaled outward by a user-defined distance δ o that dictates the size of computational domain. The PML domain is then defined by extruding the exterior boundary of width δ = N pml h with N pml layers of typical element size h. This allows to closely surround the scatterer, thus reducing the amount of unnecessary white space to discretize around the object. The complex stretching in the AML is defined from the geometrical information of the exterior surface through a modification of the Jacobian matrix, such that only the stretching function F remains to be chosen. The complex stretching is performed along the normal direction to the PML interface Γ pml , where any point x ∈ Ω pml writes

x = x 0 + δξn, x 0 ∈ Γ pml , (21) 
and ξ now represents the first component of a local orthogonal coordinate system attached to Γ pml .

In the previous sections we have assumed the PML stretching to be along the radial direction only, in order to match the general solution of the exterior Helmholtz problem. This assumption does not hold anymore for generic convex shapes, and we choose to approximate the quantity kr in the stretching functions by a constant characteristic length kr ≈ kr eq , r eq = S 4π ,

where S is the surface area of Γ pml . This empirical strategy allows to extend the applicability of F 2 0 to convex boundary shapes, which in addition simplifies its implementation. Applied to the spherical PML case from Section 4.2, this strategy gives close results to the original approach that uses r = r 0 + δξ.

An efficient frequency sweep

In an industrial context, it is common to solve a large frequency sweep for time-harmonic problems. Such a sweep can be performed efficiently on a single mesh following the adaptive order strategy described in [START_REF] Bériot | Efficient implementation of high-order finite elements for Helmholtz problems[END_REF], referred to as finite element with adaptive order (FEMAO). Based on the running frequency, the method automatically selects the order of the basis functions across the mesh from a user-defined target accuracy E T . A one-dimensional a priori error indicator assigns the polynomial order of each element based on its size, allowing to sweep over the frequency range with a single mesh. Moreover, the use of a hierarchic H1 -conformal basis allows to perform the assembly of the finite element matrices only once for the highest polynomial order, before running the frequency loop.

The method presents a challenge when employed with a PML in the low frequency regime, because empirical guidelines e.g. [START_REF] Oskooi | MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method[END_REF][START_REF]QuickWave 2022 user's guide[END_REF][START_REF]Siemens Industry Software Simcenter Nastran user's guide[END_REF] either require the PML to be positioned by at least half a wavelength distance from the acoustic sources, or to increase the number of PML layers. Thanks to the enhancement of the absorbing functions from Section 3, we have the potential to guarantee a full engineering accuracy over a large frequency range using a single mesh. Once the mesh is generated, the remaining computational cost is the resolution of a series of linear systems at various frequencies, which is an embarrassingly parallel operation. This methodology offers a versatile solution for addressing industrial problems more efficiently.

Acoustic radiation of an underwater propeller

The first benchmark consists in the acoustic radiation of a 3-bladed propeller subjected to point forces at its blade tips. The scenario is challenging due to the propeller's concave shape and the nature of the excitation, which results in waves that propagate nearly tangentially to the AML surface. An underwater environment is considered, with a speed of sound c 0 = 1422m/s.

Figure 11 shows the original propeller CAD 1 and the triangular surface mesh. The characteristic edge length is h = 30 mm. An approximate convex hull is computed, surrounding the propeller, using the quickhull algorithm. The hull is then scaled outward by a length δ o = 2h and a volume mesh composed of first order tetrahedral elements is generated between the original propeller surface and the scaled hull surface, see Figure 11. The volume mesh totalizes 26 567 elements and 41 520 nodes. For the PML, five volume layers are extruded automatically from the exterior boundary using linear prisms elements. The total thickness of the layer is δ = N pml h with N pml = 5. As a reference solution, we use a spherical PML equipped with the hyperbolic absorbing profile F u . The reference interior domain is a sphere of large radius r 0 = λ/2, ensuring that the minimum distance between the propeller and the PML interface is half a wavelength from the excitation frequency. We cover simulations spanning a frequency range from 1 to 10 000 Hz, which corresponds to a wavelength range λ from respectively 1422m to 0.142m. We use five distinct meshes to compute the reference solutions, see Table 1. The target accuracy for guiding the selection of the shape function orders is set at E T = 5%.

Table 1 reports the simulation parameters and computational resources for the reference and test simulations. With a low frequency absorbing function, it is possible to use a fixed mesh for all the frequencies, 1: Simulation data for the propeller case. For the reference case, a mesh is generated at each frequency such that δo = λ/2, while a fixed mesh (Figure 11) is used for the test case with δo = 2h. The target error for the order adaptivity is E T = 5%.

hence reducing the computational and modeling cost. For the test simulation at 1 Hz, the AML is positioned over 10 000 times closer to the propeller than the recommended half-wavelength distance. Compared to the reference simulation, the memory requirement for an in-core factorization step is reduced by a factor 4. The adaptive order algorithm employs basis functions of polynomial order 1 up to 1000 Hz and next employs polynomial orders up to 3 for the simulation at 10 000 Hz, which increases the factorization memory. It is worth noting that for higher frequencies the factorization cost increases as a cubic function of the frequency, see [START_REF] Bériot | Efficient implementation of high-order finite elements for Helmholtz problems[END_REF] for more details on the adaptive order strategy. Figure 12 compares the L 2 relative error on the interface Γ pml between the reference and the test simulations. The error is computed by a least-squares average of the nodal values on Γ pml . The test simulations were ran with the F 2 0 and F u functions. The F 2 0 function provides excellent accuracy and reaches the 5% target error throughout the full frequency span on the fixed mesh. In contrast, the state-of-the-art F u absorbing function only provides an acceptable accuracy at 1000 Hz and 10000 Hz on this mesh. To summarize, the function F 2 0 coupled with an adaptive order strategy provides an interesting way to circumvent the traditional far-field PML guidelines. The modeling workflow is greatly facilitated, as a single mesh can be used for the entire frequency sweep.

Additional benchmarks

To further validate the developments performed in this article, we examine the performance of the methodology in additional scenarios, where we compare the performance of the newly proposed function F 2 0 against F u from [START_REF] Bermúdez | An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems[END_REF]. In each case, first-order shape functions and linear elements are employed, with N pml = 5 layers such that δ = 5h. Following Section 5.3, reference solutions were established by employing a spherical PML positioned at δ 0 = λ/2 from the acoustic sources using the F u absorbing function. Four distinct models are tested, shown in Figure 13.

1. The shark submarine case 2 , which is challenging due to its elongated domain. The acoustic medium 2 CAD available online, at https://grabcad.com/library/submarine-shark-1 is water, c 0 = 1422 m/s. The model simulates the scattering of the submarine by a plane wave. 2. The tire model, which simulates the sound radiated from a tire travelling at constant speed, with the exterior tire surface subjected to an imposed velocity pattern. The acoustic medium is air: c 0 = 340 m/s. 3. The dome-shaped cavity model. The model is a spherical domain with a cavity in the form of a dome.

The excitation consists of an imposed pressure field of 1 Pa on the curved part of the cavity surface, in gray in Figure 13. The acoustic medium is air. 4. The loudspeaker model. The excitation is an imposed unit normal velocity on the bass reflexes, highlighted in orange in Figure 13. The acoustic medium is air.

Table 2 compares the performance of F 2 0 with F u in a low frequency excitation of 1 Hz for all models. The F 2 0 profile consistently shows an error below the target accuracy of 5% for various excitation and geometries, while F u is not accurate in this setting. Table 2: Additional industrial benchmarks. The relative L 2 -error on Γ pml is reported at f = 1 Hz. The characteristic edge length h and the ratio δo/λ are reported for each model. A reference is generated using a spherical PML equipped with Fu positioned at δo = λ/2. The additional tests in this subsection further underscore the benefits of the F 2 0 function for practical industrial acoustic simulations. The improved accuracy at low frequencies, when the PML interface is positioned in the near-field, circumvents the need for extensive domain sizes dictated by far-field PML guidelines. These results reinforce the conclusions drawn in Section 5.3 regarding the potential of the newly proposed absorbing function for cost and time savings in industrial applications.

Limitations and conclusion

In this article, we examined a novel methodology to derive perfectly matched layer absorbing functions for three-dimensional exterior Helmholtz problems. The core of our development relies on enforcing a linear decay of the wavefield in the layer, based on the analysis of the fundamental solutions of the Helmholtz equation. We found an exact absorbing profile involving the complex valued Lambert function, proposed and tested various approximations. The absorbing functions are able to enhance the low frequency behaviour while preserving the usual accuracy at high frequency. We showed that the approximation F 2 0 allows the PML to be placed in the extreme near field (λ/10 4 ) for sources of moderate complexity, resulting in a gain in computational and modeling time. The function is parameter-free and can be incorporated into existing finite element PML implementation.

We believe these ideas could be adapted to fundamental solutions of other wave propagation problems in the time-harmonic regime such as Maxwell or Navier equations. Due to the unbounded nature of the absorbing profiles, our developments are limited by quadrature errors which prevents to reach high-order accuracy, which could be improved in the future.

  ℓ is the spherical Hankel function of the second kind indexed by the mode ℓ ∈ N, and C mℓ ∈ C are modal amplitudes. The first terms of the spherical Hankel functions write h (2)
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 1 Figure 1: Real and imaginary parts of us(r) and the decay function d(r) inside a PML layer of width δ = 0.1 set at r 0 = 1

Figure 2 :

 2 Figure 2: Relative L 2 -projection error (in %) of the decay function by the one-dimensional integrated Legendre polynomial basis, for a PML layer of width δ = 0.1 set at r 0 = 1, discretized by 4 uniformly spaced elements.
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 3 Figure 3: Comparison of the approximations (13) and (14) of the Lambert function for small arguments.
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 4 Figure 4: Relative error in the maximum norm of different absorbing profiles as a function of the frequency, for a PML layer of width δ = 0.1 set at r 0 = 1.
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 5 Figure 5: Relative L 2 projection error (in %) of the decay function by the one-dimensional integrated Legendre polynomial basis, for a PML layer of width δ = 0.1 set at r 0 = 1, discretized by 4 uniformly spaced linear elements.
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 7 Figure7: Relative L 2 -error (%) in Ω for ℓ = 0 and h = 2.5 × 10 -3 , with a graded mesh in Ω pml and 2p + 20 Gauss-Legendre quadrature points. We refer to Figure6for the legend.
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 2 γ r , γ r , γ r , R =   sin(θ) cos(φ) cos(θ) cos(φ) -sin(φ) sin(θ) cos(φ) cos(θ) sin(φ) cos(φ) cos(θ) -sin(θ) 0   with R being the rotation matrix in spherical coordinates. The transformed Helmholtz equation in the PML domain reads
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 8 Figure 8: Relative L 2 -error for different absorbing functions for a centered Monopole and x-Dipole source. Simulation parameters: N pml = 2, p = 2, h = 0.075, r * = 0.7, r 0 = 1.
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 9 Figure9: Relative L 2 -error for the functions Fu and F 0 2 for a moving source load at x * = (x * , 0, 0). Simulation parameters: N pml = 2, p = 2, h = 0.075, r * = 0.15, r 0 = 1. We refer to Figure8for the legend.

Figure 10 :

 10 Figure 10: Relative L 2 -error for a centered monopole load when increasing N pml . Simulation parameters: p = 2, h = 0.075, r * = 0.7, r 0 = 1. We refer to Figure 8 for the legend.

Figure 11 :

 11 Figure 11: Left: original CAD model of the propeller. Right: surface and volume mesh with h = 30 mm. The height of the propeller is h = 260 mm and the distance between the blade tip and axis of rotation is around h = 315 mm. The generated convex exterior surface is positioned at a distance 2h from the propeller.

Figure 12 :

 12 Figure 12: Relative L 2 -error computed on the interface Γ pml for the propeller test case. The mesh is shown in Figure 11.

Figure 13 :

 13 Figure 13: Industrial benchmarks. Top left: shark submarine model. Top right: tire model. Bottom left: dome-shaped cavity model. Bottom right: loudspeaker model.

CAD available online, at https://grabcad.com/library/boat-propeller-23

https://gitlab.onelab.info/gmsh/fem/-/tree/lowfreq_PML
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Reproducibility

The source code to reproduce the simulation data from Section 4 is available online 3 in the folder examples/helmholtz1d for Section 4.1 and examples/helmholtz3d/PointSourceInSphere for Section 4.2.